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Identification of a Potential mRNA-based Vaccine
Candidate against the SARS-CoV-2 Spike Glycoprotein:
A Reverse Vaccinology Approach
Olanrewaju Ayodeji Durojaye+,*[a, b, d] Divine Mensah Sedzro+,[a, b] Mukhtar Oluwaseun Idris,*[b]

Abeeb Abiodun Yekeen,*[b] Adeola Abraham Fadahunsi,[c] and
Oluwaseun Suleiman Alakanse[b, e]

The emergence of the novel coronavirus (SARS-CoV-2) in
December 2019 has generated a devastating global conse-
quence which makes the development of a rapidly deployable,
effective and safe vaccine candidate an imminent global health
priority. The design of most vaccine candidates has been
directed at the induction of antibody responses against the
trimeric spike glycoprotein of SARS-CoV-2, a class I fusion
protein that aids ACE2 (angiotensin-converting enzyme 2)
receptor binding. A variety of formulations and vaccinology
approaches are being pursued for targeting the spike glyco-
protein, including simian and human replication-defective
adenoviral vaccines, subunit protein vaccines, nucleic acid
vaccines and whole-inactivated SARS-CoV-2. Here, we directed
a reverse vaccinology approach towards the design of a nucleic

acid (mRNA-based) vaccine candidate. The “YLQPRTFLL” pep-
tide sequence (position 269–277) which was predicted to be a
B cell epitope and likewise a strong binder of the HLA*A-0201
was selected for the design of the vaccine candidate, having
satisfied series of antigenicity assessments. Through the codon
optimization protocol, the nucleotide sequence for the vaccine
candidate design was generated and targeted at the human
toll-like receptor 7 (TLR7). Bioinformatics analyses showed that
the sequence “UACCUGCAGCCGCGUACCUUCCUGCUG” exhib-
ited a strong affinity and likewise was bound to a stable cavity
in the TLR7 pocket. This study is therefore expected to
contribute to the research efforts directed at securing definitive
preventive measures against the SARS-CoV-2 infection.

Introduction

The 21st century since inception has experienced three
coronavirus types (severe acute respiratory syndrome coronavi-
rus, Middle-East respiratory syndrome coronavirus, and severe
acute respiratory syndrome coronavirus 2) that have crossed
the species barrier to cause fatal human pneumonia.[1,2] The
Guangdong province of China was the first to experience the
emergence of SARS-CoV in 2002 which later spread through air
travel to five other continents, infected 8,098 people and led to
the death of 774.[3] The Arabian Peninsula in 2012 experienced
the emergence of MERS-CoV where it remains a major concern
for public health, claiming 858 lives with a total of 2,494

infections. SARS-CoV-2, a previously unknown coronavirus, in
December 2019 was discovered in the Hubei province of China.
Isolation and sequencing of the virus were completed by
January 2020.[4,5]

About 77% amino acid sequence identity has been
observed between the spike glycoprotein of the SARS-CoV and
that of the SARS-CoV-2, while the MERS-CoV and SARS-CoV-2
share only an identity of 31%, suggesting a more distant
relationship between both coronaviruses. An even much lower
sequence identity exists between the spike glycoprotein of the
common cold virus and that of the SARS-CoV-2 with a 25% to
30% variation. Phylogenetic analyses confirm the existence of
an evolutionarily closer relationship between the SARS-CoV
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and SARS-CoV-2 than other human coronaviruses.[6] The
receptor-binding domains show different degrees of sequence
identity, which ranges from 13% between the HCoV-NL63 and
SARS-CoV-2 to 74% between the SARS-CoV and SARS-CoV-2.
Nevertheless, there is a similarity between the 3D structure of
their spike glycoprotein trimer ectodomains and the similarity
extends to the 3D structure of other coronavirus spike
glycoprotein, including the discovery of flexible receptor bind-
ing domains that can be in different “up” conformations or in
the “down” of the closed pre-fusion trimer.[7] The differences in
the amino acid sequence of the SARS-CoV-2 receptor binding
domain and that of the SARS-CoV compared with the MERS-
CoV result in the differential binding to host receptors
(dipeptidyl peptidase 4 for MERS-CoV and angiotensin-convert-
ing enzyme 2 (ACE2) for SARS-CoV and SARS-CoV-2).[8,9] HCoV-
NL63 also uses its receptor-binding domain to bind the
angiotensin-converting enzyme 2, although there is a structural
difference when compared to the SARS-CoV and SARS-CoV-2
interaction,[9] whereas HCoV-HKU1 and HCoV-OC43 use their
receptor binding domain to bind the 9-O-acetylated sialic acids
of the host.[10]

The emergence of nucleic acid therapeutics has provided a
promising alternative to the conventional approaches in
vaccine design. In 1990, the first successful animal usage of the
IVT (in vitro transcribed) mRNA was published by Wolff et al.[11]

In the study, protein production was observed upon injection
of a reporter gene mRNA into mice.[11] In 1992, another study
demonstrated that vasopressin-encoding mRNA administration
in the hypothalamus of rats could trigger a physiological
response.[12] However, these early promising results, because of
concerns associated with in vivo delivery inefficiency, high
innate immunogenicity and instability of the mRNA, could not
attract substantial investment towards mRNA vaccine develop-
ment, and the field for these reasons rather pursued protein-
based and DNA-based therapeutics.[13] In the past decade,
major research investments and technological innovations in
the fields of protein replacement therapy and vaccine develop-
ment have enabled the mRNA to become a potential and
promising therapeutic tool. The mRNA-based vaccine usage
has several benefits over live attenuated and subunit virus,
likewise the DNA-based vaccines. With an emphasis on its
safety, the mRNA is a non-integrating and non-infectious
platform, which poses no potential insertional mutagenesis or
infection risk. In addition, the degradation of mRNA is through
regular cellular processes, and its half-life can be regulated
in vivo via the usage of various delivery and modification
methods.[13] To further improve the mRNA safety profile, the
inherent immunogenicity can be down-modulated.[13,14] As
regarding efficacy, several modifications make mRNA highly
translatable and more stable.[14] In vivo delivery efficiency of the
mRNA can be achieved through its formulation into carrier
molecules, which allows quick uptake and cytoplasmic expres-
sion. Since mRNA is the minimal genetic vector, repeated
administration of the mRNA-based vaccines can be possible, as
anti-vector immunity is completely avoided.[14] In respect to
production, because of high yields in in vitro transcription

reactions, mRNA-based vaccines have the potential for scalable,
inexpensive and rapid manufacturing.[15]

As the spike glycoprotein of the coronavirus is exposed on
its surface and facilitates host cell entry, it is the major focus of
vaccine and therapeutic design, likewise the main target of the
Abs (neutralizing antibodies) upon infection. Toll-like receptors
are membrane receptors that play an important role in the
innate immune system.[16] They are structurally characterized
type I membrane glycoprotein to house extracellular LLR
(leucine-rich repeat) domain, a cytoplasmic TIR (Toll/interleu-
kin-1 receptor) and a single transmembrane domain.[17] The
toll-like receptors function for molecular patterns associated
with danger and as a sensor for limited number of molecular
patterns that are associated with pathogens. Once the toll-like
receptors recognize specific molecules through their leucine-
rich repeat domains, such as ssRNA (single-stranded RNA) for
TLR7, 8 and 13,[18] and CpG-containing DNA for TLR9,[19] the
cytoplasmic toll-interleukin receptor (TIR) domains recruit
downstream toll-interleukin receptor domain-containing adap-
tor molecules such as MyD88 (myeloid differentiation factor 88)
and TRIF (TIR domain-containing adaptor inducing interferon-
b).[20] The initiated signal-transduction pathways lead to type I
interferons and proinflammatory cytokine production, which
mobilizes the host immune responses.[21]

There has been a continuous report of mutations in the
gene encoding the SARS-CoV-2 spike glycoprotein, even
though the virus was just recently discovered in humans.[22]

Different naturally existing variants of the spike glycoprotein
have recently been reported. These emerging variants and the
rapid global spread have raised concerns regarding the
possibility of reduced COVID-19 vaccine protection.[23] The
emergence of notable variants that harbor series of spike
glycoprotein mutations have been reported in Brazil (P.1),
South Africa (B.1.351/501Y.V2), United Kingdom (B.1.1.7) and
most recently in India (B.1.617). The United Kingdom variant,
which is currently the most globally spread variant of concern
with an associated increased transmissibility, possess a N-
terminal domain H69/V70 deletion, an adjacent P681H muta-
tion to spike glycoprotein furin cleavage site, and a receptor-
binding domain N501Y substitution. The South African variant
also harbors different mutations which include the K417 N,
E484 K, and N501Y substitution. The variation between the
South African and the Brazilian variant can be observed in the
K417 mutation, which unlike the observed “N” substitution in
the South African variant, is a “T” substitution in the Brazilian
variant. Both variants possess the same E484 K, and N501Y
substitution. Finally, the recent Indian variant has been
reported to possess the L452R, E484Q and T478 K substitution.
However, these variants of concern all share the D614G
substitution which has been reported to confer on the virus an
increased ability to spread rapidly.[23] In this study, we designed
from an antigenic region of the SARS-CoV-2 spike glycoprotein
a potential mRNA-based vaccine candidate which is capable of
triggering immune response through its interaction with the
human toll-like receptor 7. In addition, we analyzed the effect
of the N501Y mutation on the stability dynamics of the various
SARS-CoV-2 variants possessing it, with the aim of predicting
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the occurrence of possible stability-linked mutations at the
selected antigenic epitope of the viral spike glycoprotein.

Materials and methods

Sequence and structural data retrieval

The amino acid sequence and 3-dimensional structures of the
SARS-CoV-2 spike glycoprotein, the human major histocompat-
ibility complex (class I) and the toll-like receptor (TLR7) were
retrieved from the National Center for Biotechnology Informa-
tion (NCBI) database[24] and the Protein Data Bank (PDB)[25]

respectively. The SARS-CoV-2 primary sequence was retrieved
in FASTA format with an accession number of P0DTC2 while
the 3D structures were downloaded with codes 4U6Y, 6VXX
and 7CYN, representing the crystal structure of the HLA*A-0201
and the Cryo-EM structures of the SARS-CoV-2 spike glycopro-
tein and the human TLR7 respectively.

T cell epitope prediction and processing

Prediction of the T cell epitopes was based on the identification
of major histocompatibility complex class I (MHC� I)- binding
molecules. The significance of binding of each peptide to a
given MHC� I molecule is on the premise of the estimated
binding strength exhibited by the predicted nested core
peptide at a set threshold level. NetMHC 4.0 predicted the
binding of epitope peptides to the HLA*A-0201 allele using
artificial neural networks.[26] We repeated the same analysis
using the Immune Epitope Database (IEDB) MHC� I epitope
prediction module, selecting the IEDB recommended default
prediction method. In this case, consideration is given to all
alleles and their corresponding length of peptide, for a specific
species. For each combination of allele length, the consensus
method is used, which includes SMM (stabilized matrix
method), Comblib (derived scoring matrices from combinatorial
peptide libraries) and ANN (artificial neural networks).[27] The
selection of epitopes presented by the MHC (major histocom-
patibility complex) class I molecules follows a multi-step
process. The IEDB MHC� I processing platform presents a
computer-based prediction of this process based on in vitro
experiments. The MHC� I processing platform characterizes
cleavage by proteasomes, transport by TAP (transporter
associated with antigen processing) and MHC class I binding.[28]

Finally, a multi-step algorithm “EpiJen” was used for T cell
epitope prediction and processing. The application of the
method is directed at a set of overlapping peptides that are
derived from the sequence of a whole protein and acts as a
filter that reduces successfully the number of potential
epitopes. The set of final peptides needed for epitope testing
rarely includes more than 5% of the whole sequence.
Quantitative matrices for each step were developed using the
additive method.[29] The same method was also used in the
generation of quantitative matrices for proteasome cleavage
and TAP binding.

Epitope promiscuity prediction

The predicted top binder of the T cell was analyzed for its
potential to bind a wide range of alleles in the class I of the
major histocompatibility complex. The ProPred1 tool was
utilized to achieve this objective. Propred is a tool for
predicting the binding of peptides to alleles of MHC� I. It is a
matrix-based method which allows the prediction of binding
sites for the MHC in an antigenic sequence that contains 47
alleles of the MHC class I. The matrices employed in the
ProPred1 have been derived from literature and the tool also
allows standard immunoproteasome and proteasome cleavage
site prediction in an antigenic sequence. Matrices described by
Toes et al., 2001 have been implemented by the server to
identify cleavage sites for proteasomes in an antigenic
sequence. Filtering of MHC class I binders with cleavage site at
the C terminus is also allowed.[30]

B cell epitope prediction

cell epitopes play a crucial role in disease diagnosis, allergy
research and in the development of vaccines. The B cell epitope
potential of the predicted top binder of the T cell was
determined using the BepiPred-2.0, ABCpred and BcePred
tools. BepiPred-2.0 is trained based on epitope data that has
been derived from crystal structures, with a presumed higher
quality and indeed a significantly improved predictive power.[31]

ABCpred implements the FNN (standard feed-forward neural
network) and RNN (recurrent neural network) for the prediction
of B cell epitopes in an antigenic sequence. The networks have
been tested and trained on a clean data set, which is composed
of 700 non-redundant B cell epitopes that were derived from
the Bcipep database and likewise 700 non-epitopes derived
randomly from the Swiss-Prot database.[32] The approach used
by Bcepred for the prediction of B cell epitopes is based on
physiochemical properties (mobility/flexibility, hydrophilicity,
turns, exposed surface, polarity and accessibility). Results are
presented in a tabular and graphical frame. In the graphical
frame, residue properties are plotted along protein backbone,
which facilitates rapid visualization of B cell epitopes on protein
sequence.[33]

Antigenicity assessment of predicted epitope

The antigenicity evaluation took into consideration properties
such as allergenicity, transmembrane topology and the N-
glycosylation propensity of the predicted epitope. Prediction of
the selected epitope as a protective antigen was conducted
using VaxiJen.[34] The transmembrane topology of the spike
glycoprotein was predicted using the TMHMM v2.0 and TOP-
CONS, while N-glycosylation site prediction was achieved using
the NetNGlyc 1.0, which predicts N-Glycosylation sites in
proteins using artificial neural networks that examine the
sequence context of Asn-Xaa-Ser/Thr sequons.[35] TMHMM is a
transmembrane helices prediction method which is anchored
on a hidden Markov model and the development was by Erik
Sonnhammer and Anders Krogh.[36] TOPCONS is a membrane
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protein topology consensus prediction server. The algorithm is
a combination of arbitrary predictions of topology which are
merged into a consensus prediction, while its prediction
reliability is quantified on the basis of agreement level between
the underlying methods both on protein and transmembrane
region level.[37]

Peptide preparation and simulation

The epitope peptide was designed using the “build structure”
function of the Chimera software.[38] The “minimize structure”
function was used in the geometry optimization protocol at
steepest descent and conjugate gradient steps of 100 and 10
respectively, while size remained fixed at 0.02 angstroms for
both steps. Modeling of the structural flexibility of the peptide
was achieved with the use of the CABS-flex tool which
generates protein dynamics at highly reduced (3 orders of
magnitude) computational cost.[39] This follows the Jamroz
et al.[40] work where the authors were able to demonstrate that
the consensus view of the near-native protein which was
obtained from a molecular dynamics simulation production
time of 10 nanoseconds, is consistent with the CABS dynamics.
Protein residue fluctuations obtained from CABS-flex have also
been demonstrated to be well correlated to those generated
from NMR ensembles.[40]

Peptide docking against HLA*A-0201

Molecular docking of the candidate peptide antigenic epitope
models against the HLA*A-0201 allele was conducted with the
aid of the HPEPDOCK[41] and validated with the ClusPro[42]

server. In the HPEPDOCK docking algorithm, flexibility of the
peptide is considered through the generation of an ensemble
of peptide conformations, using the MODPEP program.[43] The
sampled peptide conformations are then docked globally
against the whole protein using the MDock docking
protocol.[44]

Three computational steps are performed by the ClusPro,
which include sampling of billions of conformations through
rigid docking, RMSD (root-mean-square deviation)-based clus-
tering of the 1000 structures with the lowest energy, which are
generated to detect the largest clusters that will represent the
closest models of the complex, and the energy minimization
refinement of selected structures. Docking of the rigid body by
ClusPro involves the use of PIPER, a docking program based on
the fast Fourier transform (FFT) correlation approach. The fast
Fourier transform approach which was implemented by
Katchalski-Katzir et al.[45] has introduced a major progress in the
protein-protein docking of rigid body. In the method, a protein
(the receptor) is stationed on a fixed grid at the origin of the
coordinate system and another protein (the ligand) is stationed
on a moveable grid while the energy of interaction is written as
a correlation function. The numerical efficiency is supported by
the fact that such energy functions can be calculated efficiently
and this results in the ability to exhaustively sample many
conformations of protein-protein interaction, likewise evaluat-
ing grid point energies. Thus, fast Fourier transform-based

algorithm allows the docking of proteins without prior
information of their structures.[45]

Conformational stability of the protein-peptide complex

The conformational behaviors of the HLA*A-0201 in its free
form and when in complex with the top-ranked peptide
antigenic epitope were determined using molecular dynamics
simulations. The HLA*A-0201 binding potency of the top-
ranked peptide was assessed by using the HPEPDOCK-derived
HLA*A-0201-peptide complex, as a starting structure for the
conformational behavior analysis. The peptide binds the
HLA*A-0201 binding groove in a position close to the A, D and
F-pocket of the HPEPDOCK complex. The molecular dynamics
simulations were performed on the free HLA*A-0201 and
HLA*A-0201 peptide complex using GROMACS 2019 with the
Charmm36 force field.[46] The systems were solvated in a cubic
box using the simple point charge, SPC water molecules and
were neutralized with appropriate sodium and chloride ions.
The systems were energy minimized using 50000 steps
steepest descent method with a maximum force less than
1000 KJ/mol and was equilibrated at 300 K NVT and 1 bar NPT.
The particle mesh ewald method was used for the electrostatic
interaction calculations using 1.2 nm cutoff.[47] Then production
run of 100 ns was done on the prepared free and peptide-
bound HLA*A-0201. Equilibrium properties such as the Root-
Mean-Square-Deviation (RMSD), Root-Mean-Square-Fluctuation
(RMSF), Radius of gyration (Rg), intramolecular hydrogen bond,
Solvent Accessibility Surface Area (SASA) were used to assess
the conformational stability of the HLA*A-0201 in its peptide-
bounded and free states. Principal component analysis was
employed to understand the collective motions of atoms in the
peptide-bound and free forms of HLA*A-0201, using the gmx
covar and gmx anaeig tools. Vmd, Ligplot, PyMOL and Xmgrace
were used for visualization and image preparation.[48]

Codon optimization

Adaptation of the peptide epitope gene for optimum expres-
sion in E. coli was achieved using the JCat (Java Codon
Adaptation Tool)[49] and ExpOptimizer tools[50]. The calculations
of JCat are made in advance using a proposed algorithm by
Carbone et al.[51]. Calculation results are stored in the PRODORIC
database, which hosts the data of most freely available
sequenced prokaryotic genomes.[51] ExpOptimizer on the other
hand is developed to highly express any protein of interest in
any mainstream expression host. The codon optimization
algorithm gives considerations to crucial gene transcription
and translation factors.[50]

Mutagenicity study

The effect of mutation on the stability of the SARS-CoV-2 spike
glycoprotein was predicted using the DynaMut[52] and I–
Mutant2.0.[53] DynaMut implements two well established and
distinct normal mode approaches, which can be used for the
analysis and visualization of protein dynamics through con-
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formational sampling and the assessment of mutational impact
on protein stability and dynamics resulting from changes in
vibrational entropy. DynaMut along with the normal mode
dynamics also integrates graph-based signatures to generate a
consensus prediction of mutational impact on the stability of a
protein.[52] I–Mutant2.0 is a SVM (support vector machine)-
based tool for the prediction of changes in protein stability
upon single point mutations. The predictions of I–Mutant2.0
are performed either from the protein sequence or, less
importantly, the protein structure. The method was tested and
trained on ProTherm-derived data set which at the moment is
the most comprehensive database of thermodynamic exper-
imental data of changes in free energy of protein stability
under different conditions upon mutation. I–Mutant2.0 can be
used as an estimator of regression for the prediction of related
values of DeltaDeltaG and as a classifier for the prediction of
sign of protein stability change upon mutation.[53]

mRNA preparation and simulation

The codon-optimized sequence was used for the design of the
mRNA vaccine candidate. Energy minimization of the mRNA
was conducted using the previously described steepest descent
and conjugate gradient steps parameters and the native form
was simulated using SimRNA.[54] SimRNA is a recent method for
the computational prediction of RNA 3D structures. It uses a
coarse-grained representation, samples the conformational
space using the Monte Carlo method, and employs a statistical
potential for energy approximation and the identification of
conformations which correspond to biologically relevant
structures. For complex 3D structure modeling, it uses derived
additional restraints from computational or experimental
analyses, including long range contacts and/or secondary
structure information. The SimRNA also analyzes conforma-
tional landscapes for the identification of potential alternative
structures.[54]

mRNA model docking and binding pocket dynamics analysis

The top five mRNA models generated through the SimRNA
simulation protocol were docked against the human toll-like
receptor 7, using the HDOCK docking tool.[55] The HDOCK is an
integrated package with multiple components that include
several third party programs. The first of the HDOCK workflow
steps is the input of data that accepts protein structures. The
second step involves the search for sequence similarity which is
conducted against the PDB sequence in order to locate the
homologous sequences for both ligand and receptor mole-
cules. It moves on to the third step by conducting a
comparison between two template sets to know if they have
similar records with the same PDB codes. If such PDB codes
exist, a common template for both ligand and receptor will be
selected. In a case where there exists no overlap between two
homologous template sets, the templates will be selected for
the ligand protein and/or the receptor protein from two
template sets, respectively.[55] Analysis of the TLR7 binding
pocket dynamics was conducted using the D3Pockets server.[56]

The development of this tool was targeted at the analysis and
detection of ligand binding pocket dynamic properties for a
target protein. In addition to its ability to detect all potential
ligand-binding pockets on the surface of a protein based on a
PDB file, it can also analyze the pocket dynamic properties
through correlation, stability and continuity, based on a
conformation ensemble or a molecular dynamics trajectory.
Results obtained from this tool can be used for the design of
ligands on a novel binding pocket and for studying the
functional mechanism of a target protein.[56]

Results

T cell epitope prediction and processing

The names of each column are displayed in the first row of the
table, as adapted from the original NetMHC output. “pos” in
the first column is the position of the first amino acid of the
predicted peptide within the sequence of the epitope. “HLA”
and “peptide” indicate the columns for the target MHC class I
allele, and the peptide primary sequence respectively. The “log
score” column is the raw prediction output, which for artificial
neural networks is 1-log50k to the affinity in nanomolar units.
An additional column is included for the artificial neural
network predictions (Affinity), which depicts the predicted
affinity in nanomolar units. “BindLevel” is the column that
specifies if the predicted peptide binding affinity is stronger
than a specific threshold. For the artificial neural network
prediction, the affinity score of a strong binder (SB) is less than
50 nM and the corresponding %Rank is less than 0.5 while the
affinity score of a weak binder (WB) is less than 500 nM and the
corresponding %Rank is less than 2
The threshold for strong binders was set at 0.5 while the

weak binders threshold was set at 2. The peptide length was
set at 9 and sorted by predicted affinity. The displayed output
shows the prediction for the top five strong binders and the
strongest predicted binding peptide being YLQPRTFLL with a
predicted affinity of 5.36 nM; which is well below the threshold
(50 nM) for a peptide expected to have a strong affinity, and a
%Rank of 0.04; which is also below the threshold (Table 1). In
addition, selection of candidate peptide based on %Rank is a
better criterion as this parameter is not influenced by possible
inherent molecular biases towards binding affinities.
The IEDB output for MHC class I binders shows prediction

results from various predictors that are transformed first into
percentile scores, in order to allow a uniform scale comparison
across the predictors. For a given predictor and a peptide, a
percentile score is termed as the percentage of randomly
sampled peptides from naturally occurring proteins with a
better score than the peptide. The final predicted peptide
binding affinity score, using the consensus approach is a
median percentile scores from various predictors. The
YLQPRTFLL peptide in the IEDB prediction also appears as the
strongest binder (Table 2).
For a peptide to be recognized by the immune system,

there are additional steps the peptide has to pass in the MHC
class I pathway. These steps include the cleavage by protea-
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somes and transportation by the transporter associated with
antigen processing (TAP), which have been used for the
identification of T cell epitopes in combination with MHC class I
binding predictions. The ratings of the top five 9mer peptides
predicted to be strong binders of the MHC class-I with a high
probability for proteasomal cleavage and transportation by TAP
are depicted in the IEDB processing (Table 3) and EpiJen
(Table 4) outputs.
To delineate the EpiJen dataflow, the protein initially is cut

into overlapping decamers and processed by the quantitative
matrices (QM) for proteasome cleavage. The model only takes
into account contributions of residues next to the C-terminus
(cleavage site) and the amino acid residues that follow. This
first step has a high filtering potential, which leads to the
elimination of half or two-third of the generated true negatives.
The cleaved peptides which are presented as nanomers are
passed on to the TAP binding quantitative matrices, which is
the next filter in the dataflow. For both partially and fully TAP-
dependent alleles, a 5.00 threshold is recommended. Although
the TAP step filtering ability is slow, about ten percent of the
true negatives are still eliminated in this step. The transported

peptides are then moved to the MHC binding process, which is
the next filter. EpiJen included eighteen quantitative matrices
with predictive potentials for different HLA allele binding.
Continuous values like IC50s, which are quantitative data were
available for the allele of interest, which in this case is the
HLA� A*0201, but for some other alleles, only discontinuous
values (sequence of binders) are known. The ability of this step
towards filtering is highly significant, leading to the elimination
of approximately twenty-five to thirty percent of the true
negatives. A default threshold of 0.5 and 5.3 are set for the
discriminant analysis model and the multiple linear regression
model respectively. These thresholds seek to limit the number
of false positive outputs in proteins with long sequences. The
final EpiJen ranking as shown in Table 4 is based on the IC50
and corresponding IC50 negative logarithm of the generated
peptides, with the YLQPRTFLL peptide displaying the highest T
cell epitope processing potential.

Table 1. NetMHC 4.0 prediction output for the potential MHC� I binders from the full length amino acid sequence of the SARS-CoV-2 spike glycoprotein.

pos HLA peptide 1-log50k Affinity (nM) %Rank BindLevel

268 HLA� A*0201 YLQPRTFLL 0.845 5.36 0.04 SB
132 HLA� A*0201 FQFCNDPFL 0.795 9.18 0.10 SB
1219 HLA� A*0201 FIAGLIAIV 0.785 10.29 0.12 SB
690 HLA� A*0201 SIIAYTMSL 0.759 13.54 0.17 SB
999 HLA� A*0201 RLQSLQTYV 0.740 16.66 0.25 SB

Table 2. IEDB prediction output for the top five potential MHC� I (HLA� A*-0201) strong binders.

Allele Length Peptide Score Percentile Rank

HLA� A*0201 9 YLQPRTFLL 0.971198 0.02
HLA� A*0201 9 VLNDILSRL 0.938498 0.03
HLA� A*0201 9 TLDSKTQSL 0.914998 0.03
HLA� A*0201 9 RLQSLQTYV 0.87376 0.05
HLA� A*0201 9 RLDKVEAEV 0.825045 0.06

Table 3. IEDB output for the top five T cell epitope processing peptides from the SARS-CoV-2 spike glycoprotein.

Allele Start End Peptide Length Peptide Proteasome Score TAP Score MHC Score Processing Score Total Score MHC IC50 [nM]

HLA� A*0201 269 277 9 YLQPRTFLL 1.45 0.39 � 0.66 1.84 1.17 4.6
HLA� A*0201 417 425 9 KIADYNYKL 1.68 0.51 � 1.20 2.19 0.99 15.9
HLA� A*0201 133 141 9 FQFCNDPFL 1.55 0.38 � 0.95 1.94 0.99 8.9
HLA� A*0201 691 699 9 SIIAYTMSL 1.50 0.50 � 1.18 2.00 0.82 15.3
HLA� A*0201 976 984 9 VLNDILSRL 0.43 0.43 � 1.29 1.72 0.43 19.7

Table 4. EpiJen output for the top five T cell epitope processing peptides from the SARS-CoV-2 spike glycoprotein.

Starting position Peptide Predicted -logIC50 (M) Predicted IC50 Value (nM)

269 YLQPRTFLL 10.034 0.09
28 YTNSFTRGV 9.977 0.11
983 RLDKVEAEV 9.779 0.17
1220 FIAGLIAIV 9.765 0.17
857 GLTVLPPLL 9.709 0.20
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Epitope promiscuity prediction

For the identification of MHC class I binders in an antigen
sequence, Propred1 first generates the overlapping nanomer
peptides. This step is followed by the quantitative matrix-based
calculation of the scores of the nanomer peptides, where the
quantitative matrix is of selected MHC class I alleles. Finally, all
nanomer peptides with higher scores than the selected thresh-
old score are considered predicted binders of the selected MHC
class I allele. Predicted binders on the antigen sequence are
presented along the primary sequence and in a different
sequence.

The server has a default threshold of 4% on the observation
that most of the alleles have nearly the same specificity and
sensitivity at 4%. The peptide “YLQPRTFLL” is predicted to bind
18 alleles (Figure 1).

B cell epitope prediction

The sequence-based output of the B cell epitope prediction by
BepiPred-2.0 is presented in Figure 2 alongside the surface
representation of the SARS-CoV-2 spike glycoprotein to show
the localization of the predicted antigenic region on the surface
of the viral protein. BepiPred-2.0 is trained only on the data of
an epitope that is derived from crystal structures, which

Figure 1. ProPred-I output for promiscuous MHC Class-I binding Peptides. The server represents predicted binders using color variations. The predicted binders
are represented in blue color while the red-colored peptides represent the first position of each binder, for easy identification of overlapping peptides.
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presumably is to be of a better quality and indeed resulted in a
significantly improved predictive power. At a BepiPred-2.0
threshold of 0.36, the “YLQPRTFLL” peptide, which is predom-
inantly composed of beta sheets and coils, with a higher
number of exposed residues than the buried, is predicted as a
B cell epitope (Figure 2a).
The ABCpred B cell epitope prediction is a sequence-based

predictor which presents results in a tabular frame and an
overlap display (Table 5). For a tabular frame display, ABCpred
ranks epitopes on the basis of obtained scores from the trained
RNN (recurrent neural network). Peptides with higher score
values are more likely to be predicted as B cell epitopes. The
“YLQPRTFLL” peptide which falls among the top scorers, is
ranked 8th with a score of 0.74 (Table 5).
The BcePred allows the prediction of B cell epitopes in

protein sequences and presents it in graphical format as shown
in Figure 3. The residue properties are plotted along the

protein backbone, which facilitates the quick B cell epitope
visualization on proteins. The peak of the segment of amino
acid residue above the default threshold value (1.8) is
considered as a predicted B cell epitope. The physiochemical
property considered for this prediction is the antigenic
propensity. The residues between 269 to 277, which make up
the antigenic region of interest are predicted as a B cell epitope
(Figure 3).

Antigenicity assessment

Using the VaxiJen server, the “YLQPRTFLL” peptide is predicted
as a probable antigen. The model for the AllerTop server that
was used for the allergenicity prediction of the epitope
sequence of interest is based on the total set of allergens and
non-allergens derived by the k nearest neighbors (kNN)
algorithm, with the value of k being 3. The peptide epitope of

Figure 2. (a) BepiPred-2.0 B cell epitope prediction for the SARS-CoV-2 spike glycoprotein. The “Epitopes” row indicates the position of residues with scores
above the set epitope threshold. “Predictions” illustrate the predictions of BepiPred-2.0 with the amino acid residues of the protein displayed in orange
gradient. “Structural” illustrate the probability gradient of the alpha helix (H) (which is not covered in the figure), beta sheet (E) with blue gradient, and coils
(C), with orange gradient. The exposed (E) and buried (B) regions of the sequence are illustrated by the “Surface” column which was obtained using the
NetsurfP default threshold. The orange gradient in this column illustrates the predicted relative surface accessibility. (b) An illustration of the SARS-CoV-2
surface representation (PDB 6VXX), with the predicted antigenic region highlighted in red color.

Table 5. The top ten representative ABCpred continuous B cell epitope prediction output ranked based on the prediction scores.

Rank Sequence Start position Score

1 STFKCYGVSP 375 0.81
2 LQYGSFCTQL 754 0.80
2 QCVNLTTRTQ 14 0.80
3 IGAGICASYQ 666 0.79
4 FQQFGRDIAD 562 0.78
5 ICGDSTECSN 742 0.77
5 FKNIDGYFKI 194 0.77
6 VFRSSVLHST 42 0.76
7 KSNIIRGWIF 97 0.75
7 WMESEFRVYS 152 0.75
8 NNSYECDIPI 657 0.74
8 YLQPRTFLLK 269 0.74
9 NLDSKVGGNY 440 0.73
9 LALHRSYLTP 242 0.73
10 GVYFASTEKS 89 0.72
10 REFVFKNIDG 190 0.72
10 GNFKNLREFV 184 0.72
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interest was submitted in plain format also to this server which
predicted a “non-allergen” status for the epitope. The probable
orientation and location of transmembrane helices in the SARS-
CoV-2 spike glycoprotein sequence were analyzed using the
TMHMM v2.0 (Figure 4). In this program, the top (values
between 1 and 1.2) of the probability plot is known as the best
possible transmembrane helices prediction. As illustrated in
Figure 4, the residues 269 to 277 were localized outside the
residues with high transmembrane helical probability.

Considering the amino acid sequence of the SARS-CoV-2
spike glycoprotein, TOPCONS predicted the protein trans-
membrane topology, which specifies the membrane-spanning
segments of the protein and their relative orientation (IN/OUT)
to the membrane (Figure 5a and b). The prediction is a
consensus from the algorithm of five different predictors
(Philius, OCTOPUS, SPOCTOPUS and SCAMPI). The predictions
from these five algorithms are used as input to the TOPCONS
HMM (Hidden Markov Model), which gives a consensus-based
prediction for the protein, alongside a reliability score on the

Figure 3. BcePred graphical output for the SARS-CoV-2 spike glycprotein B cell epitope prediction. The displayed graph covers the amino acid residues
between 241 to 300 of the viral sequence.

Figure 4. TMHMM graphical display of the SARS-CoV-2 spike glycoprotein transmembrane propensity prediction. The vertical red lines of the plot illustrate the
predicted transmembrane helical segments of the protein. The blue line depicts the probability of a segment of the protein sequence to be intracellular while
the outer membrane segment is denoted in pink line.
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basis of the agreement of all included methods across the
sequence. In addition, the ΔG-scale is used for the prediction
of the membrane insertion free energy for a window of
nineteen amino acids centered around each sequence position.
The result shows no homologous transmembrane protein was
detected among the five prediction algorithms (Figure 5a),
although signal peptides were detected between the first 21
residues of the protein in the consensus prediction (Figure 5b).

To identify significant glycosylation patterns, N-linked
glycosylation site of the SARS-CoV-2 spike glycoprotein was
analyzed using the NetNGlyc 1.0. The default 0.5 value was
selected as the prediction threshold. The result is displayed as a
graph which illustrates the potential SARS-CoV-2 spike glyco-
protein glycosylation sites. A total of 22 potential N-glycosyla-
tion sites, which does not include the predicted antigenic

Figure 5. (a) TOPCONS predicted transmembrane topology with the predicted ΔG values. Transmembrane helices as denoted in the keys shown in the figure,
are the grey and white rectangles. (b) Consensus prediction of the TOPCONS, detecting short sequence regions of the protein as predicted signal peptides
(vertical black rectangle) and transmembrane helices (vertical white rectangle) respectively.
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epitope, were observed on the spike glycoprotein of the SARS-
CoV-2 as predicted by the NetNGlyc web server (Figure 6).

Antigenic peptide flexibility simulation

Having built the antigenic peptide using the Chimera software
and likewise completed the energy minimization protocol, we
performed simulation protocols to generate near-native dy-
namic conformations of the antigenic peptide. The asymmetric
Metropolis scheme and Monte Carlo dynamics which satisfies

the Boltzmann distribution of generated ensembles and micro-
scopic reversibility requirements was employed by the CABS-
flex for the completion of this protocol. The top five generated
models [Figure 7] were then selected for molecular docking
against the HLA*A-0201 allele of the human major histocom-
patibility complex Class I.

Figure 6. Predicted N-glycosylation sites in the SARS-CoV-2 spike glycoprotein.

Figure 7. Stick representation of the top five generated models from the CABS-flex simulation protocol.
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Peptide docking against HLA*A-0201

The generated peptide models were docked against the
HLA*A-0201 protein in order to validate the strong binding
predictions of the T cell epitope predictors. Table 6 shows the
individual score for each peptide model as predicted by
HPEPDOCK and ClusPro. In the HPEPDOCK docking algorithm,
the flexibility of the peptide is considered through the
generation of an ensemble of peptide conformations, after
which the sampled conformations are docked globally against
the whole protein using the rigid docking protocol. The
binding of “model 2” to the HLA*A-0201-peptide binding site
produced the best score for both docking tools. Figure 8
therefore, displays the pose of the “model 2” peptide epitope
in the HLA*A-0201 binding pocket.
For the descriptive purpose of specificity and selectivity of

epitope recognition by the HLA*A-0201, we conducted a
similar molecular docking study on two additional peptides
that were selected from the list of predicted processed T cell
epitopes. These peptides were selected on the premise that
intracellular peptides for MHC class I presentation can only be
made by cytosolic proteasomes and proteases, followed by
transportation into the endoplasmic reticulum through the
Transporter associated with Antigen Processing (TAP) for
further processing and an eventual transformation into anti-
genic peptides. For this reason, the second-ranked peptides by
both predictive tools for the T cell epitope processing (IEDB

and EpiJen) were selected. Both peptides (KIADYNYKL and
YTNSFTRGV) were used as the positive control group for this
study.
Following the CABS-flex flexibility simulation protocol on

both peptides in order to generate their near-native conforma-
tion (Supplementary Figures 1 and 2), the molecular docking
protocol was conducted on all generated models (Supplemen-
tary Tables 1 and 2). The binding poses for top-scoring models
upon binding to the HLA*A-0201, as evaluated by both
HPEPDOCK and ClusPro were also displayed (Supplementary
Figures 3 and 4). The obtained binding energy output for each
displayed peptide model suggests a strong affinity upon
binding to the HLA*A-0201.

Conformational stability of the protein-peptide complex

Understanding the nature of crucial interactions that facilitate
the binding and stabilization of the highest energy peptide
within the HLA*A-0201 binding groove to trigger an immuno-
logical response is a necessity. From the interaction analysis
shown in Figure 9, hydrogen bond formation exists between
the HLA*A-0201-peptide complex, with Arg65, Lys66, Asp77,
Lys146 and Ala150 amino acid residues of the HLA*A-0201
interacting with other residues across the length of the
peptide. Hydrophobic interactions also mediate the binding of
the peptide to the HLA*A-0201 via residues Lys66, Ala69,
Asp77, Leu81, Tyr123, Ile124, Thr143, Trp147, Val152, Leu156,

Table 6. ClusPro and HPEPDOCK binding energies for the top 5 CABS-flex simulation models.

Peptide models Receptor protein Docking score (ClusPro) Docking score (HPEPDOCK)

Model 1 HLA*A-0201 � 852.9 � 246.811
Model 2 HLA*A-0201 � 934.7 � 257.458
Model 3 HLA*A-0201 � 916.7 � 254.871
Model 4 HLA*A-0201 � 799.2 � 242.794
Model 5 HLA*A-0201 � 910.2 � 237.752

Figure 8. Binding poses for the peptide model with the strongest binding energy (model 2) in the HLA*A-0201 binding pocket as obtained from (a) the
ClusPro model (purple sticks) and (b) the HPEPDOCK peptide binding model (yellow sticks).
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and Tyr159 of the HLA*A-0201 receptor. There are six pockets
within the binding site of HLA*A-0201, and these pockets
might provide specificity for peptide side chain interactions.
These pockets exists at the junction of the beta sheets and a
helix, with the center of the binding cleft having no deep
depression.
Met5, Tyr7, Tyr59, Glu63, Tyr159, Glu163, Trp167 and Tyr171

have been identified as amino acid residues of the pocket A of
HLA*A-0201, and its pocket B is made up of His9, Thr24, Glu45,
Leu66, Cys67 and Tyr99. Pocket C is composed of His9, Lys70,
Thr73, Asp74 and Arg97, while Tyr99, His114, Leu156, Tyr159
and Leu160 are found at pocket D. Pocket E has residues
His114, Trp133, Trp147, Val152 and Leu156.[57] Residues Lys66,
Tyr159 of the HLA*A-0201-peptide complex are among the
residues surrounding the opening rim of pocket A (Figure 9a).
The side chain of Leu156, the ring of Tyr159 and the ring of
Tyr99 also contribute to the formation of pocket D. Pocket F is
formed from Asp77, Leu81, Tyr123, Thr143, and Trp147 of the
HLA� A2-peptide complex.

Molecular dynamics simulation is considered an important
method for understanding the physical basis of the structure
and functions of biomolecules. Additionally, this method is
commonly used to study the structure, dynamics, and con-
formational changes in macromolecular systems, as well as
ligand binding among others.[58] Most proteins function by
interacting with other proteins, and understanding these
complexes is crucial to almost all physiological processes. The
molecular dynamics simulation trajectories of the free HLA*A-
0201 and HLA*A-0201-peptide complex were analyzed to get
insight into their conformational behavior over a period of
time. The RMSD of the backbone atoms RMSD describes the
conformational changes between the free HLA*A-0201 and
HLA*A-0201-peptide complex. Figure 10a shows that through-
out the 100 ns simulation, the systems RMSD values range
between 0.10 to 1.20 nm. The HLA*A-0201-peptide complex
deviated below the free HLA*A-0201 throughout the simula-
tion. The complex reached equilibrium just after 100 ns and
maintain the same trend till the end of the simulation. The free
HLA*A-0201 and HLA*A-0201-peptide complex have an aver-

Figure 9. Interaction analysis of HLA*A-0201-peptide complex in 3D and 2D representations. (a) The HPEPDOCK-derived docked HLA*A-0201-peptide complex
used as the starting complex for the molecular dynamics simulation. (b) A representative snapshot of the simulated HLA*A-0201-peptide complex.
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age RMSD of 0.757 nm and 0.350 nm respectively. The HLA*A-
0102 peptide complex exhibited lower conformational mobility

during the simulation, with the regions between 11–22 and
193–200 amino acid residues exhibiting almost similar patterns

Figure 10. Molecular dynamics simulation and trajectory analysis of the free HLA*A*0102 and HLA*A*0102-peptide complex. Plots of the (a) Root-mean-square
deviation, (b) Root-mean-square fluctuation, (c) Radius of gyration, (d) Solvent-accessible surface area, (e) Intramolecular hydrogen bonding, and (f) principal
component analyses.
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to those of the HLA*A-0102 free. The other regions of the free
HLA*A-0201 exhibited higher fluctuations than the HLA*A-
0102-peptide complex (Figure 10b).
The radius of gyration has been used as a measure of the

compactness of proteins. Protein stability is known to be
affected by the packing of amino acid residues. The lower
degree of fluctuation of the HLA*A-0102-peptide complex
throughout the simulations indicates a higher compactness of
the system when compared with the free HLA*A-0102
protein.[59] The HLA*A-0201-peptide complex maintained low
fluctuation level throughout the simulation time, unlike the
free HLA*A-0201 which has a high radius of gyration. This
indicate that the free HLA*A-0201is a less compacted system
(Figure 10c). The compactness has been defined as a ratio of
the accessible surface area of a protein to the surface area of
the ideal sphere of the same volume.[60] The surface area of the
protein exposed to the solvent molecules was examined using
the solvent accessibility surface area (SASA). The SASA of the
free HLA*A-0201 was higher when compared with that of the
HLA*A-0201-peptide complex, describing the latter shrunken
nature. The average SASA of the free HLA*A-0201 and HLA*A-
0201-peptide complex are 160.311 nm2 and 153.93 nm2 respec-
tively (Figure 10d). The interaction between the peptide and
the HLA*A-0201 are mostly hydrophobic in addition to the
identified hydrogen bonds, both of which were contributing to
the stability of the complex (Figure 9b). Notwithstanding, an
increased number of intramolecular hydrogen bonds was
observed in the HLA*A-0201-peptide complex compared with
the free HLA*A-0201 throughout the simulation time (Fig-
ure 10e).
The principal component analysis (PCA) gives information

about the prominent modes of the trajectory of HLA*A-0102
free and HLA*A-0102 peptide complex. PCA can help to
minimize the dimensionality of molecular dynamics simulation
trajectory data. It gives a simple way to examine, analyze, and
compare large-scale collective motion seen during the simu-
lation. The eigenvectors with the largest eigenvalues have the
highest contribution to the observed covariance.[61] The analysis
was done by diagonalizing and solving the covariance matrix‘s
eigenvalues and eigenvectors using the backbone atoms of the
HLA*A-0102 free and HLA*A-0102 bound. The HLA*A-0102
bound shows a distinct cluster with less collective motion while
the HLA*A-0102 free has a widespread cluster. The low
flexibility observed in HLA*A-0102 peptide complex can
account for the lesser space occupied in the phase space
compared with the HLA*A-0102 free and as such the HLA*-
0102 peptide complex appears to be more stable than the free
HLA*A-0102 (Figure 10f).[62]

Codon optimization

For various biotechnological applications and in basic biochem-
ical research, the production of heterologous protein is of
major importance. However, there exist a limited number of
eukaryotic and prokaryotic production hosts for many organ-
isms under investigation. The codon usage of the gene in focus
and that of its desired production host usually differ signifi-

cantly. In most cases, this ends up in low protein recovery. In
this context, JCat and ExpOptimizer offer the possibility for the
adaptation of the codon usage of the gene that codes for the
“YLQPRTFLL” peptide, in the E. coli. For this purpose, the codon
adaptation index of the antigenic epitope sequence was
displayed after calculation. The basis for the codon optimiza-
tion is provided by the obtained value. Here, the JCat and
ExpOptimizer calculated the codon adaptation index (CAI) and
GC content of the optimized nucleotide sequence of the
antigenic epitope of interest. The CAI values were noted as 1.0
and 0.87, for the calculation results that were obtained from
JCat and ExpOptimizer respectively with respective 56.66 and
55.56 GC content values for both tools (Supplementary Fig-
ure 5a and b).
Based on these results, we compared the nucleotide

sequence output from both tools. A sequence of 27 nucleotides
in length was generated by both JCat and ExpOptimizer
(TACCTGCAGCCGCGTACCTTCCTGCTG and TATCTGCAGCCGCG-
TACTTTCCTGCTG). A careful study of the output shows that the
difference in both sequences occur on the 3rd and 18th

nucleotide, where cytosine (C) in the JCat sequence is
substituted for thymine (T) in the ExpOptimizer sequence.
Based on the codon adaptation index result, we selected the
JCat sequence for the design of the mRNA-based vaccine
candidate, as it produced an optimum adaptation result. The
codon adaptation protocol was likewise conducted on the
control group peptides, (KIADYNYKL and YTNSFTRGV) in order
to generate a set of optimized nucleotide sequences which
were utilized for the design of their 3D structures. However,
because the calculated CAI value for the two selected peptides
that represent the control group is the same as that of the
antigenic peptide of interest (1.0), a single graphical output
was displayed to represent the relative adaptiveness of the
three peptide sequences after adaptation by the JCat tool
(Supplementary Figure 5b). The codon optimization protocol
for both control group peptides also generated sequences with
27 nucleotides each (AAAATCGCTGACTACAACTACAAACTG was
generated for the KIADYNYKL peptide while TACAC-
CAACTCTTTCACCCGTGGTGTT was generated for the
YTNSFTRGV peptide), with both producing GC content values
of 37.04 and 48.15 respectively.

Mutagenicity study

Generally, the stability of proteins is a critical biophysical
property that drives their evolution. Although the realized
fitness of a specific strain of virus is a complex phenomenon
which is the outcome of the interaction between host and viral
molecules, a large fraction of the observed effect of mutation
on fitness parameters, such as cell receptor fusion are also
related to alterations in the viral protein stability.[62] In this
study, we used DynaMut and I-mutant 2.0 for the evaluation of
the effect of single mutation on the stability of the SARS-CoV-2
spike glycoprotein. For the N501Y single mutation, the server
outputs the predicted change in stability (0.427 kcal/mol),
along with the variation in entropy between the wild-type and
mutant structures (� 4.008 kcal/mol/K) (Figure 11). For the
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purpose of comparison, the changes in stability calculated by
normal mode analysis (NMA) and structure-based methods are
displayed in Table 7. The output shows the N501Y mutation
has a stabilizing effect on the viral protein. Visualization of non-
covalent interactions (Figure 12), deformation energies and
atomic fluctuations (Figure 13) of wild-type and mutant
residues in their respective 3D structures, is also enabled by
DynaMut. Deformation energy provides an estimate for the

amount of local flexibility in the protein while the atomic
fluctuation provides the amplitude of the absolute atomic
motion. Estimations were performed over the first ten non-
trivial molecule modes.
The first column shows the predictive methods. DynaMut

and SDM uses a structure-based predictive model while the
ENCoN bases its calculation on the normal mode analysis
(NMA). Predictions from the three methods depict a stabilizing
effect upon the N501Y mutation.
The I-mutant 2.0 prediction (Table 8) unlike the DynaMut

prediction, is sequence-based, where a table of nineteen rows
is returned as result to illustrate the mutational sign of free
energy change. The nineteen rows in the I-mutant 2.0 output
contains residues that differ from the one present in the
corresponding position in the wild-type sequence. This corre-
sponds to the differential number of columns returned as

Figure 11. Amino acids colored based on the change in vibrational entropy upon mutation. Blue color signifies structural rigidification while red signifies
flexibility gain. The output (blue colored) is an indication of an increase in stability upon the N501Y mutation on the SARS-CoV-2 spike glycoprotein.

Table 7. Structure-based and NMA calculations of changes in stability upon
mutation.

Methods Prediction (kcal/mol) Effect

DynaMut 0.427 Stabilizing
ENCoM 4.406 Stabilizing
SDM 0.660 Stabilizing
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output. The most common number of columns is 6, listing
respectively the position in the sequence under consideration,
the original name of the residue in one-letter code, one-letter
code representation of the mutated residue, the predicted DDG
(value of change in free energy) or the prediction sign (increase
or decrease in stability), the pH, and temperature in which the
prediction was conducted. One more column is included in the

output table that in turn lists the RI (reliability index) value of
the prediction. This occurs only when the prediction of the sign
of the stability change starts from the protein sequence. The
result presented in Table 8 shows only mutations with increas-
ing stability effect on the protein as predicted by I-mutant 2.0.
Mutations with decreasing effects were excluded.

Figure 12. Interatomic interaction prediction upon the N501Y mutation. Residues of the wild-type (a) and mutant (b) are colored in light-green and are also
presented along with the surrounding residues as sticks. The surrounding residues are involved in other types of interaction. The bonds are colored according
to interaction types. The red, yellow and pink represent hydrogen bonds, ionic interactions and carbonyl contacts respectively.

Figure 13. Visual analysis of deformation energies and atomic fluctuation. The deformation magnitude is illustrated by thin to thick colored tubes. Blue white
and red represent the low, moderate and high magnitudes respectively (a1 and b1). The fluctuation magnitude is also illustrated by thin to thick colored tubes,
where the blue white and red represent the low, moderate and high magnitudes respectively (a2 and b2).
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mRNA preparation and simulation

Following the codon optimization protocol for the antigenic
peptide of interest, the generated nucleotide sequence (the
JCat output) was selected for the design of the potential
mRNA-based vaccine candidate. The nucleotide sequence was
converted into the standard (A, U, C, G) RNA code before
generating the PDB structure that was used as the SimRNA
input file (UACCUGCAGCCGCGUACCUUCCUGCUG). The SimRNA
simulation output is recorded as a trajectory file made up of
the conformations of energies selected from a series of
consecutive simulation steps. This protocol is conducted to fold
the mRNA into its near-native 3-dimensional structure. The
trajectory is converted into a series of PDB files which contains
models in the reduced SimRNA output representation and the
output by default also includes the secondary information

(expressed in dots-and-brackets format) of the top five
structural conformations (Figure 14). Detection of the secon-
dary structure is through an in-built SimRNA classifier, which
operates on the reduced 3D structural representation.
The same protocol was followed for the preparation and

simulation of the control group mRNAs after the nucleotide
sequence conversion into standard RNA codes (AAAAUCGCU-
GACUACAACUACAAACUG and UACACCAACUCUUUCACCC-
GUGGUGUU). The simulation protocol for the control group
mRNAs also produced five top clusters each (Supplementary
Figures 6 and 7), out of which their respective secondary
structures were generated (Supplementary Figures 8 and 9).

Table 8. Sequence-based stability prediction upon residue mutation as obtained from the I-mutant 2.0.

Position Wild-type Mutant Stability RI pH (� log [H+]) T (°C)

501 N V
L
I
M
F
W
Y

Increase
Increase
Increase
Increase
Increase
Increase
Increase

6
0
4
2
2
0
2

7.0
7.0
7.0
7.0
7.0
7.0
7.0

25
25
25
25
25
25
25

269 Y V Increase 3 7.0 25
271 Q V

L
I
E

Increase
Increase
Increase
Increase

0
1
1
2

7.0
7.0
7.0
7.0

25
25
25
25

The presented results are specifically for mutations with increasing stability effect

Figure 14. Secondary and tertiary structure depiction of the top five SimRNA simulation output. For each cluster, the tertiary structures are displayed in their
3D format above the corresponding secondary structures.
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mRNA model docking and binding pocket dynamics analysis

The HDOCK utilizes a fast Fourier transform (FFT) based global
docking program for the global sampling of putative modes of
binding, where a pairwise scoring function which is shape-
based, has been used. A 15° angle interval is used for rotational
sampling, while a 1.2 Å spacing is adopted for the fast Fourier
transform-based translational search. Optimization for the top
ten translations for each rotation, with best shape complemen-
tarities from the fast Fourier transform search is conducted,
using knowledge-based scoring functions. The top five clusters
from the SimRNA simulation for the mRNA vaccine candidate
and control group mRNAs were docked against the human
TLR7 protein and the scores presented in Table 9 and
Supplementary Tables 3 and 4. The ranked binding modes are
clustered with an RMSD cutoff of 5 Å. The binding orientations
of the clusters with the strongest affinity are also displayed in
Figure 15a and Supplementary Figures 10a and 11a. Observa-
tion from the binding pocket dynamics output also shows that
cluster 1 mRNA vaccine candidate is bound to the stable cavity
of the TLR7 pocket, likewise the cluster 4 and cluster 3 of the
control group mRNAs respectively. D3Pockets colors the grid
points with pocket cavities. The higher the red gradient at each

point, the more frequent such points in the cavity are observed
throughout the molecular dynamics trajectory. The higher the
blue gradient at each point, the less frequent such points in
the cavity are observed throughout the molecular dynamics
trajectory. The subpocket region predominantly composed of
red points is more stable than other regions (Figure 15b,
Supplementary Figures 10b and 11b).
The resulting complex interaction formed from the binding

of the “Cluster 1” mRNA vaccine candidate and the human
TLR7 was analyzed using the Protein-Ligand Interaction Profiler
(PLIP)[63] to give insight into the nature of amino acid residues
that facilitates binding. There are nine hydrogen bonds formed
between the TLR7 and the “Cluster 1” mRNA vaccine candidate
as shown in Figure 16 and Table 10. Also, salt bridges exist
between the Cluster 1 mRNA vaccine candidate and the TLR7
complex. This suggests that the identified amino-acid residues
might be important for the Cluster 1 mRNA vaccine candidate
binding to the TLR7 to exert its innate immunity.

Discussion

As a pandemic-response strategy, the mRNA vaccine platform
has an advantage, considering its efficiency and flexibility in

Table 9. Docking scores for the top 5 generated SimRNA clusters against the human toll-like receptor 7 protein.

Clusters Receptor Docking score (Kcal/mol) Ligand RMSD (Å)

1 TLR7 � 415.23 170.98
2 TLR7 � 390.82 177.96
3 TLR7 � 414.31 170.18
4 TLR7 � 376.84 187.11
5 TLR7 � 375.04 188.76

Figure 15. Cartoon representation of the binding pose of “Cluster 1” mRNA vaccine candidate in the human TLR7 binding pocket (a). Surface representation of
the human TLR7 is displayed, with meshes in different color gradients denoting the different degrees of stability. Green mesh denotes a metastable pocket
while blue and red denote the unstable and stable pockets respectively (b).
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the design and manufacturing of immunogen.[64] The spike
glycoprotein of the coronavirus linked to the 2002 outbreak of
SARS had been suggested by earlier works to be an ideal target
for protective immunity while many vaccine candidates in
various developmental stages are currently undergoing
evaluation.[65] Shortly after the determination of the genetic
sequence of the SARS-CoV-2 in January 2020, a LNP (lipid-
nanoparticle)-encapsulated mRNA vaccine (mRNA-1273) which
expresses the prefusion-stabilized spike glycoprotein, was
developed by the NIAID (National Institute of Allergy and
Infectious Diseases) vaccine research center, within the NIH
(National Institutes of Health) and Moderna.[66] Animal chal-
lenge experiments have been conducted,[67] where the mRNA-
1273 vaccine demonstrated protection.[68] Recently demon-

strated also was the safety and efficacy of BNT162b2, which is
another mRNA vaccine.[69]

Our reverse vaccinology approach in the design of a
potential mRNA vaccine candidate followed series of steps, first
of which is the determination of the most suitable antigenic
epitope from the viral spike glycoprotein to serve this purpose.
To achieve this, the SARS-CoV-2 spike glycoprotein sequence
was analyzed for the detection of a single epitope with the
potential of triggering immune response through its ability to
interact with a wide range of MHC class-I alleles and likewise
stimulate the adaptive immune system for the secretion of
antibodies. T-cells scan ligands of the major histocompatibility
complex presented to them on professional APCs (antigen-
presenting cells), cells of the lymphoid lineage and nucleated

Figure 16. 3-D interaction analysis of the Cluster 1 mRNA with the TLR7 pocket residues.

Table 10. Interaction analysis of Cluster 1 mRNA with the TLR7 pocket.

Nucleotides of the Cluster 1 mRNA Interacting TLR7 amino acid residues
Hydrogen bonds (distance, Å) Salt bridges (distance, Å)

G6 Lys108 (3.35) –
A16 – Arg298 (5.15), His298 (4.55)
C17 Ser322 (2.93), Asp346 (3.66),

Arg378 (3.40)
His298 (3.92)

C18 Asp320 (3.09), Asp346 (3.81),
Lys470 (2.70)

Arg296 (4.79)

U19 – Lys470 (3.64)
U20 Gln181 (3.47) Lys212 (5.13)
C21 Pro267 (2.44) Arg186 (4.96)
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cells surface, which expresses molecules of the MHC class I.
This allows the detection of the presence of abnormal self-
antigens such as those expressed by cancer cells, as well as the
detection of pathogen-derived antigens. Complexes of the
major histocompatibility complex and their ligands are gen-
erated by antigen processing and antigen presentation path-
ways, which consist of various enzymatic events with the
inclusion of specialized processes and organelles, that are
specific for different classes of the major histocompatibility
complex.[70]

The main MHC class I processing pathway involves
proteasome-mediated degradation of proteins, followed by the
transport of the degradation products by the TAP (transporter
associated with antigen processing) to the ER (endoplasmic
reticulum), where the binding of peptides to molecules of the
MHC class I takes place, and then presentation on the surface
of the cell by the MHCs. The responsibility of the proteasome is
directed at the generation of the C-terminus of the final
presented peptide (not the N-terminus),[71] while the trans-
porter associated with antigen processing is an ATP-dependent
protein that transport peptides belonging to the ABC (ATP-
binding cassette) family of transporters.[72] This family transport
a wide range of molecules across the membrane, including
sugars and large polypeptides. Identification of promiscuous or
cross-reactive antigenic regions in a sequence is another area
of interest for immunologists, and this makes the process an
important step in the design of subunit vaccines. The
promiscuous regions have the ability to bind to many alleles of
the MHC class I and this binding is their recognition
prerequisite by the cytotoxic T lymphocytes (CTLs).[73] Results
from the T cell epitope prediction and processing shows the
predicted antigenic epitope for the design of the potential
mRNA candidate satisfies the described antigenic properties,
with a high probability to exhibit promiscuous binding to
many MHC class I alleles and as such was selected for further
antigenicity validation studies.
The immune system of humans has an incredible patho-

gen-fighting ability (viral, fungal and bacterial infections). One
of the most critical events of the immune system which is
involved in the clearance of infectious organisms is the
interaction between antigens (such as pathogenic organism
proteins) and antibodies.[74] The binding of antibodies to
antigens occurs at sites known as B cell epitopes hence,
identification of B cell epitopes (areas on surface antigens
which can bind to antibodies) may facilitate the development
of different immune-related therapies, such as vaccine
development.[75] The importance of the B cell epitopes also cuts
across allergy research and the determination of cross-reactivity
of the IgE-type allergen epitopes. These epitopes may be
continuous (linear) or discontinuous (conformational). When
linear synthetic peptides are capable of inducing antibodies
that can cross-react with parent proteins or are observed to
cross-react with anti-protein antibodies, then such peptides are
termed continuous (linear) epitopes.[76] The protective linear
epitopes of the B cell may facilitate the synthesis of efficient
antiviral peptide vaccines. A dominant linear B cell epitope in
an autoimmune disease state is also used as the target for the

response of neutralizing antibodies.[77] The B cell epitope
prediction results with the aid of several tools have also shown
the potentials of the antigenic epitope for antibody recogni-
tion.
To further validate the antigenic potentials of the predicted

epitope, the allergenic potentials, transmembrane topology
and N-glycosylation profile were assessed. Allergy is a form of
hypersensitivity to regular innocuous substances, such as
pollen, dust, vaccines, foods or drugs. Allergens are known to
provoke the response of IgE antibodies as small antigens. Such
antigens do enter the body at minute doses through mucosal
surface diffusion, then trigger a type 2 T helper (Th2)
response.[78] The allergen-specific B cells are driven by the type
2 T helper cells specific for allergen recognition, for the
production of antibodies (IgE) which binds to the FcεRI, a high-
affinity surface receptor located on activated eosinophils, mast
cells and basophils. Upon activation, these cells release
mediators that have been stored, giving rise to tissue damage
and inflammation.[79] TMDs (transmembrane domains) are
predominantly composed of non-polar amino acid residues
and may once or severally traverse the lipid bilayer. Trans-
membrane domains are also usually made up of alpha helices.
The polar peptide bond is capable of forming internal hydro-
gen bonds between amide nitrogens and carbonyl oxygens, or
either being hydrated.[80] At the position where water is
essentially excluded within the lipid bilayer, peptides do adopt
the alpha helical configuration which in turn maximizes their
internal hydrogen bonding. It has been established that
proteins with two or more transmembrane helices are not ideal
for the development of vaccines because of the difficulty in
expressing them in soluble form, and as such should be
excluded during the process of screening.[81] NLG (N-linked
glycosylation) is a complex biosynthetic process which regu-
lates protein maturation through a secretory pathway. The
regulation of this cotranslational modification is by a series of
enzyme-catalyzed reactions, which leads to the transfer of a
core lipid carrier glycan to a protein substrate. The N-linked
glycoprotein biosynthesis is well characterized,[82] while amino
acid residues in such highly glycosylated regions may be
shielded by masking carbohydrates from presentation to
antibodies.[83] With consideration given to the obtained results
from the predictive tools used for the purpose of this study, we
validate the antigenic relevance of the predicted epitope,
having shown a non-allergenic potential, does not form a
transmembrane helical structure and also not glycosylated.
Proteins are dynamic macromolecules with their function

linked intricately to their biological motions. It has been
established that genetic disease mutations and drug resistance
can both act through alterations in protein dynamics and
conformational equilibria.[84] For a complete understanding of
the molecular consequences of a mutation, it is necessary to
consider changes in the dynamics of the protein involved. On
the 18th of December 2020, the South African national author-
ities announced the discovery of a new SARS-CoV-2 variant
which is spreading rapidly in several South African provinces.
This variant because of the N501Y mutation has been named
501Y.V2, and the mutation has been observed to be conserved
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across several variants of the virus. While highlights from
genomic data have shown that the variants displaced rapidly
other circulating lineages of the virus, suggestions from
preliminary studies have also linked the variants with higher
viral load, suggesting increased transmissibility potential.[85] In
this study we analyzed the stability dynamics of these variants
upon mutation using both structure and sequence-based
predictive tools. Results from this study suggests that the
N501Y mutation increases the stability of the SARS-CoV-2 spike
glycoprotein, giving credence to earlier studies suggesting
increased transmission potential and viral load. We aimed
further to predict the possibility of having such stability-linked
mutation within amino acid residues of the antigenic epitope
of interest. Results from this study revealed two amino acid
residues within the antigenic epitope with stability-linked
potentials (Y269 and Q271) as displayed in Table 8. The results
further suggest other possible mutations at position 501 with
an increasing effect on the stability dynamics of the spike
glycoprotein.
Interactions between peptides and proteins play a critical

role in many biological processes such as immune responses,
cellular regulation, and signal transduction. It has previously
been reported that short peptides mediate about 40% of the
protein-protein interactions. Therefore, the determination of
the protein-peptide complex structures involved in such
interactions is important for understanding the molecular
mechanism and thus modulations of the protein-protein
interactions for the purpose of therapeutics.[86] Proteins and
nucleic acids also are two important biological macromolecule
types in the cell. The interactions between both macro-
molecules are essential for various biological processes such as
RNA transcription, replication of the DNA and its repair, protein
synthesis, cellular regulation and signal transduction. Therefore,
determining the protein-nucleic acid complex structure is also
essential for the understanding of the atomic level biological
processes and thus the development of drugs or therapeutic
interventions to target these interactions.[87] However, only a
few of the protein-nucleotide and protein-peptide interactions
have been experimentally determined because of the technical
difficulties and high cost of experimental methods. Computa-
tional modeling such as molecular docking has a critical role in
the process of determining protein-nucleotide and protein-
peptide complex structures.[88] Here, two docking protocols
were performed. Docking of the predicted antigenic peptides
against the HLA*A-0201 protein was aimed at validating the
predicted strong binding by the T cell epitope prediction tools
(Table 1) and likewise to predict the near-native binding model
of the protein-peptide interaction (Figure 8). Protein-RNA
docking protocols were also conducted to predict the affinity
of the designed mRNA vaccine candidate upon binding to the
human TLR7 protein (Table 9), thereby suggesting its potential
as an ideal vaccine candidate (Figure 15a).
Identifying the ligand-binding and druggable pockets of

target proteins is of critical importance, especially in SBDD
(structure-based drug design). Molecular docking also is an
important virtual screening technology, which can speed up
the rate of hit compound identification.[89] The first essential

step in molecular docking is to identify a target and its binding
pocket. Protein surfaces are usually composed of multiple
cavities. Small molecules capable of binding to these cavities
have the potential of adjusting the protein function.[90] Analysis
conducted on the pocket dynamics of the TLR7 protein upon
RNA binding indicate that the designed mRNA vaccine
candidate is bound to a stable cavity, thereby suggesting an
ideal interaction for immunological stimulation (Figure 15b).
However, mRNAs are vulnerable to degradation. A preven-

tion mechanism against such vulnerability must therefore be
engineered into the mRNA-based vaccines to increase its
stability. Eukaryotic and viral mRNAs possess at the 5’ end, a
methylguanosine cap, which contains two forms of meth-
ylation. The m7G (7-methylganosine) cap is added during the
process of transcription, through a triphosphate bridge, for the
prevention of premature degradation, and also important for
the maturation, export and initiation of the mRNA
translation.[91] Another stabilizing element of the mRNA is the
poly(A) tail. Its deletion destabilizes the mRNA.[82] Doel and co-
worker[92] have reported that the polyncleotide phosphorylase-
aided removal of poly(A) reduced the polysome size, number
of translational rounds and peptide elongation rate. The poly(A)
tail is therefore important for the maintenance of the mRNA
vaccine stability and its successful translation.[93] The addition
of the 5’ cap to the final vaccine construct can be achieved
through the use of a nucleotide cap analog after in vitro
transcription reaction or through the use of a capping
enzyme.[91]

Bell et al.[94] reported an interesting UTR (untranslated
region) modification for the development of mRNA vaccines,
where engineered riboswitches were added to the 3’ UTR of a
vaccine construct for the regulation of gene expression and
RNA amplification. The riboswitches are made up of a hammer-
head ribozyme from the satellite RNA of tobacco ringspot virus
actuated by an aptamer sensor specific for theophylline. Upon
the addition of the vaccine to a cell host, the gene expression
was modulated by the riboswitches.[94] The approach conse-
quently has the potential to produce a high expression of
vaccine antigens, hence necessary to be incorporated into the
final mRNA vaccine construct.
mRNA vaccines have been reported to be highly efficient in

expressing antigens, but secondary structures and sequences
from mRNAs can also be recognized by specific innate immune
receptors, resulting in the inhibition of protein translation.[95]

However, with the advancement in the understanding of RNA
biology, various techniques can now be used to increase mRNA
vaccine potency. These methods include the use of modified
nucleosides and optimization of the mRNA sequence. To avoid
innate immune sensor recognition, modified nucleosides like 5-
methylcytidine, optimized codons, pseudouridine, and cap-1
structure, can be incorporated into mRNA vaccines to increase
the efficiency of translation.[96] In addition, the mRNA vaccine
formulation and the route of administration are also essential
for the determination of the kinetics, immune response
potency, as well as the magnitude of antigen expression. For
instance, the intravenous administration of unmodified naked
mRNA led to the stimulation of the innate immune response

ChemistrySelect
Research Article
doi.org/10.1002/slct.202103903

ChemistrySelect 2022, 7, e202103903 (22 of 25) © 2022 Wiley-VCH GmbH

Wiley VCH Dienstag, 15.02.2022

2207 / 237819 [S. 2465/2468] 1



and a quick digestion by ribonucleases.[97] These limitations
however, can be addressed through mRNA modification and an
appropriate system of delivery. The administration of mRNA
vaccines is through a local or systemic method based on the
requirements of antigen expression localization. Subcutaneous,
direct intramuscular or intradermal injection of in vitro tran-
scribed mRNA are the major routes of delivery for mRNA
vaccines against infectious diseases, while intravenous and
intraperitoneal administration of mRNA vaccines are used
when there is need for a systemic expression of antigens of
interest, mostly for therapeutic purposes.[97]

While mRNA nucleoside modifications and FPLC or HPLC
purification have been shown to reduce innate immune
response attack against the mRNA vaccine[98] and consequently
leading to greatly enhanced mRNA stability and antigen
expression,[99] possible immune stimulation by both the mRNA
(in an antigen-independent mechanism) and the expressed
antigen is also desirable.[100] Because our computational model-
ling suggested that the proposed mRNA has a strong affinity
for TLR7 (which could direct innate immune response stimula-
tion) in addition to the potential activation of full-fledge
adaptive immune response by the expressed antigen, it would
be interesting to explore the potentials of the mRNA in
achieving this dual activity. Undoubtedly, achieving both
effects is highly challenging as the interaction of mRNA with
the PPRs would directly result in the inhibition of its translation.
Hence, most vaccine development efforts have always focused
on one side of the mRNA vaccine potentials.
However, some research groups have been exploring the

possibility of combining the two features to maximize the
immunostimulatory ability of the mRNA.[101] Of particular
interest is the study by Fotin-Mleczek and co-workers[100] where
they developed two-component mRNA vaccine approach and
demonstrated its effectiveness by showing that treatment of
mice with a two-component antitumor mRNA vaccine elicited a
strong antitumor response against OVA-expressing tumor cells
both in a prophylactic as well as in a therapeutic context.[100]

The two-component mRNA vaccine contained free and modi-
fied (protamine-complexed) mRNA. Their results based on
studies from in vitro experiments as well as animal models
showed that such two-component mRNA design could result in
the stimulation of innate immunity via TLR7 activation whilst
allowing antigen expression. Thus, it is of interest to us to
explore these possibilities via follow-on experimental efforts in
order to actualize the potentials of the identified mRNA vaccine
candidate.

Conclusion

The SARS-CoV-2 in recent times has been the leading cause of
the deadliest global pandemic, resulting in excess mortality
especially among the vulnerable and older populations.
Prevention of the infection is a mandatory task that has been
quite challenging owing to the fast mutation rate of the virus,
hence leading to the emergence of new variants suspected to
be more infective than the wild-type. The reverse vaccinology
approach can be harnessed for the discovery of the desired

solution as it saves both cost and time. In this study, a potential
mRNA-based vaccine candidate was designed with the aid of
various computational tools which were directed at first
predicting the most effective antigenic region of the viral spike
glycoprotein to trigger the desired immune response. The
nucleotide sequence obtained as a result of the codon
adaptation of this antigenic peptide was then used in the
mRNA-based vaccine candidate construction, which was tar-
geted at the human toll-like receptor 7 protein. Results
obtained from the study suggest the designed vaccine
candidate might be an effective therapy to curb the SAR-CoV-
2-linked infection and its spread. We also speculate that the
N501Y mutation is linked to the stability of the viral protein
and as such have predicted regions of the antigenic epitope
with such potential mutations.

Supporting Information Summary

In this study, we have designed a potential mRNA-based
vaccine candidate using several computational approaches
which were directed first towards the prediction of an efficient
antigenic region in the SARS-CoV-2 spike glycoprotein to
trigger the desired immune response against infection. Addi-
tional computational methods such as, the molecular docking
and molecular dynamics simulation were used to validate the
stability of the antigenic peptide upon binding to the human
HLA*A-0201, after which the mRNA vaccine candidate was
designed to target the human TLR-7.
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