
cells

Review

Insights into the Regulation of Ciliary Disassembly

Maulin M. Patel * and Leonidas Tsiokas

����������
�������

Citation: Patel, M.M.; Tsiokas, L.

Insights into the Regulation of Ciliary

Disassembly. Cells 2021, 10, 2977.

https://doi.org/10.3390/cells10112977

Academic Editor: Alexander

G. Obukhov

Received: 28 September 2021

Accepted: 29 October 2021

Published: 1 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA;
leonidas-tsiokas@ouhsc.edu
* Correspondence: maulin-patel@ouhsc.edu

Abstract: The primary cilium, an antenna-like structure that protrudes out from the cell surface,
is present in most cell types. It is a microtubule-based organelle that serves as a mega-signaling
center and is important for sensing biochemical and mechanical signals to carry out various cellular
processes such as proliferation, migration, differentiation, and many others. At any given time, cilia
length is determined by a dynamic balance of cilia assembly and disassembly processes. Abnormally
short or long cilia can cause a plethora of human diseases commonly referred to as ciliopathies,
including, but not limited to, skeletal malformations, obesity, autosomal dominant polycystic kidney
disease, retinal degeneration, and bardet-biedl syndrome. While the process of cilia assembly is
studied extensively, the process of cilia disassembly and its biological role(s) are less well understood.
This review discusses current knowledge on ciliary disassembly and how different cellular processes
and molecular signals converge to carry out this process. This information will help us understand
how the process of ciliary disassembly is regulated, identify the key steps that need further investiga-
tion, and possibly design therapeutic targets for a subset of ciliopathies that are causally linked to
defective ciliary disassembly.
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1. Introduction

Cilia are antenna-like organelles present on almost all cell types. They are microtubule-
based structures that protrude from the cell surface [1]. The primary cilium possesses a
specialized membrane called the ciliary membrane that sheaths its structure and compart-
mentalizes its associated signaling complexes [2,3]. In general, cilia are thought to act as
sensors of different biochemical and mechanical cues that mediate cellular processes such
as proliferation, differentiation, and cell migration [4,5]. They mediate such function(s) by
housing a wide variety of ion channels [6–8] and receptors essential for multiple signaling
pathways. Some of the most common signaling pathways studied in association with
cilia are Hedgehog [9,10], WNT [11,12], NOTCH [13], HIPPO [14,15], TGF, and growth
factor signaling pathways [15]. Since cilia act as mega-signaling centers regulating multi-
ple signaling pathways important for various cellular functions [15], proper cilia length
regulation is crucial for carrying out these various function(s). A unique feature of primary
cilia is that they are formed when cells exit the cell cycle and disassemble when cells enter
the cell cycle. Therefore, ciliary length is subject to dynamic regulation depending on the
stage of the cell cycle. In resting cells at G0, the cilia assembly pathways are predominant,
resulting in fully formed cilia. However, in cycling cells, especially in the S/G2/M phases
of the cell cycle, cilia disassembly pathways prevail. Several excellent reviews on cilia as-
sembly, disassembly, or both, have been published previoulsy [16–24]. However, in recent
years, several major advances have been made, shedding new light on the mechanisms
of ciliary disassembly and its biological role(s). Here, we have reviewed and integrated
pre-existing knowledge with recent developments, which will be helpful in guiding further
investigations toward understanding the process of ciliary disassembly.
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2. The Primary Cilium: Structure and Types

Structurally, the cilium comprises four main compartments: (1) the basal body, (2) the
transition zone, (3) the axoneme, and (4) the ciliary membrane [25] (Figure 1). The basal
body is located at the base of the cilia and is a modified form of the mother centriole
from which the axoneme microtubules (MTs) stem out. The axoneme is assembled by
a cylindrical arrangement of nine triplet MTs that arises from the mother centriole and
gets anchored to the ciliary membrane through transition fibers. The transition zone is
a ciliary compartment localized above the basal body and houses the machinery that
controls the entry and exit of signaling molecules from the cilia [26–28]. The basal body
and transition zone further support the structural dynamics of the axonemal MTs during
cilia assembly or disassembly. The axoneme is considered as the core of the cilium, and
it consists of MTs doublets, of which the positive end is oriented toward the tip of the
cilium. Recent evidence also suggests the presence of actin filaments toward the distal end
of the axoneme [1]. Along with the elongation of the axoneme, the ciliary membrane also
extends and sheaths the growing axoneme and harbors a wide variety of receptors and ion
channels that mediate multiple signaling pathways [3,9–15,29,30].
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Figure 1. Simplistic overview of cilia structure and types. Structurally, the cilium consists of four main parts,(1) the basal
body, (2) the transition zone, (3) the axoneme, and (4) the ciliary membrane. Furthermore, there are two main types of
cilium: (1) motile cilium, containing 9 outer microtubules (MTs) doublets and one pair of MT at its center, and (2) nonmotile
cilium, which has 9 outer MT doublets but lacks the central MT pair.

While the majority of ciliated cells assemble only one cilium (primary cilium), some
cells can assemble multiple cilia. Based on their motility and axonemal architecture, cilia
are categorized into nonmotile and motile cilia (Figure 1). Primary or nonmotile cilia have
axoneme with 9 + 0 MT pattern, where 9 MT doublets are found in cylindrical arrangement
with no MT at the center. In contrast, motile cilia have axoneme with a 9 + 2 MT pattern,
where 9 MT doublets are found in cylindrical arrangement with 2 MT localized at its center.
An exemption to this pattern is the motile cilia in the embryonic node with a 9 + 0 MT
configuration [31]. In vertebrates, primary or nonmotile cilia are present on most cell types
in a single copy and sense extracellular biochemical and mechanical signals [15]. Motile
cilia can be found on some specialized epithelial cells in vertebrates and in unicellular
organisms such as Chlamydomonas or Tetrahymena. Motile cilia can move or beat in a highly
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regulated fashion in order to displace or transport fluids (e.g., along the central nervous
ependymal lining or surfaces of upper or lower respiratory epithelium) in vertebrates or
assist cell movement in unicellular organisms [32–39].

3. Cilia Disassembly and Its Regulation

Depending upon the cell type, culture conditions, or both, there are two different
ways by which a cell can undergo ciliary loss: (1) cilia disassembly, where the length of the
primary cilia is gradually reduced [40–43], and (2) shedding, where the primary cilia are
instantly cut off from the main cell body [44–48]. However, in some lower organisms, the
ciliary loss can also be mediated by the internalization of the whole axoneme. In such cases,
within seconds, the whole cilium is retracted inside the cell and later gets disintegrated
under an hour [49,50]. It is still unclear how a cell chooses to undergo any of the processes
mentioned above for its ciliary loss and whether and how the route of ciliary loss impacts
cellular functions. While the importance of cilia shedding has been understudied in human
diseases, dysregulation of the cilia disassembly has been implicated in multiple diseases.
Therefore, in recent years, significant efforts have been made to understand how ciliary
disassembly is regulated.

3.1. Model Systems Employed to Study Cilia Disassembly Process

Pioneering studies in the green algae Chlamydomonas reinhardtii revealed some of the
important molecular players during ciliary loss. Since then, it has been a well-established
model organism to study ciliary disassembly. Chlamydomonas is a single-cell green alga with
two long flagella structurally similar to vertebrate motile cilia and is known to undergo
de-flagellation. Based on the stimulus, Chlamydomonas can undergo gradual flagellar
disassembly or shedding. It is shown that exposure to low pH (4.5) induces a rapid de-
flagellation at the distal ends of the basal bodies [51], analogous to shedding in mammalian
cells. In contrast, after gamete fertilization, quadri-flagellated Chlamydomonas zygote
tends to resorb its flagellates gradually in a process analogous to the cilia disassembly
process in mammalian cells [52]. Altering the culture conditions such as tonicity or calcium
concentration can cause flagellar disassembly [44,53]. Collectively, these studies highlight
the use of Chlamydomonas as a model system to study ciliary loss. Because of the easiness to
observe flagella under the brightfield microscope, suitability for genetic manipulations, and
ability to isolate flagella for protein purification, studies using Chlamydomonas have led to
the discovery of critical proteins required for the cilia disassembly process. These proteins
include Aurora-A (AurA), NIMA (never in mitosis A)-related protein kinase (NEK), and
many more [52,54–57].

In recent years, researchers have adopted the use of mammalian cell lines to delineate
the process of cilia disassembly. As mentioned earlier, the presence of cilia is inversely
correlated with cell cycle progression. It is shown that cells tend to assemble their cilia
during cellular quiescence (G0/G1 phase) and disassemble their cilia when stimulated
to enter the cell cycle (S/G2/M phase) [58]. Hence, to study cilia disassembly in cell
culture models, cells are first synchronized in the G0/G1 phase of the cell cycle via serum
starvation and then are induced to re-enter the cell cycle via serum re-addition. Entering
the S phase triggers ciliary disassembly or shedding [50,52]. Although all ciliated cells are
considered to undergo ciliary loss, not all cells are ideal for studying the process of cilia
disassembly using serum depletion/re-addition protocols in vitro. In general, a suitable cell
line for studying cilia disassembly should satisfy the following criteria. First, cells should
achieve a high level of synchronization at G0/G1 phase (>75%) upon serum starvation.
Second, a significant percentage of cells (>50%) should have cilia at ~80% confluence
following serum starvation. This is important as cells that require 100% confluence for
efficient ciliation cannot undergo cilia disassembly upon serum re-addition, as cells are
often contact-inhibited and cannot progress to the S phase. Third, cells should express
all essential proteins for cilia assembly and disassembly. Traditionally, cell lines such as
mouse fibroblast NIH3T3 cells or human retinal pigmented epithelial (RPE1) cells have



Cells 2021, 10, 2977 4 of 15

been extensively used for studying cilia dynamics, especially cilia disassembly, as they
fulfill all the criteria mentioned above. In vivo, the assessment of cilia disassembly is
extremely challenging as it is difficult to synchronize cell cycle re-entry in animal models.
Combinations of appropriate cell cycle (i.e., FUCCI system) and ciliary markers (Arl13b
reporter) have been employed to study ciliary disassembly in real-time in zebrafish [59]
and mice [60]. However, as discussed previously [60], several limitations are associated
with these approaches. Overall, much of our current knowledge on mechanisms of ciliary
loss has been obtained essentially from experiments conducted in cell culture systems
using established cell lines and unicellular organisms such as Chlamydomonas.

3.2. Cellular Processes That Govern Transient or Permanent Modes of Ciliary Disassembly

Ciliary loss can be transient or permanent. It can occur in a transient manner when
cilia assemble and disassemble depending upon their cell cycle stage or upon induction
of cellular differentiation or stress. Permanent ciliary loss occurs when ciliated stem cells
differentiate into non-ciliated cells. In either case, a wide variety of internal and external
cues co-ordinate to carry out the ciliary disassembly. Downstream signaling cascades
activated upon such cues can be distinct and cell-type specific.

Cell cycle: As discussed earlier, cells assemble their cilia when they exit from the cell
cycle and disassemble it upon cell cycle entry [58]. In most cell types, primary cilia attain
their full length in G0/G1 phase, and a shorter version can be detectable in S and G2 phases,
depending on the cell type. Complete resorption is observed prior to mitotic entry. Tucker
et al. [41,42] were the first to report that the cell cycle induces cilia disassembly using 3T3
fibroblast cells. In their experiments, they showed that cells under serum starvation display
fully formed cilia, and upon serum stimulation, undergoes cilia disassembly in two phases.
The first phase of cilia disassembly occurs immediately after serum re-addition (~within
1–2 h), followed by a plateau in ciliation (up to 10 h). Interestingly, they observed a marginal
increase in ciliation (~10–20 h) prior to the final or second phase of disassembly (~20–30 h),
after which cilia became almost undetectable. Several research groups, including ours,
have also reported a similar pattern of cilia disassembly using other cell lines such as RPE1
cells, inner medullary collecting duct cells (IMCD) cells, or mouse embryonic fibroblast
(MEFs) [43,61,62]. Similar to 3T3 fibroblast, it was observed that these cells undergo cilia
disassembly when stimulated to re-enter the cell cycle. However, the length of cilia and the
disassembly rate varied based on the cell type and growth conditions.

Cell Differentiation: Primary cilia are shown to be important for the maintenance
and/or differentiation of stem cells such as mesenchymal stem cells, neural stem cells,
etc. [63]. Interestingly, studies have shown that ciliary loss can occur when cells undergo
differentiation both in mammalian cells and unicellular organisms. It is shown that when
epithelial cells or mesenchymal fibroblasts differentiate to myofibroblast, cilia are com-
pletely disassembled and thereby significantly alter Hedgehog and platelet-derived growth
factor (PDGF) signaling pathways that are known to regulate the cell differentiation pro-
cess [64,65]. Ciliary loss has also been reported during different stages of protozoa, algae,
and fungi [50]. In mammals, it is shown that delayed cilia disassembly can alter the fate
of neural progenitor cells from self-renewal to premature differentiation and can cause
microcephaly [66]. Given that cilia length has been positively correlated with activation of
key signaling pathways (such as Sonic Hedgehog or PDGF) that are involved in stem cell
differentiation, it will be interesting to evaluate the effect of changes in cilia disassembly
rate on the lineage commitment or differentiation of various stem cells.

Cellular stress: Multiple cellular stressors, including heat shock, chemical exposure,
and mechanical stress, have been reported to induce ciliary loss [67–69]. Studies in Chlamy-
domonas have shown that flagellar length increases upon reducing osmolarity, whereas
flagellar length decreases upon increasing the osmolarity in the culture medium [44]. In
addition, chemical treatment of sodium pyrophosphate or mechanical shearing stress also
induces complete flagellar resorption in Chlamydomonas [54]. In mammalian NIH3T3 cells,
a 30-min heat shock treatment results in the complete removal of cilia in approximately
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half of the ciliated cells [69]. Further, human umbilical vein endothelial cells (HUVECs)
results in ciliary loss under laminar shear stress [67]. Similarly, fluid flow-based shear stress
causes ciliary loss in the cells present in the eye’s trabecular meshwork [70]. Together, these
data suggest that cells are equipped to respond to different environmental stress signals
by inducing ciliary loss. However, whether the stress-induced ciliary loss is functionally
coupled to other cellular processes such as cell migration, proliferation or differentiation is
yet to be determined.

3.3. Molecular Events Regulating Ciliary Disassembly

Several signaling pathways and molecular players are implicated in regulating the
process of cilia disassembly (Figure 2). Based on the current literature, the molecular events
regulating the process of cilia disassembly can be broadly categorized into (1) activation of
AurA kinase and deacetylation of microtubules, (2) depolymerization of microtubules, and
(3) ciliary membrane remodeling and inhibition of cilia assembly.

3.3.1. Regulation of AurA Kinase and Deacetylation of Microtubules

As discussed previously, mechanistic understanding of cilia disassembly was first
studied in lower eukaryotes, such as Chlamydomonas, which can undergo either gradual
flagellar resorption or shedding depending upon the stimulus. Several studies in Chlamy-
domonas showed that Chlamydomonas aurora-like protein kinase (CALK)-mediated ax-
oneme destabilization is crucial for flagellar resorption, and its depletion results in impaired
flagellar resorption. Studies have shown that CALK is phosphorylated immediately after
stimulation of flagellar resorption [56]. Several factors have been reported to induce CALK
phosphorylation including, (1) sodium pyrophosphate treatment, which triggers flagellar
shortening [54], and (2) post gamete fertilization, where quadri-flagellated zygote under-
goes gradual shortening [52]. Subsequent studies have shown that CALK phosphorylation
at T193 is mainly responsible for the process of flagellar resorption [71]. CALK is indis-
tinctly related to the human AurA kinase, which is a centrosomal kinase that regulates
mitotic entry in mammalian cells [72,73]. Once the role of CALK in flagellar resorption was
established, the involvement of AurA kinase in the cilia disassembly process was assessed.
AurA kinase was shown to be a central player in regulating cilia disassembly in mam-
malian cells via human enhancer of filamentation 1 (HEF1)/AurA/histone deacetylase
6 (HDAC6) axis [40]. This role of AurA was entirely independent of its role in mitosis, as
these mechanistic studies were performed in cells emerging out of the G0/G1 phase. Upon
serum stimulation, HEF1, a scaffolding protein, has been shown to bind and stabilize [74]
AurA kinase at the base of the cilia. This HEF1 and AurA kinase association has been
shown to play a major role in AurA-mediated phosphorylation of HDAC6. HDAC6 further
deacetylates α-tubulin and cortactin, which in turn facilitates ciliary disassembly by differ-
ent mechanisms [75]. For instance, HDAC6-mediated deacetylation of α-tubulin [76,77]
leads to instability of axoneme microtubules, whereas HDAC6-mediated deacetylation
of cortactin increases its binding to F-actin, resulting in enhanced actin polymerization,
which then collectively aid in the process of cilia disassembly. More recently, histone
deacetylase 2 (HDAC2) has been shown to promote the cilia disassembly process [78].
After the discovery of the importance of the HEF1/AurA/HDAC6 axis in cilia disassembly
regulation, multiple studies have been performed to characterize the regulation of the
HEF1/AurA/HDAC6 axis and identify its upstream and downstream regulators that are
key players in orchestrating the process of cilia disassembly.

Among the different regulatory players, calcium (Ca2+) and calmodulin (CaM) are
important for forming the HEF1-AurA complex and activating AurA kinase at the basal
body during the ciliary disassembly process [40,79]. PDGFRβ has also been shown to pro-
mote cilium disassembly by activating phosphoinositide phospholipase C gamma, which
causes the release of intracellular Ca2+ and activation of CaM and AurA [80]. Collectively,
these data show that signaling pathways that cause the release of intracellular Ca2+ and
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activation of CaM could indirectly lead to AurA activation and thereby promote ciliary
disassembly.
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Non-canonical WNT signaling has also been shown to regulate AurA. Specifically,
WNT5a activates casein kinase 1 epsilon (CK1ε), which then phosphorylates conserved
S143 and T224 sites of dishevelled2 (DVL2) and facilitates a physical interaction between
DVL2 and polo-like kinase 1 (PLK1) [81]. The DVL2–PLK1 complex enhances the ability of
DVL2 to interact with SMAD3 and thereby competitively inhibits SMAD3-HEF1 interaction,
causing an increase in HEF1 levels [81]. This increase in HEF1 levels aids in promoting
HEF1-AurA-HDAC6 axis and cilia disassembly. Further studies have shown that the
DVL2 S143A mutant disrupts the interaction of DVL2-PLK1 and reverses the increased
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cilia disassembly seen upon WNT5a stimulation [81]. Interestingly, tumor suppressor
PTEN suppresses CK1ε-dependent phosphorylation of DVL2, which otherwise promotes
cilia disassembly via PLK1/AurA signaling [82]. In a separate study, PLK1 has also been
shown to promote cilia disassembly via HDAC6 activation. It is shown that pericentriolar
material 1 (PCM1), a centriolar satellite protein, undergoes cyclin-D kinase 1-dependent
phosphorylation and recruits PLK1 to the pericentriolar matrix. Primary cilia resorption is
dependent on the kinase activity of the pericentriolar matrix localized PLK1, where PLK1
induces HDAC6 activation [83]. This, in turn, leads to ciliary microtubule deacetylation
and disassembly. PLK1 has also been implicated in protein trafficking by phosphorylating
the transition zone protein nephrocystin-1 [84]. Centrosomal protein of 55 kD (CEP55) is
shown to facilitate the recruitment of chaperonin containing TCP1 chaperonin complex to
AurA, stabilizing AurA and promoting ciliary disassembly [85]. Studies from our lab have
shown that the centrosomal integrity/mitotic surveillance (CI) pathway comprising USP28,
p53, and 53BP1 plays a significant role in cilia disassembly downstream of polycystin genes
(Pkd1 or Pkd2) [43]. It was shown that the loss of polycystins activates the CI pathway
causing a delay in the rate of ciliary disassembly. The mechanisms by which activation
of p53 slows down ciliary disassembly are consistent with its role as a tumor suppressor.
The exact mechanism by which p53 functionally interacts with the disassembly machinery
warrants further investigation. Since the polycystin complex (PKD1 and PKD2) mediates
WNT/Ca2+ signaling [86], it will be interesting to know further if WNT/Ca2+ signaling
and CI pathway crosstalk during the process of cilia disassembly. Furthermore, whether
WNT5a stimulation or PTEN can affect the association of PLK1 with PCM1 or nephrocystin-
1 remains a subject of further investigation.

Transcriptional regulation of AurA is also shown to be important in regulating the
process of ciliary disassembly, apart from its direct activation or stabilization, as discussed
above. Studies show that inositol polyphosphate-5-phosphatase E (INPP5E) regulates
AurA protein levels by increasing AurA transcript levels by AKT activation, which can
impact the ciliary disassembly process [87]. Fibroblast growth factor receptor 1 oncogene
partner is also shown to affect cilia disassembly by regulating AurA expression [88]. AurA
transcription is also shown to be regulated by different signaling pathways, including,
ERK-responsive Ets pathway, STAT5, estrogen/GATA3, HIF1, etc. [89]. As the majority of
these studies were performed in cancer cells, the transcriptional regulation of AurA was
mainly associated with its role in mitosis and cell proliferation. However, whether these
signaling pathways affect cilia disassembly by regulating AurA and its implications on
cancer cells in the G0/G1/S phase of the cell cycle is largely unexplored.

Besides direct activation, stabilization, or transcriptional regulation of ciliary disassem-
bly factors, cellular localization can also impact the cilia disassembly process. It is shown
that SH2-containing phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase implicated in
phosphoinositide signaling can relocate AurA and HEF1 from the apical to the basolateral
surface of epithelial cells and thereby promote cilia formation in epithelial cells toward
tubular lumen [90]. Proteins that aid in the stabilization or activation of AurA also gets
localized near the basal body. Pitchfork (PIFO) is known to be localized at the basal body
and can activate AurA during the process of ciliary disassembly [91]. Interestingly, it is
suggested that AurA belongs to a primary cilium disassembly complex (CDC) containing
CPAP, NDE1, and OFD1 [66]. This complex, upon mitogenic signaling, assembles near
the basal body and aid in the process of cilia disassembly. Further studies are required to
evaluate if cilia disassembly associated proteins such as PIFO, PCM1, or PLK1 are a part of
or transiently interact with the CDC complex during the ciliary disassembly process.

Recently, Hu H and colleagues [92] have identified lysophosphatidic acid (LPA) as
an extracellular cue that initiates the process of cilia disassembly. For years, serum re-
stimulation of serum-starved cells has been used to induce cilia disassembly. However, the
extract molecular signal present in serum triggering cilia disassembly was not known. Hu
H and colleagues showed that LPA present in serum is primarily responsible for inducing
cilia disassembly. LPA binds to its receptor LPA receptor 1 (LPAR1) and promotes the
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transcription and phosphorylation of AurA through activating YAP/TAZ and Ca2+/CaM
pathways, respectively. Depletion of LPA or LPAR1 results in slower cilia disassembly and
longer cilia. It would be further interesting to test whether LPA stimulation crosstalks with
non-canonical WNT signaling or is responsible for regulating any of the cilia disassembly
associated proteins discussed above. Collectively, all these studies highlight the central
role of AurA in ciliary disassembly.

3.3.2. Depolymerization of Microtubules

Microtubule (MT) depolymerization follows AurA-induced MT destabilization. Semi-
nal studies in Chlamydomonas have identified NEKs as the kinases controlling both cell
cycle progression and flagellar disassembly or shedding [55,57]. Consecutively, studies
in mammalian cells also highlighted the importance of NEK kinases in cilia disassembly.
Specifically, it is shown that the cells depleted with NEK2 are not able to disassemble their
cilia before the onset of mitosis. In parallel, cells that have overexpression of catalytically ac-
tive NEK2A display shorter cilia. Since cells depleted with NEK2 did not cause any changes
in T288 phosphorylated AurA levels, it was suggested that NEK2 works downstream of
AurA in the cilia disassembly process, which was shown in subsequent studies [93,94].
NEK1, another NEK kinase, is also shown to play a role in cilia disassembly. In addition, an
E3 ligase, anaphase-promoting complex (APC), and its co-activator CDC20, both localized
at the basal body, can target NEK1 for its proteasomal degradation and thereby regulate
the process of ciliary disassembly [95].

Kinesin family member 24 (KIF24) and kinesin family member 2A (KIF2A) belonging
to the kinesin-13 family of motor proteins are shown to be important in the process of MT
depolymerization necessary for ciliary disassembly [94,96,97]. Although most kinesins are
involved in intracellular transport, some kinesins possess MT-depolymerizing activities
to control MT dynamics [98,99]. Since kinesins interact with MTs, they were suspected of
playing a role in cilia formation as well as resorption [100]. It was shown that downstream
of AurA, NEK2 can activate KIF24 and thereby trigger the MT depolymerization necessary
for ciliary disassembly [94]. Since NEK2 is expressed in the S and G2 phases of the cell
cycle, it ensures that the KIF24 dependent MT depolymerization and subsequent ciliary
disassembly is conducted before cells enter into mitosis [94]. KIF24 has also been shown
to recruit the CP110/CEP97 centriole capping complex, which prevents axoneme growth
and generally indicates the completion of cilia disassembly [96]. Hence, KIF24 plays a dual
role of actively depolymerizing the axoneme as well as inhibiting the cilia growth. These
dual roles of promoting cilia disassembly and inhibiting cilia assembly suggest that NEK2
and KIF24 ensure that the ciliary loss is irrevocable once the cells enter the cell cycle. In
conjunction with KIF24, KIF2A can also depolymerize MTs [97]. KIF2A also participates in
cilia disassembly during the G2 phase of the cell cycle, where it is found to be localized at
the centrioles. PLK1, which is considered a G2/M phase kinase, is shown to phosphorylate
KIF2A, causing MT depolymerization and promoting ciliary disassembly [97]. Since PLK1
is known to phosphorylate other kinesin-13 family members such as KIF2B or KIF2C
in order to mediate proper chromosome segregation and spindle assembly [101,102], it
will be interesting to see if a similar role of PLK1-KIF2B/2C exists in the context of cilia
disassembly process during G0/G1 phase of the cell cycle.

3.3.3. Ciliary Membrane Remodeling and Inhibition of Cilia Assembly

In parallel to axoneme destabilization and depolymerization, remodeling of the ciliary
membrane and cytoskeleton, both at the base and tip of the shortening primary cilium, is
also necessary during disassembly. Recent evidence suggests one of the earliest steps in
cilia disassembly involves a “chopping” mechanism at the tip of the disassembling cilia.
As a result, ciliary vesicles (CVs) are excised and released from the tip of the cilium soon
after stimulation of the cilia disassembly process. The underlying mechanism involves
AurA activation, which decreases INPP5E levels and, thereby, results in intraciliary redis-
tribution of phosphatidylinositol 4,5-biphosphate (PI(4,5)P2). PI(4,5)P2, together with actin
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regulators, marks the specific location of CV excision by local induction of intra-ciliary
actin polymerization [103]. Interestingly, proteomic analyses of CVs showed an abundance
of intraflagellar transport complex B (IFT-B) rather than intraflagellar transport complex A
(IFT-A), suggesting that CVs preferentially remove IFT-B from primary cilia, limiting cilia
growth and indirectly promoting cilia disassembly [103].

The base of the cilium is surrounded by the ciliary pocket, a structure rich in actin net-
work density. Remodeling of the ciliary pocket membrane during disassembly is mediated
by TCTEX-1 (DYNLT1, dynein light chain-1), which is activated by phosphorylation at
T94. TCTEX-1 was initially described as a light chain subunit of cytoplasmic dynein [104],
and the role of phosphorylated T94 TCTEX-1 in regulating cilia disassembly has been
described in cortical neuronal progenitors cells [105]. Phosphorylation of TCTEX-1 at T94
is required for both cilium resorption and entry into the S phase of the cell cycle. Mecha-
nistically, phosphorylation of TCTEX-1 at T94 leads to the dissociation of TCTEX-1 from
the dynein complex, facilitating cilia resorption. TCTEX-1 activates F-actin polymerization
triggering a cascade of events that coordinately lead to cilia resorption and cytoskeletal
rearrangement [105]. The active form of TCTEX-1 binds to annexin A2, actin-related pro-
tein 2/3 complex subunit 2, and cell division control protein 42, which actively regulates
actin dynamics and clathrin-dependent endocytosis at the ciliary base, thus mediating
the remodeling of the ciliary pocket membrane during cilia disassembly [106]. Inhibi-
tion of phosphorylation of TCTEX-1 at T94 induces neuronal differentiation instead of
proliferation, highlighting its importance in coupling ciliary disassembly and cell cycle
progression. More recently, it has also been shown that exocysts localized near the ciliary
base assist in recycling the resorbed cilia and en route the ciliary components back to the
cell surface. Whether and how this process affects ciliary disassembly is a subject of further
investigation [107].

In addition to actively promoting the activity of cilia disassembly pathways, cilia
disassembly can be indirectly promoted by suppressing the activity of ciliary assembly
pathways. The NDEL1-Trichoplein-AurA axis [108,109], NEK2-KIF24, and the CPAP-
Trichoplein-AurA axis are known to inhibit cilia assembly when the cell enters the cell cycle
(S/G2/M phases) [66,109]. Interestingly, LPA-LPAR-1, shown to induce cilia disassembly,
can also inhibit ciliogenesis. It is shown that LPA activates PI3K/Akt kinase pathway via
the LPAR1 receptor, which further blocks RAB11a-RABIN8 binding and inhibits preciliary
trafficking and ciliogenesis initiation [110]. These pathways collectively dampen the
machinery required for cilia assembly and ensure that no ectopic ciliary assembly occurs
during ciliary loss and entry into the cell cycle.

4. Concluding Remarks and Futures Directions

Our understanding of the mechanisms of ciliary disassembly has been gradually
increasing. For years, serum-induced ciliary loss has been extensively used as a workhorse
to obtain mechanistic information on ciliary disassembly and/or shedding. However, the
presence of various growth factors in the serum, overlap in the timing of ciliary disassem-
bly and cell cycle re-entry, and non-physiological manner to induce cell cycle arrest have
posed difficulties in teasing out the ciliary disassembly-specific factors from the signals that
are associated with the cell cycle. The identification of LPA [92] as the primary stimulus
for cilia disassembly initiation has refined existing experimental models to evaluate the
process and sequence of events in cilia disassembly. Thus far, several studies have helped
us accomplish a basic understanding of the molecular players regulating the process of
ciliary loss involving AurA activation, axonemal microtubules depolymerization, and
ciliary membrane remodeling. However, many important questions are yet to be addressed.
Our knowledge of the mechanisms and regulation of ciliary shedding as a distinct mode
of ciliary loss is fragmented. The functional consequence of undergoing cilia disassembly
versus shedding is yet to be determined. Understanding the biological roles(s) of cilia
disassembly also remains an open question. In this regard, while it will be challenging to
synchronize cells in vivo to study the biological roles of accelerated or suppressed disas-
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sembly rates, naturally occurring or experimentally induced mutations in genes involved
in the disassembly process could be informative. For instance, recent studies have shown
that loss of polycystin gene(s), known to cause autosomal dominant polycystic kidney
disease (ADPKD), results in delayed cilia disassembly and displays abnormally elongated
cilia in mouse models as well as in ADPKD patients [43,111]. Combined with the increased
cell proliferation seen in almost all cases of ADPKD in mice and patients, it appears that un-
coupling of ciliary disassembly from the cell cycle may be prevalent and perhaps, one of the
underlying causes of ADPKD. Given that ablation of cilia corrects the ADPKD phenotype
in mouse models [112], elongated cilia resulting from cilia disassembly defects could be
considered as a predisposing factor in ADPKD. Consistently, pharmacologic acceleration
of ciliary disassembly suppresses cystic growth, whereas deletion of HEF1 in PKD1-null
kidneys exaggerates cystic growth [113,114]. Collectively, all these studies suggest that
one of the biological roles of ciliary disassembly in the kidney may be the maintenance
of normal tubular architecture and prevention of cyst formation/progression. Further-
more, cilia disassembly factors such as INPPE5 are known to cause Joubert and mental
retardation, truncal obesity, retinal dystrophy, and micropenis (MORM) syndromes, which
are considered ciliopathies [115]. Recently discovered LPA/LPAR1 signaling that initiates
cilia disassembly in serum-starved cells is also shown to be important in neurogenesis.
It is shown that the deletion of LPAR1 results in elongated cilia and decreased prolifera-
tion in neural progenitor cells, resulting in defective neurogenesis [92]. Likewise, many
cilia disassembly factors have been implicated in multiple ciliopathies and cancers and
have been reviewed previously [4,116–121]. However, whether their role in such diseased
states is entirely or partly via cilia disassembly defects is a subject of further investigation.
Regardless, the studies mentioned above collectively highlight the biological relevance
of the cilia disassembly process. In parallel, many studies have also implicated that cilia
disassembly is well synchronized with the cell cycle, and it acts as a checkpoint for S phase
entry [58,60,122]. However, how the cilia disassembly and cell cycle progression are cou-
pled together still remains poorly understood. Whether defective cilia disassembly results
in dysregulation of cellular processes such as cell cycle or cell differentiation is still unclear
and warrants further investigation; it could potentially explain several developmental
defects seen in a broad spectrum of ciliopathies [4,23].

From a technical standpoint, since cellular processes such as cell cycle and differentia-
tion are tightly coupled with cilia dynamics, many proteins that regulate these processes
are found to affect ciliary length. In addition, certain proteins might play a role in both cilia
assembly and disassembly, possibly via different mechanisms. Hence, in order to tease
out the role of such proteins in cilia dynamics, future studies may require the use of more
refined techniques such as auxin-inducible degron-mediated protein degradation and use
of proteolysis-targeting chimera to temporarily and spatially knockdown protein levels,
especially during cilia disassembly. Additionally, tracking the cilia disassembly of single
cells with confocal and time-lapse microscopy will also help decipher the mechanisms and
sequence of events during cilia disassembly.

Defects in cilia resulting in either shorter or longer cilia are associated with a wide va-
riety of ciliopathies, highlighting the importance of studying the mechanism(s) underlying
the cilia dynamics. Understanding the regulation and molecular players involved in ciliary
disassembly will bring us one step closer to understanding various ciliopathies and may
reveal targets for drug therapy, which is currently lacking.
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