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The human brain grows the most dramatically during the perinatal and early post-natal
periods, during which pre-term birth or perinatal injury that may alter brain structure and
lead to developmental anomalies. Thus, characterizing cortical thickness of developing
brains remains an important goal. However, this task is often complicated by inaccurate
cortical surface extraction due to small-size brains. Here, we propose a novel complex
framework for the reconstruction of neonatal WM and pial surfaces, accounting for
large partial volumes due to small-size brains. The proposed approach relies only
on T1-weighted images unlike previous T2-weighted image-based approaches while
only T1-weighted images are sometimes available under the different clinical/research
setting. Deep neural networks are first introduced to the neonatal magnetic resonance
imaging (MRI) pipeline to address the mis-segmentation of brain tissues. Furthermore,
this pipeline enhances cortical boundary delineation using combined models of the
cerebrospinal fluid (CSF)/GM boundary detection with edge gradient information and
a new skeletonization of sulcal folding where no CSF voxels are seen due to the
limited resolution. We also proposed a systematic evaluation using three independent
datasets comprising 736 pre-term and 97 term neonates. Qualitative assessment for
reconstructed cortical surfaces shows that 86.9% are rated as accurate across the
three site datasets. In addition, our landmark-based evaluation shows that the mean
displacement of the cortical surfaces from the true boundaries was less than a voxel size
(0.532 ± 0.035 mm). Evaluating the proposed pipeline (namely NEOCIVET 2.0) shows
the robustness and reproducibility across different sites and different age-groups. The
mean cortical thickness measured positively correlated with post-menstrual age (PMA)
at scan (p < 0.0001); Cingulate cortical areas grew the most rapidly whereas the inferior
temporal cortex grew the least rapidly. The range of the cortical thickness measured
was biologically congruent (1.3 mm at 28 weeks of PMA to 1.8 mm at term equivalent).
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Cortical thickness measured on T1 MRI using NEOCIVET 2.0 was compared with that
on T2 using the established dHCP pipeline. It was difficult to conclude that either T1 or
T2 imaging is more ideal to construct cortical surfaces. NEOCIVET 2.0 has been open
to the public through CBRAIN (https://mcin-cnim.ca/technology/cbrain/), a web-based
platform for processing brain imaging data.

Keywords: neonatal brain MRI, T1, pial surface, cortical thickness, deformation

INTRODUCTION

The human brain grows the most dramatically during the
perinatal and post-natal periods (Knickmeyer et al., 2008), where
the majority of cortical growth and folding partition the brain for
various sophisticated functions (Alexander-Bloch et al., 2018).
This critical time window of neurodevelopment is susceptible
to developmental anomalies, such as pre-term birth or perinatal
injuries. The effect of such impairments on early development,
although documented through limited histological or qualitative
clinical imaging studies (Battin et al., 1998; Kapellou et al.,
2006; Ball et al., 2012, 2013, 2015; Guo et al., 2016; Kim et al.,
2016, 2020; Lefevre et al., 2016), still remain far from being
completely understood. Given vast gaps in knowledge of early
brain development, it remains a paramount goal to accurately
measure cortical morphological changes in neonates in order to
elucidate post-natal brain development and neurodevelopmental
outcomes in pre-term survivors (Habas et al., 2012;
Wright et al., 2014).

Modern neuroimaging approaches have provided the ability to
more accurately and non-invasively characterize and study brain
morphology, such as through in vivo T1-weighted (T1w) and T2-
weighted (T2w) magnetic resonance imaging (MRI). However,
unlike MRI methods implemented to study the adult brain,
MRI methods and processing frameworks for the neonatal brain
are still under investigation in order to circumvent substantial
challenges, such as opposite/reduced tissue contrast between
WM and GM, large within-tissue intensity variations, and
regionally heterogeneous image appearances that dynamically
change in accordance with neural development. In particular,
these challenges lead to significant difficulties in quantifying
cortical morphology measurements, including cortical thickness,
surface curvature, and sulcal depth, which demand accurate
surface reconstruction methods. Conventional pipelines such as
CIVET (MacDonald et al., 2000; Kim et al., 2005), FreeSurfer
(Fischl, 2012), and Caret (Van Essen et al., 2001) are not
suitable for neonatal brains, as they rely on established tissue
contrast normally exhibited in adult brain MRIs. As such, several
modifications (Hill et al., 2010; Leroy et al., 2011; Wright
et al., 2015; Kim et al., 2016) have been incorporated into such
pipelines to optimize the surface reconstruction of neonatal
brains. However, these methods provide only the successful
reconstruction of the inner cortical surface, while remaining
incapable of robustly measuring cortical thickness, which is
a crucial morphological characteristic of brain development
(Raznahan et al., 2011a).

One of the main challenges in reconstructing the outer cortical
border is the significant partial volume effects (Osechinskiy and
Kruggel, 2012; Li et al., 2019) located in areas of the brain scan
where only scattered cerebrospinal fluid (CSF) voxels are found
within the deep and narrow sulcal fundi. To overcome this issue,
previous studies in adult brain MRI mainly included one of the
two following strategies: (1) generate a skeleton representing the
medial surface of each sulcus (Mangin et al., 1995; Han et al.,
2001, 2004; Kim et al., 2005; Li et al., 2012), or (2) expand the
initial cortical surface mesh (placed in the GM/WM border) onto
opposing gyral folds toward each other until either GM and
CSF reach a boundary or they are close enough to each other
(Dale et al., 1999). Such adult-specific methods are based on the
assumption that the partial volumes of CSF can be accurately
modeled, and the GM/CSF boundary can be clearly identified.
However, these assumptions cannot be applied to neonatal brain
scans, due to their limited image resolution, and smaller head
sizes which exacerbate partial volume effects in sulcal CSF (see
Figure 1).

To more accurately generate the outer cortical surface, Li
et al. (2014) applied a deformable surface model to longitudinal
scans where CSF could be identified on the images acquired from
older infants (e.g., 1 year old and older). Such MRIs would be
acquired longitudinally in a small number of neonates under a
planned research setting. The developing Human Connectome
Project (dHCP) pipeline (Schuh et al., 2017; Makropoulos et al.,
2018a) proposed the expansion of the inner cortical surface to the
outer rim based on a non-intersection constraint and a local edge
detection. The partial volume effect was corrected using a draw-
EM tissue segmentation approach with specially designed sulci
detection and enhancement approach (Makropoulos et al., 2016).
However, this surface reconstruction could be performed only
when T2w images were available. A more recent pipeline (Zöllei
et al., 2020) performed surface reconstruction for 0–2 years old
infants using T1w images only. This method used a multiatlas-
based segmentation combined with Bayesian inference to solve
the fundamental issue of unobservable CSF volumes within a
sulcus (Figure 1). However, when applied to T1w images in the
dHCP dataset, the quality of the generated surfaces using this
method was much worse compared to those generated using the
pipeline conducted on T2w images (Makropoulos et al., 2018b).

Given that volumetric T2-weighted images are not frequently
used in infants due to poor contrast (Zöllei et al., 2020), a
robust neonatal surface generation pipeline solely dependent on
T1w images is needed. In this study, we propose a complete
pipeline that robustly reconstructs inner cortical and pial surfaces
of neonatal brains, while computing sulcal depth and cortical
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FIGURE 1 | An illustration of large partial volume effect in deep sulcus.

thickness measurements. This approach requires only one type
of image modality (T1w MRI) and includes an additional number
of novel features, compared to our previous pipeline (Kim et al.,
2016) and other approaches, that address the aforementioned
challenges. First, our new pipeline integrates a deep learning-
based tissue segmentation method using non-local 3D-Unet into
the cortical morphometry framework to address for regionally
varying tissue contrast in neonates. Our approach resulted
in higher accuracy compared to other neonatal brain tissue
segmentation methods (Weisenfeld and Warfield, 2009; Gousias
et al., 2013; Wang et al., 2013, 2015; Makropoulos et al., 2014;
Beare et al., 2016). Second, CSF volumes are skeletonized by
combining CSF-PVs with sulcal GM, which approximately place
outer cortical surfaces onto GM/CSF boundaries. Third, our
pipeline incorporates the generated CSF skeleton with CSF/GM
edges, which are detected by a radial gradient-based approach,
in order to more accurately identify candidate locations of
the pial surface. Unlike the dHCP pipeline (Schuh et al.,
2017; Makropoulos et al., 2018a), where the gradient-based
refinement for pial surface was performed by directly deforming
the WM surface, the gradient-based refinement for pial surface
in our design is performed within a short distance range
after the GM/CSF boundary is first approximated and placed
at the skeleton. Finally, we systematically perform qualitative
and quantitative evaluations using multi-site neonatal datasets
to investigate whether the proposed pipeline could overcome
the limitations in the modules that might be suboptimal
for regional analyses of poor-contrast neonatal cortex. We
compute cortical thickness values of over 80,000 vertices
sampled on the constructed surface. After registering individual
surfaces to their age-matched template, the results suggest
that the proposed cortical surface reconstruction can robustly
provide measurements that characterize realistic neonatal brain
morphological changes across the multi-site datasets.

MATERIALS AND EQUIPMENT

Subjects
Our first dataset comprised of 223 pre-term newborns [mean
post-menstrual age (PMA) at birth = 28.1 ± 2.0 weeks;

range 24–33 weeks], admitted to UCSF Benioff Children’s
Hospital San Francisco between June 2006 and January 2016.
Exclusion criteria included (i) clinical evidence of a congenital
malformation or syndrome, (ii) congenital infection, and (iii)
newborns too clinically unstable for transport to and from
the MRI scanner. Parental consent was obtained for all cases
following a protocol approved by the institutional Committee on
Human Research. All patients were scanned post-natally as soon
as they became clinically stable (PMA at scan: 31.7 ± 1.8 weeks;
range 26–40 weeks), and 132 patients were re-scanned before
discharge at late pre-term age (PMA at scan: 35.9 ± 2.0 weeks;
range 32–44 weeks). Due to extremely severe motion artifact,
36 baseline and 25 follow-up scans were excluded. The final
database included 187 baseline (PMA = 31.8 ± 1.8 weeks) and
107 follow-up scans (36.0± 2.0 weeks).

We also utilized two independent datasets collected from
the University of Northern Carolina (UNC) and T1w images
from the dHCP to cross-validate our pipeline. The UNC dataset
includes 57 term born neonates (PMA = 39.2 ± 1.3 weeks) who
were scanned at PMA of 40–45 weeks. The 492 T1w images
(PMA = 39.2 ± 3.8 weeks) in the dHCP dataset, which were
scanned at PMA of 29–45 weeks, were also included.

Image Acquisition
At UCSF, customized MRI-compatible incubators with
specialized head coils were used to provide a quiet, well-
monitored environment for neonates during the MRI scan,
minimizing patient movement and improving the signal-to-
noise ratio. Newborns enrolled between June 2006 and July 2011
(n = 95) were scanned on a 1.5-Tesla General Electric Signa HDxt
system (GE Medical systems, Waukesha, WI, United States)
using a specialized high-sensitivity neonatal head coil built within
a custom-built MRI compatible incubator. T1-weighted images
were acquired using sagittal 3-dimensional inversion recovery
spoiled gradient echo (3D SPGR) (repetition time [TR] = 35 ms;
echo time [TE] = 6.00 ms; inversion time of 0.00 ms; field of view
[FOV] = 256 × 192 mm2; number of excitations [NEX] = 1.00;
and flip angle [FA] = 35◦), yielding images with 1 × 1 × 1 mm3

spatial resolution. Newborns enrolled between July 2011 and
March 2015 (n = 128) were scanned on a 3-Tesla General Electric
Discovery MR750 system in a different MR compatible incubator
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and using a specially designed (for 3T imaging) neonatal head
coil. T1-weighted images were also acquired using sagittal 3D
IR-SPGR (TR = minimum; TE = minimum; inversion time of
450 ms; FOV = 180 × 180 mm2; NEX = 1.00; FA = 15◦), and
were reformatted in the axial and coronal planes, yielding images
with 0.7× 0.7× 1 mm3 spatial resolution.

For the UNC dataset, the imaging protocol parameters match
those used by Kim et al. (2016). Neonates were scanned on a 3T
Siemens Trio system. T1-weighted images were acquired using 3-
dimensional magnetization-prepared radio-frequency pulses and
rapid gradient-echo (MP-RAGE; TR = 2400 ms; TE = 3.16 ms;
inversion time [TI] = 1200 ms; and FA = 8◦), yielding images with
1× 1× 1 mm3 spatial resolution.

METHODS

Pipeline Overview
Our new framework has extended the original NEOCIVET
pipeline (henceforth NEOCIVET 1.0) (Kim et al., 2016) to
include the reconstruction of neonatal pial surfaces (GM-CSF
interface) as well as the improvement of existing features. The
new pipeline begins with general data pre-processing, including
denoising and intensity non-uniformity correction. Then, the
brain is extracted using a deep 3D-Unet (Hwang et al., 2019)
and registered to the MNI-NIH neonatal brain template1, with
spatial resolution of 0.6 × 0.6 × 0.6 mm3 (isotropic). Different
types of brain tissue (GM, WM, and CSF) are thereafter
segmented by an advanced deep non-local 3D-Unet (Wang Z.
et al., 2020). Individual templates (MRI + manually segmented
tissue labels) utilized for the deep learning approach are then
selected evenly across all PMAs. Next, the corpus callosum is
segmented on the midline-plane and used to divide the WM
into hemispheres. Instead of the original parametric deformable
model, a marching-cube based framework is newly adopted
to generate a triangulated mesh WM surface attached to the
boundary between the GM and WM. This process results
in the number of surface-meshes adapted to the individually
varying brain size and folding area, addressing the issue of the
complex optimization of the parameters needed in the previous
parametric model (Kim et al., 2016). After resampling to a
fixed number of 81,920 surface meshes (triangles) using the
icosahedron spherical fitting, this surface is further fitted to
the sharp edge of the GM-WM interface based on the image
intensity gradient, which preserves the spherical topology of
the cortical mantle. A CSF skeleton is then generated from the
union of GM and CSFs. Pial surface is constructed by expanding
the WM surface toward the skeleton as an intermediate pial
surface. The intermediate pial surface further undergoes a fine
deformation to identify actual edges of sulcal CSF volumes using
an intensity gradient feature model. Finally, the cortical thickness
is estimated based on the shortest distance between the white
matter and pial surface, with a smooth kernel size of 10 mm
(Vasung et al., 2016). Figure 2 presents the workflow of our
proposed pipeline.

1http://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj2

Brain Extraction
Brain extraction is essential for T1w based neonatal surface
reconstruction. Due to the similar intensity between WM and
CSF, a liberal brain mask may include more CSF, which would
increase the risk of mis-segmenting WM and CSF. In this study,
a deep convolutional neural network-based approach, i.e., 3D-
Unet (Çiçek et al., 2016), is used for brain extraction. 3D-Unet has
been demonstrated to perform better than most of the existing
methods in brain-extraction (Hwang et al., 2019). In our study, a
3D-Unet consists of three contracting encoder layers to analyze
the whole image and three successive expanding decoder layers
to produce a full-resolution segmentation (Ronneberger et al.,
2015). Each layer contains two 3 × 3 × 3 convolutions each
followed by a rectified linear unit (ReLu), and then a 2 × 2 × 2
max pooling with strides of two in each dimension. The 3D-Unet
was trained on 36 × 36 × 36 voxels image patches fragmented
from template MRI images.

We include 24 templates (MRI + manually segmented
brain masks) from all age periods (24–45 weeks of PMA) to
capture cortical morphology that dramatically changes during
perinatal development. The templates used for the training of
the segmentation algorithm were selected from all three datasets,
and evenly selected across various PMA groups (see details
of template selection in Figure 3). Manual segmentation of
brain tissue is also included in the 24 templates, which are
utilized as training templates for brain tissue segmentations,
as discussed in the following section (see illustration of
all 24 manual segmentations overlaid on MRI images in
Supplementary Figure 2).

Tissue Segmentation
Brain tissues are segmented into WM, GM, and CSF. Our
previous work (Kim et al., 2016; Liu et al., 2019), despite
successfully solving the issue of large morphological alterations,
did not fully address the mis-segmentation between WM and
CSF due to the confounding intensities between WM and CSF
in neonatal MRI (Li et al., 2019) for neonatal brain (Figure 4).
To solve this, a non-local 3D-Unet (Wang Z. et al., 2020) is
applied for tissue segmentation in our pipeline. Conventional
3D-Unet (like the one used in brain extraction) applies small
kernels in convolution operators to scan inputs and extracts
local information. As complex biomedical image segmentation
usually benefits from a wide range of contextual information,
one has to develop new operators that perform the global
information aggregation to recover more accurate details. Non-
local 3D-Unet was designed by adding a self-attention block,
which computes outputs at one position by attending to every
position of the input, to both the encoder layer and the
decoder layer to aggregate/capture the contextual information.
Non-local 3D-Unet has been demonstrated to outperform
most state-of-the-art methods in neonatal tissue segmentation
(Wang Z. et al., 2020).

In our study, the non-local 3D-Unet consists of three encoder
layers and three decoder layers. Each layer contains two 3× 3× 3
convolutions followed by a 2 × 2 × 2 max pooling with strides
of two in each dimension, and an aggregated down/up-sampling
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FIGURE 2 | An illustration of pial surface reconstruction pipeline steps in this study.

FIGURE 3 | Age distribution of the templates selected in our pipeline. These templates are utilized in both brain extraction and tissue segmentation. X-axis label
represent the PMA weeks.
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FIGURE 4 | An illustration of mis-segmentation using joint fusion-based multi-atlas tissue segmentation. In the areas with dark WM, the surrounding CSF voxels are
often misclassified into WM (left) or the dark WM voxels are misclassified into CSF (right), which becomes corrected using the proposed deep learning approach.

self-attention block. The non-local 3D-Unet was trained on
36× 36× 36 voxel image patches fragmented from template MRI
images. Figure 4 illustrates that compared to the multi-atlas joint-
fusion tissue segmentation that was applied in our previous work,
mis-segmentation between WM and CSF is largely addressed by
the non-local 3D-Unet.

WM Surface Reconstruction
The WM/GM interface is extracted using the surface extraction
tools employed in CIVET-2.1.0, with extensions to neonate
brains. In the first stage, a new marching-cube approach is
utilized, where the number of surface-meshes is adapted to fit the
individualized brain size and morphometry. This could facilitate
the parameter selection which is needed in the parametric
deformable models (MacDonald et al., 2000; Kim et al., 2016),
and avoid underfitting due to suboptimal parameters. Spherical
topology of the surface is guaranteed by collapsing, in voxel space,
an outer ellipsoid enclosing the WM mask onto this mask, while
preserving the spherical topology of the ellipsoid. Automated
mesh adaptation tools (in-house software within CIVET-2.1.0)
are then used to coarsen the initial marching-cubes surface to
a manageable size before inflating it to a sphere. Specifically,
vertices are removed by merging two vertices of one edge,
and connections between new vertices and other vertices are
setup to form new triangles. This operation is only performed
when the two vertices are topologically valid. Then, the brain
mesh is geometrically smoothed iteratively until a convex blob
is obtained by an inflation algorithm, and the coordinates are
normalized to the unit sphere. The inflated sphere serves as a
mapping between the icosahedral sphere to the inflated sphere for
resampling the brain surface like an icosahedral sphere at 81,920
polygons, as required by our in-house surface-based registration
tools (Robbins et al., 2004). The resampled surface is then fitted
to the T1w image. During the mesh deformation, a self-proximity
term is also added to prevent the polygon intersection (Kim
et al., 2005). In the second stage, the resultant boundaries are
deformed again to refine the fitting using an image gradient term
(see details in Gradient-based surface refinement). Examples of
such improvements with the gradient feature-based refinement
are shown in Figure 5. This surface is registered to an age specific
template using a spherical registration method and resampled

into 81,920 meshes by the icosahedron resampling (Kim et al.,
2016), more details can be found in section “Surface Registration
to Age-Specific Templates.”

CSF Skeletonization
The purpose of the skeletonization is to identify the hypothetical
location of CSF within the sulcal bank and fundus to permit deep
surface penetration of the pial surface in sulci. Most previous
methods have attempted to detect the combination of CSF voxels
and CSF partial volumes buried in the sulcus, and skeletonize
them (Han et al., 2004; Kim et al., 2005; Lerch and Evans, 2005;
Im et al., 2006; Lee et al., 2006; Xue et al., 2007). However,
given that CSF voxels or CSF partial volumes can hardly be seen
within a number of sulci on neonatal MRI due to small brain
size, indistinguishable sulcal banks, and limited image resolution,
the aforementioned approaches failed to reliably capture sulcal
skeletons. Therefore, we choose to identify the medial surface of
the union of GM and CSF as an alternative to CSF skeletons. The
skeleton may not necessarily locate in the middle part of the GM-
CSF union, therefore we use a second model to refine the initial
pial surface, which is deformed to the skeleton, based on image
intensities alone. If there are intensity gradient in unobserved
CSF in the deep basin area, the skeleton is not a necessity to detect
the CSF, since the difference of gradient and surface refinement
would ultimately be used to detect the CSF. However, the skeleton
has a strong effect to detect CSF in non-gradient or invisible CSF
of the sulcal basin area, where the GM is hypothesized to have the
same thickness in two sulcal banks.

The main steps involved in skeletonization are (1) Finding
external and internal boundaries. We define the external
boundary of the GM-CSF union as the hull of the brain mask
and the internal border as the GM/WM boundary that is obtained
from the white surface. Voxels located at the external boundary
are first selected as part of the skeleton that represents the gyral
interface. We then skeletonize the remaining part of the GM-
CSF union by thinning the aggregation of voxels in the GM-CSF
union, leading to the generation of medial surfaces of sulci. (2)
Initialization of catchment basins for watershed algorithms. The
latter skeletonization is conducted using a homotopic erosion
that preserves the initial topology, with a watershed algorithm
embedded in the erosion process (Riviere et al., 2002). The
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FIGURE 5 | WM surface is significantly enhanced (visually closer to true GM-WM boundary) after gradient-based refinement. Yellow curves represent the WM
surface before refinement, and blue curves represent the WM surface after refinement.

FIGURE 6 | Skeleton generation within sulci with no CSF-PV; (A) Skeletonization of CSF voxels (CSF-PV > 0%) only; (B) Skeletonization of the union of GM and CSF.

first step in the watershed algorithm is to identify initial seed
voxels for catchment basins to represent potential sulcal fundi.
These seed voxels are determined by thresholding the Gaussian
curvature for each voxel on the boundary of WM and GM-CSF
union. (3) Recursive erosion of the GM-CSF union. Then, water
rises from the catchment basins, which is driven by the mean
curvature. Voxels on the edge of the GM-CSF union are removed
if their mean curvatures are lower than a given threshold. This
erosion is processed iteratively. A skeleton is generated when, by
recursive erosions, the water reached ridges which correspond
to the medial localization of cortical folds. (4) Pruning of the
remaining voxels. Due to the excessive detection of initial seeds
in the watershed algorithm, redundant skeleton branches may
be created (Shen et al., 2011). Therefore, an additional step of
pruning is applied to remove small non-significant secondary
branches and construct a more reasonable skeleton of sulcation.
Our pruning process is performed by classifying the remaining
voxels as deletable points and undeletable points depending on
their topological characterizations, i.e., how the voxels connect
to their neighbors within the remaining voxels. Specifically, each
remaining voxel is labeled as one of nine categories: interior
voxel, isolated voxel, border voxel, curve voxel, curves voxel,

surface voxel, surface-curve voxel, surfaces voxel, and surfaces-
curve voxel. The definition of the nine classes can be found in
Malandain et al. (1993) and Mangin et al. (1995). The surface
voxel, surface-curve voxel, surfaces voxel, and surfaces-curve voxel
are undeletable voxels; the isolated voxels are deletable voxels. For
the all other categories, users are able to select which categories
are deletable voxels (see “Parameters Selection” section). The
deletable voxels are iteratively removed until all the remaining
voxels are undeletable voxels. Figure 6 shows an illustration of
skeletonization of the union of GM and CSF voxels.

Pial Surface Reconstruction
The generation of pial surfaces consists of two stages: First,
the initial pial surface is obtained by iteratively expanding
the WM surface toward the skeleton of GM/CSF union. The
expansion path to this boundary is defined using Laplacian
fields generated from the WM surface to the skeleton (Kim
et al., 2005). The path defined by the Laplacian fields provides
the one-to-one projection/mapping of all the vertices on the
WM surface onto the deformed surface. Defining the point
correspondence between the two surfaces in this manner helps
avoid the topological errors (Kim et al., 2005). On the other hand,
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the skeleton generated from the GM/CSF union is not a precise
representation but rather a hypothetical delineation of the true
location. In regions where CSF voxels or CSF partial volumes are
observed within the sulcal bank, pial surface reconstructions are
based on not only the skeleton of GM/CSF union, but also the
CSF segmentations. In the second stage, the pial surface is thus
iteratively fine-tuned to fit the adjacent, more realistic GM-CSF
boundary using gradient information derived from intensities of
voxels proximal to the surface for each current iteration. To this
end, we generate a gradient profile along the direction normal to
the surface and converged the surface fitting to a position of the
corrected local maximum gradient (see more details in section
“Gradient-Based Surface Refinement”).

Gradient-Based Surface Refinement
Potential inaccuracy of the pial surface reconstruction might be
generated when based solely on the skeleton of the GM/CSF
union. These occurrences make sulcal CSF skeletonization more
difficult, leading to a defective surface deformation toward the
true cortical boundary. Therefore, we adapt, from CIVET-2.1.0, a
supplementary model to improve the surface deformation, which
is based solely on the image intensity gradients and is applied to
both WM and pial surface fittings.

For a more accurate surface deformation, we strategically
compute a directional gradient by analyzing the one-dimensional
(1D) intensity profile along the radial lines perpendicular to
the surface, at each vertex. This directional gradient is sampled
equally in spatial points by a search step (e.g., 0.5 mm) along
the surface-normal rays within a certain distance range, defined
as search distance, both inward and outward (e.g., −5 mm to
+5 mm). The intensity values are blurred along each radial
line to remove small local extrema. Raying from the center
located on a given surface vertex, we perform a search process
to identify a suitable edge (maximum gradient) among all the
sample points within the defined search distance. For each
vertex, the intensity at the sample point where the maximum
gradient among all the sample points occurs is recorded. In
this manner, we could map such intensities across all vertices.
By doing so, the local target intensity, which is used to
compute the maximum intensity gradient, is allowed to vary
over the entire surface. Then, surface-based diffusion blurring
is applied to this intensity map by incorporating information

from neighboring vertices. This blurring procedure is critical
because the extracted gradient information along the surface-
normal profile is occasionally erroneous due to motions, image
artifacts, bias field, blood vessels, flawed surface normal, and a
relatively small range of the search distance. This blurring process
attenuates erroneous gradients or outliers, thereby leading to
more robust convergence. Finally, the surface mesh is deformed
using (1) forces of attraction to locations displaying maximum
blurred gradient values; and (2) constraint of the vertex-wise
spatial smoothness. Our proposed gradient-based deformation
follows a multi-resolution approach to efficiently fit the initial
surface to the location displaying the maximum gradient, while
avoiding being trapped in local maxima. An illustration of
surface refinement can be found in Figure 7. Parameters related
to the multi-resolution approach are described in “Parameters
Selection” in Supplementary Materials.

Surface Registration to Age-Specific
Templates
We register individual surfaces to the template using
SURFTRACC (Robbins et al., 2004). This tool first transposes
individual sulcal depth maps into icosahedral spheres. It
then iteratively searches for local optimal vertex correspondence
between an individual and a template sphere based on a matching
of a given feature [in this case, depth potential function (Boucher
et al., 2009)]. Mapping the deformed meshes back to the original
cortical surface coordinates allows a registration of the individual
to the template surface. To address for cortical folding changes
dramatically during perinatal development, we previously
constructed age-specific surface templates representing four
age ranges: 26–30, 31–33, 34–36, and 37–40 weeks PMA.
Details are found in our previous study (Kim et al., 2016).
For inter-subject analyses and group comparisons, any given
subject is registered to its corresponding age template and
then is ultimately transformed to the oldest template space
by concatenating the sequence of transformations between
age-specific templates. It is noted that neonatal brains with
pathology or an injury like intraventricular hemorrhage, white
matter injury or ventriculomegaly may under-develop or deviate
from the normal development (Kim et al., 2020). Use of their
PMA in finding their age-matched template may thus lead
to a suboptimal registration result. Also, there may be cases

FIGURE 7 | Pial surface significantly enhanced (visually closer to true GM-CSF boundary) after a gradient-based refinement. Green curves represent the pial surface
before refinement, and red curves represent the pial surface after refinement.
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where their PMA are not provided. To overcome this, we first
register the given individual surface separately to each of all the
four age-specific templates. We then identify the best-matched
template based upon the similarity (using Pearson’s correlation)
of each template’s sulcal depth pattern with the registered
individual surface. To evaluate this, we compare the age of the
template chosen by the proposed method with that matched with
the subject’s PMA. We perform this comparison in pre-term
neonates with injuries and those without.

RESULTS

Surface Quality Assessment
The qualities of WM and pial surfaces were assessed by visually
scoring the fitting accuracy of the reconstructed surfaces. The
scoring was done by assigning an overall score from 1 to 3 to each
of the individual pial surfaces. Score 1 indicated poor quality,
in which the contour substantially deviated from the cortical
boundary, and the deviation was distributed globally. This occurs
mostly due to severe motion artifacts. Score 2 indicated cases
where the contour was close to the cortical boundary, but
contained several local flaws. This occurred in cases with minor
motion artifacts, and failed segmentation in the full depth of
narrow sulci fundi. Score 3 indicated a contour with accurate
tracing of the cortical boundary, or with only focal and slight
deviation, which was difficult to find without careful review
(Figure 8). Note that we considered surfaces with minor issues as
good quality (score 3), which may have resulted in more “good”
cases in our evaluation than previous studies (Makropoulos
et al., 2018b). Two independent raters performed the quality
assessment (QA) for all three sets (JS and NT) respectively.

To quantitatively perform the surface QA, we further conduct
a comprehensive landmark-based analysis of accuracy for outer
cortical surfaces. An independent rater (JK) visually picked a
number of landmark points located on the GM/CSF interface.
These landmarks were considered as samples representing the
“ground truth” surface boundary. The Euclidian distance from
each landmark to either the pial surface or the intermediate
pial surface (generated at stage 1 where no gradient information
was used) was computed. Due to shallow cortical folding, fewer
landmarks are selected in younger pre-term neonates such that
we select 30 landmarks in the group of 26–31 weeks PMA,
50 in 32–34 weeks, 100 in 35–36 weeks, and 100 in 37–
45 weeks. The landmarks were selected randomly, but evenly
distributed across cortical lobes (i.e., include but not limit to

frontal, parietal, temporal, and occipital lobes) and approximately
evenly distributed across all the sulci (i.e., mainly distributed
in several main sulci like central sulcus, lateral sulcus, cingulate
sulcus, and parietal occipital sulcus) that showed a sufficient
depth and an eminent shape relative to secondary branches. Due
to a large amount of time required for this manual procedure,
20 neonates (randomly selected with PMA evenly distributed
between the aforementioned 4 age groups) were selected from
the three datasets.

Qualitative Evaluation Results
Figure 9 presents the results of the surface QA for three datasets.
WM surfaces produced by the proposed method were rated as
good/accurate (score 3) in 83.6% of scans (averaged by two
raters). Pial surfaces were rated as accurate in 82.1% overall. For
the UNC dataset, WM surface yielded 92.1%, and pial surface
89.5%. For the dHCP dataset, WM surface yields 92.2%, and pial
surface 89.2%. These results indicated no visual mistakes on the
majority of the constructed surfaces. The surfaces rated as fair
(average across three datasets: 7.8% for WM surfaces; 9.7% for
pial surfaces) showed regional flaws but were similar to the true
cortical boundary (score 2). Only 2.8% of the WM surfaces and
3.4% of the pial surfaces (average across three datasets) displayed
poor quality (score = 1).

Inter-rater comparison was also performed to determine how
many surfaces are consistently given the same score between the
two raters.” Results indicated that among 843 scans (across three
datasets), 116 WM surfaces (13.8%) were rated differently, and
141 pial surfaces (16.7%) were rated differently, which suggest the
surface QA was relatively consistent across raters.

Quantitative Evaluation Results
Analyzing the 20 randomly selected subjects, the landmark-
based displacements for the intermediate pial surfaces and
refined surfaces are shown in Supplementary Figure 3.
Results exhibited that the mean displacement for intermediate
surfaces (mean ± sd = 0.621 ± 0.049 mm) significantly
decreases when they were refined using the gradient information
(0.532± 0.035 mm; p < 0.0001, paired t-test).

Selection of Age-Specific Templates for
the Surface Registration: Using Sulcal
Depth Similarity vs. Post-menstrual Age
We evaluated here whether the template yielding the highest
correlation of sulcal depth measurement with the given

FIGURE 8 | Examples of surfaces generated with poor, fair, and good qualities. These criteria match those used by our experts to manually score the quality of the
surfaces. Red: left hemisphere surface; yellow: right hemisphere surface; green box: locations where the surfaces do not show good qualities.
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FIGURE 9 | The results of the WM and pial surface QA for all three datasets. Blue represents the proportion of individual surfaces with score 1 (good quality), orange
score 2 (fair quality with regional defects), and gray score 3 (poor quality). WM surfaces produced by the proposed method were rated as accurate in 89.2% of
scans overall (averaged across three datasets by two raters). Pial surfaces produced by the proposed method were rated as accurate in 86.9% overall.

individual surface to register is concordant with the template
chosen using the PMA of the given individual data. To this
end, we constructed a confusion matrix to map their overlap
(Supplementary Figure 4). Results indicated that overall 82.0%
of our data showed overlap between the two methods. Most of
the mis-matched templates (15.6%) were found in the nearest
neighboring age groups. Among the rest of the mis-matched
templates (2.4%), the majority were those with brain injury
(75%), whose matched templates were identified to be younger
than their PMA. The overlap was lower for the youngest and the
oldest babies (65–69%) than other age groups (90–94%).

Surface Reconstruction in dHCP
Measurements
To directly compare between the quality of surfaces
reconstructed by our pipeline and by the dHCP pipeline,
we randomly selected 12 images from the dHCP data set and
a trained expert (ML) drew landmark points on the white
matter and pial surfaces based on their T1w MRI. On average,
80 landmark points were placed on both of these surfaces, in
both hemispheres (see Figure 10 for an example). We then
computed the shortest distance between these points and our
computed surfaces. Additionally, in the case of the dHCP
dataset, we also computed distances between the manually
drawn landmark points and the surfaces provided by the dHCP
minimal processing pipeline. The mean and standard deviation
of the absolute value of these measurements are included in
Figure 11. The white matter surfaces tended to be comparable
between the two pipelines, while in the case of the pial surfaces,
our pipeline yielded lower distance with the landmarks taken
from the T1w image. That was, our pipeline showed significant
different placements of the pial surface from the dHCP solutions
which extracted cortical surfaces mainly on the T2w image
(p < 0.05).

Note that the surfaces extracted on T2 weighted images that
may estimate CSF partial volume and pial surface differently
compared to T1 weighted images. Figure 10 right panel shows

that the same slice as the one showed in Figure 10 (middle) but
with T2w modality.

Cortical Thickness Measurements
To evaluate the ability of our pial surface reconstruction in
characterizing the hypothesized developmental trajectory, we
measured cortical thickness by the shortest distance between
pair of vertices on the WM and pial surfaces. The vertex-wise
thicknesses were calculated in the native MRI space where the
scan was acquired.

We mapped the individualized cortical thickness trajectory
with age for both UCSF and dHCP datasets in whole brain
and six anatomical lobes. We observed a very smooth overlap
between the two datasets and the trajectory of cortical thickness
changes along with aging (Figure 12B). Across the two datasets,
by including birth age, dataset, and field strength as covariates,
our pipeline identified increases in cortical thickness over
time in almost all cortical regions (overall cortical thickness:
+0.041 mm/week; p < 0.0001, t = 4.99; Figure 12A).
A vertex-based mapping showed that regions involved in the
cingulate cortex display the most rapid growth among all
brain regions whereas brain regions in the inferior temporal
lobe, exhibited the slowest cortical thickness growth. Figure 13
presents cortical thickness maps in 4 cases representing each of
the PMA age group.

Comparison Between 3 and 1.5T
We further compared cortical thickness between images collected
using 3 and 1.5T MRI for different cortical regions in
UCSF dataset. Birth age, scan age and injury scores were
included as covariates in the general linear model. Results
along with FDR correction for multiple comparisons showed
that 3T images showed a trend of thicker cortex than
1.5T images (corrected p values between 0.0009 and 0.0792
for different lobes; Supplementary Figure 5). This suggests
that the cortical thickness measurement is affected by the
scanner field strength.
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FIGURE 10 | Examples of surface validation points (landmarks) placed on the WM/GM boundary and the GM/CSF boundary of a randomly selected T1 weighted
image from the dHCP dataset. Left: Surface validation points from the WM surface are shown along with the dHCP and our WM surface reconstruction solutions;
Middle: Validation points from the pial surface are shown along with the dHCP and our pial surface reconstruction solutions. Right: Pial surface were mapped to
same MRI slice from the dHCP dataset as shown in middle panel but with T2 modality. Note that the dHCP surfaces are extracted on T2 weighted images that may
estimate CSF partial volume and pial surface differently. The dHCP surfaces are indeed observed to fit better the pial boundaries found on T2 weighted images than
those on T1 weighted.

FIGURE 11 | Mean distance (mm) to the landmark from the dHCP surface (blue) and our surface (orange) for 12 random selected subjects from dHCP dataset. Note
that the dHCP surfaces are extracted on T2 weighted images that may estimate CSF partial volume and pial surface differently.

Comparison With Literature
Cortical thickness measurements in the neonatal population have
been reported in past literature and consisted of varying values,
ranging between 1 and 2.2 mm (Xue et al., 2007; Moeskops et al.,
2013, 2015; Li et al., 2015; Makropoulos et al., 2016, 2018b; Geng
et al., 2017). One reason for variability in measurements can be
due to differences in image acquisition, image segmentation, and
surface reconstruction methods. Figure 14 maps the distribution
of cortical thickness values measured from multiple studies in
relation to their average PMA at scan.

Comparison to the NEOCIVET 1.0
Pipeline
Our new framework extended upon the NEOCIVET 1.0 pipeline
(Kim et al., 2016) which was designed for neonatal WM surface
(WM-GM interface) reconstruction and measurement of sulcal
depths. All new features that are incorporated are summarized
relative to the NEOCIVET pipeline in Table 1.

Notably, to allow the new pipeline to better segment images
scanned for old pre-term or term neonates exhibiting large
variability of cortical folding across individuals, we add more
manually segmented templates from old pre-term neonates and
term neonates from the three datasets (PMA = 40–45 weeks;
n = 7) in the library for tissue segmentation, which was not
included in NEOCIVET 1.0. Finally, the new pipeline is able to

extract the pial surface and measure cortical thickness, which is
novel features added to the proposed pipeline.

We further compared the technical details between our
pipeline and the dHCP pipeline, which can be found in
Supplementary Materials.

DISCUSSION

In this study, we propose a new NEOCIVET pipeline
(NEOCIVET 2.0) for automatically reconstructing neonatal WM
and pial surfaces. Our new framework extends the NEOCIVET
1.0 (Kim et al., 2016), which was designed for neonatal WM
surface (WM-GM interface) reconstruction. The NEOCIVET 2.0
pipeline primarily aims to strategically address important issues
in neonatal MRI processing: (1) spatiotemporally changing tissue
contrast; (2) significant partial volume effects which interfere
with modeling sulcation in regions where detected CSF voxels
are scarce and scattered. These issues could lead to defective
pial surface reconstructions and inaccurate cortical thickness
measurements if pipelines designed for adult brain MRIs, e.g.,
CIVET (MacDonald et al., 2000; Kim et al., 2005), FreeSurfer
(Fischl, 2012), and Caret (Van Essen et al., 2001), were utilized.
Specifically, to optimize neonatal pial surface reconstruction, we
incorporate special features: (1) Construction of skeletons from
the union of gray matter and CSF; and (2) Generation of pial
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FIGURE 12 | (A) Mean cortical thickness significantly and positively correlates with PMA at scan (p < 0.001). Cortical thickness grows the most rapidly in brain
regions near the cingulate cortex but the slowest in brain regions near the inferior temporal cortex. (B) Trajectory of cortical thickness development in whole brain
and six anatomical lobes, for both the UCSF and dHCP datasets.

surfaces by expanding the WM surface mesh toward the skeleton
surface, a process refined using gradient information.

Furthermore, although NEOCIVET 1.0 successfully addressed
several substantial issues/challenges of neonatal brain MRI
processing (e.g., similar tissue intensity between WM and
CSF, reduced tissue contrast between WM and GM, large
within-tissue intensity variations, and regionally heterogeneous
image appearances that dynamically change along with neural
development), our proposed framework included additional
modules that further improved the quality of WM surface
reconstruction. For instance, deep learning-based convolutional
neural networks (Wang K. et al., 2020) were introduced
into the pipeline to render more accurate brain extraction
and tissue segmentation, and to address the mis-segmentation
between WM and CSF in neonatal T1w images. No existing

pipelines that process neonatal brain MRI and perform cortical
morphometry have not integrated deep learning neural networks
for segmentation into their frameworks. We also incorporated
a new marching-cubes approach that provides adaptive surface
meshes according to each individual’s cortical folding complexity.
The constructed surface is then further fine-tuned using gradient
information extracted from voxel intensities.

Our qualitative assessment showed that our method can
reconstruct most of the surfaces analyzed with reasonable quality.
Our landmark-based quantitative assessment also suggests that
the proposed gradient-based refinement method combined
with skeleton fitting of CSF/GM union can more accurately
position the pial surface to a location that is within a
significantly small distance from the visually recognized “true”
boundary. Similarly, the quantitative assessment also showed
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FIGURE 13 | Cortical thickness maps in four individual cases representing four different PMA groups were shown (A: 26 weeks, B: 32 weeks; C: 36 weeks; and D:
40 weeks.).

that NEOCIVET 2.0 fitted WM surfaces significantly closer to
the “ground truth” in comparison to NEOCIVET 1.0 pipeline.
Given such high accuracy as demonstrated in the evaluations,
NEOCIVET 2.0 successfully characterizes and documents the
developmental trajectory of cortical folding and thickness growth
in pre-term neonates. Furthermore, cross-validation using three
independent datasets also suggests the generalizability of our
proposed approach and the reproducibility of results using
different datasets.

Skeleton or Non-skeleton
Due to large partial volume effects in neonatal MRIs, CSF voxels
within deep and narrow sulci typically cannot be captured with
relatively large MR image resolution. Two main approaches,
one with skeleton and the other without, were designed to
circumvent this issue (Li et al., 2019) for neonatal pial surface
reconstruction. However, both approaches encounter several
issues. For example, a non-skeleton approach relies on the
deformation of the cortical surface from opposing gyri to
meet near the implicitly medial surface with self-intersection
constraints to generate the pial surfaces in undetectable
CSFs. However, this may require the subjective selection
of deformation and self-constraint related parameters that
may determine when the deformation stops, which would
influence the pial surface generation. On the other hand, the
skeleton approach may have a lower accuracy in properly
pinpointing the correct positions of CSF (Osechinskiy and
Kruggel, 2012), as it does not use edge information. As a
result, both methods can lead to unreliable extraction of the
sulcal boundaries.

Our approach combined skeletonization and edge
information to improve the accuracy of the extraction of
the pial surface. Regardless of invisible CSF voxels in sulci,
skeletonization creates a barrier that can constrain the surface
deformation. Furthermore, it provides a location where the
GM-CSF boundary can be found within a very short distance.
In this respect, our pipeline was able to more reliably search and
refine true GM/CSF edges.

There have also been attempts to overcome the limitations
associated with skeleton approaches. For example, a weighted
geometric distance has been applied to the neonatal pial surface
reconstruction (Xue et al., 2007; Li et al., 2012, 2014) to solve this
issue. This method, however, relies heavily on segmentation of
CSF components, which can be severely limited in cases of large
partial volume effects.

Quality Assessment of Surface
Reconstruction
Landmark-based surface QA showed that the displacement of
our reconstructed WM and pial surfaces to the “true” WM and
pial borders ranged between 0.5 and 0.65 mm, which is quite
small compared to the image resolution for scanning the UCSF
and UNC datasets (0.6–1 mm). This QA method, which was
first designed to evaluate the adult brain surface reconstructions
(Han et al., 2004; Tosun et al., 2006; Xue et al., 2007), was only
performed in one neonatal/infant study in the past (Zöllei et al.,
2020). Their pipeline was also evaluated on T1 images from
the dHCP dataset. Landmark displacements for cortical surfaces
measured in their study range between 1.17 and 1.19 mm for
WM surface and 0.8–0.91 mm for pial surface, respectively (Zöllei

Frontiers in Neuroscience | www.frontiersin.org 13 March 2021 | Volume 15 | Article 650082

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-650082 March 11, 2021 Time: 17:3 # 14

Liu et al. Neonatal Brain MRI Surface Pipeline

FIGURE 14 | A statistic of neonatal cortical thickness measured from different
studies. We consider the age range of the samples in each study and the
growth trajectory. However, we found that the age ranges for some of the
studies are very small. For example, Moeskops’s study only tested 10
subjects and the standard deviation of the age range is only 1 week. For those
studies with relatively short age ranges (SD < 1.5 weeks), we indicate them
with crosshairs that represent the two-standard deviation of the age range
(horizontal extent) and cortical thickness (vertical extent). On the other hand,
regression lines are used to represent the cortical thickness growth for those
studies with larger age ranges (SD > 1.5 weeks).

et al., 2020), which are much larger than that in the current
study, implying the robustness of our proposed reconstruction
method. Differences in the reported displacement values between
our study and adult studies may stem from differences in image
segmentation, image resolution, and brain size.

Growth Pattern in Cortical Thickness
Cortical thickness measurements (1.4 mm at 28 weeks of PMA
to 2.2 mm at term equivalent) computed through our pipeline
is quite similar to past studies (2.1 mm at term; e.g., Li et al.,
2014) but different from others (1.1 mm at term) (Makropoulos
et al., 2018b). This discrepancy may be explained by differences
in thickness measurement methods, image modality (T1w vs.
T2w), image segmentation, and surface reconstruction methods.
Our results demonstrated a global increase of cortical thickness
that positively correlated with PMA at scan. For the vertex-based
ROI analysis, as in Figure 12B in the main text, we observed
a very smooth overlap between UCSF and dHCP datasets, and
the trajectory of cortical thickness changes along with aging
are reasonably linear in both of the two datasets. In particular,
brain regions corresponding to cingulate cortices grew the most
rapidly. Similar results were reported in a past study which
demonstrated that the cortical thickness is higher in the cingulate
cortices and superior frontal cortex compared to other brain
regions of term-born infants (Li et al., 2015), indicating that
cortical thickness grows the most rapidly in these regions before
birth. By contrast, brain regions in the temporal lobe grow the
least rapidly. Cortical plate and subplate in these regions are
found to grow more rapidly earlier in the 2nd trimester of
gestation (Vasung et al., 2016).

TABLE 1 | Comparison between NEOCIVET 1.0 and NEOCIVET 2.0 pipeline.

NEOCIVET 1.0 NEOCIVET 2.0

Brain extraction BEaST 3D-Unet

Tissue segmentation Multi-atlas Joint Fusion Non-local 3D-Unet

Training set for tissue
segmentation

27 pre-term neonates
Equally sampled in 4
age-subgroups
(30–40 weeks PMA)
from the UCSF dataset

24 pre-term and term
neonates Equally
sampled in 5
age-subgroups
(26–45 weeks PMA)
from three datasets.

Surface deformation
and parameterization

Deforming icosahedron
surfaces with a fixed
number of triangles

Marching-cube
deformation with
various numbers of
triangles adapted to
brain size and folding
complexity.
Subsequently,
icosahedron resampling
of the deformed surface

Surface refinement in
WM surface
deformation

None Gradient-based
approach

Pial surface
reconstruction

None Yes

Measurements Curvature, sulcal depth Curvature, sulcal depth,
gyrification index,
cortical thickness

Other studies have identified alterations of cortical thickness
and cognition in adolescents and adults born pre-term, especially
in the frontal cortices (Martinussen et al., 2005; Nagy et al.,
2010; Nam et al., 2015). Thus, considering past studies combined
with our results, regions near the cingulate cortices may
be important biomarkers of cortical thickness changes in
neurodevelopment, and these regions may be vulnerable to long-
term alterations associated with prematurity or perinatal injuries
that influence clinical outcome. Such alterations in cortical
thickness development may be affected by both genetic and
environmental influences (Lenroot and Giedd, 2008) and have
been associated with intelligence, executive functions, working
memory, perceptual skills, and internalizing and externalizing
behavior (Lohaugen et al., 2009; Skranes et al., 2012; Zubiaurre-
Elorza et al., 2012).

Ultimately, cortical thickness trajectories have important
clinical relevance and can be useful biomarkers that help to
predict neurodevelopmental and cognitive outcomes. The new
pipeline is capable of mapping dynamic cortical thickness
changes throughout the third trimester of gestation, an early
and critical phase of development, which can further support
the early diagnosis of pre-term neonates and, thereby, allow
clinicians to determine when and what medical interventions
may be appropriate.

Limitations and Future Directions
We applied our pipeline to T1w images, while many attempts
in neonatal brain segmentation and surface reconstruction were
conducted on T2w images or T1w–T2w modalities combined
(Shi et al., 2010; Wang et al., 2014; Makropoulos et al.,
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2016, 2018b) due to the increased contrast of brain tissues
in T2w images. It is important to optimize a method that
considers T1w images, which are collected prevalently for various
research aims. Our pipeline is the first proposed specifically
for T1 images. Despite our new evaluation results where
cortical thickness measurements vary depending on the image
modality analyzed by each pipeline, it is difficult to conclude
that whether T1 or T2 imaging is more ideal to construct
cortical surfaces. Our pipeline would rather supplement the
dHCP pipeline depending on the availability of T1 or T2 MRI
data, since only one sequence may be available under the
different clinical/research setting. In order to make our method
more compatible with other group’s methods in terms of pial
surface reconstruction and cortical thickness measurement, we
aim to expand our pipeline to include T2w images in future
studies. In addition, as seen in our finding in differences of
cortical thickness due to different MRI field strengths, there
has been a collection of evidence that various factors may
bias cortical thickness measurements (Fortin et al., 2018). Such
factors biasing cortical surface reconstruction and subsequently
cortical thickness measurement include different acquisition
parameters, imaging sequence type (T1 vs. T2), field strength,
MRI machine and patient’s characteristics such as the presence
of brain injuries and perinatal clinical risk factors that leads to
delay in brain growth. Heterogeneity of these factors among the
datasets analyzed in previous studies and our study along with
the methodological difference may lead to the low consensus
among studies shown in Figure 14. If multiple datasets were
included in a single study, researchers must harmonize them
before the statistical analysis. Recently, several harmonization
approaches have been proposed to address this issues when
cortical thickness from multiple dataset were used together
(Fortin et al., 2018).

Many neonates analyzed in our study were scanned twice,
but each scan was treated as independent images when
extracting their brain surfaces. While our approach is appropriate
for cross-sectional analyses, past studies have proposed the
segmentation/surface reconstruction methods that make use
of information about the growth rate found in longitudinally
collected MR images (Dai et al., 2013; Wang et al., 2013; Li
et al., 2014, 2015; Nie et al., 2014). This approach continues to
be a research area of interest for future investigations aiming to
improve cortical surface reconstruction.

Accurate reconstruction of neonatal brain WM and pial
surfaces can be applicable to sampling cortical measurements
of other modal MRI data which explain changes in different
aspects of the brain. For example, diffusion tensor imaging is
used to extract parameters related to WM integrity, such as
fractional anisotropy and mean diffusivity. T1/T2 ratio myelin
map (Glasser and Van Essen, 2011) is also shown to be a sensitive
biomarker that predicts neonatal brain ages (Lewis et al., 2018;
Liu et al., 2020) and cognitive outcomes (Moeskops et al., 2017).
Using a boundary-based registration approach (Greve and Fischl,
2009) based on our reconstructed brain surfaces, we plan to
compute these measurements within the cortex or on superficial
WM, leading to more versatile applications that help clarify
mechanisms involved in the early brain development.

Future studies also aim to elucidate the neurobiological
and cellular basis for changes in cortical thickness trajectories.
A possible explanation of such topological changes is through
prematurity-related abnormalities in synaptic pruning, which
refines developing neural circuits important for cognitive
function and specialization (Knudsen, 2004; Raznahan et al.,
2011b).

We have opened the NEOCIVET 2.0 to the public through
CBRAIN2, a web-based platform that distributes, processes, and
exchanges 3D/4D brain imaging data. Our pipeline can also be
used to investigate brain morphological changes in neonates born
with clinical conditions.
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