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Abstract

The ventromedial nucleus of the hypothalamus (VMN) has an important role in diverse

behaviours. The common involvement in these of sex steroids, nutritionally-related signals,

and emotional inputs from other brain areas, suggests that, at any given time, its output is in

one of a discrete number of possible states corresponding to discrete motivational drives.

Here we explored how networks of VMN neurons might generate such a decision-making

architecture. We began with minimalist assumptions about the intrinsic properties of VMN

neurons inferred from electrophysiological recordings of these neurons in rats in vivo, using

an integrate-and-fire based model modified to simulate activity-dependent post-spike

changes in neuronal excitability. We used a genetic algorithm based method to fit model

parameters to the statistical features of spike patterning in each cell. The spike patterns in

both recorded cells and model cells were assessed by analysis of interspike interval distribu-

tions and of the index of dispersion of firing rate over different binwidths. Simpler patterned

cells could be closely matched by single neuron models incorporating a hyperpolarising

afterpotential and either a slow afterhyperpolarisation or a depolarising afterpotential,

but many others could not. We then constructed network models with the challenge of

explaining the more complex patterns. We assumed that neurons of a given type (with het-

erogeneity introduced by independently random patterns of external input) were mutually

interconnected at random by excitatory synaptic connections (with a variable delay and a

random chance of failure). Simple network models of one or two cell types were able to

explain the more complex patterns. We then explored the information processing features

of such networks that might be relevant for a decision-making network. We concluded that

rhythm generation (in the slow theta range) and bistability arise as emergent properties of

networks of heterogeneous VMN neurons.

Author summary

When the needs of an animal require the execution of particular behaviours, the brain

must decide which of these needs to prioritise–whether to flee from or fight an aggressor
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for example, or whether to hunt for food or pursue sex. The ventromedial nucleus of the

hypothalamus is involved in such decisions, in the regulation of aggression, feeding

behaviour and sexual behaviour. We began with evidence of the electrical activity patterns

of these neurons, and from evidence of how they are interconnected. We built computa-

tional models to understand how the activity patterns could arise from mutually excitatory

connections amongst simple neuron “types”. With a network framework that could

explain the observed patterns, we asked what information processing features of such net-

works might be relevant for decision-making. Two important features arise as emergent

properties of such networks; slow oscillatory rhythms–a phenomenon believed to be

important for co-ordinating activity in different brain regions–and bistability. A bistable

network has an upstate where neurons are active (and, in this case, generating a coherent

rhythm) and a downstate, where neurons are inactive. Alternation between these states,

we propose, reflects a switch between different behavioural states.

Introduction

The ventromedial nucleus of the hypothalamus (VMN) is a large hypothalamic nucleus with

an important role in diverse behaviours stretching beyond its classic role in appetite regulation

and energy homeostasis [1]. The nucleus regulates glucose and lipid homeostasis [2–4], appe-

tite and energy expenditure [5–8]; but also sexual behaviour [9–11], social behaviours and

aggression [12,13], and defensive and escape behaviours [14–16]. The diversity of functions

regulated by the VMN and the common involvement in these of sex steroids, nutritionally-

related signals, and emotional inputs from other brain areas, has led to the suggestion that sub-

populations of VMN neurons “constitute a nutritionally sensitive switch, modulating the com-

peting motivations of feeding and avoidance of potentially dangerous environments” [17]. It

has similarly been suggested that a ‘switch’ in the VMN might underlie the reciprocal gating of

sexual and feeding behaviour [18]. This suggests that the VMN is a multi-stable network–that,

at any given time, its output is in one of a discrete number of possible states corresponding to

discrete motivational drives.

How might this behaviour arise in the neuronal networks within the VMN? The neurons of

this nucleus are densely interconnected, and the great majority of them are glutamatergic:

mRNA for the vesicle glutamate transporter VGLUT2 is densely expressed throughout the

VMN, while the VMN is virtually devoid of GAD65 and GAD67 mRNA, indicating that it

contains few intrinsic GABA neurons [19]. This suggests that VMN neurons are extensively

interconnected by mutually excitatory pathways.

For mutual excitation to support stable firing in a subpopulation of neurons, such positive

feedback must be restrained by activity-dependent inhibition. In the case of VMN neurons,

there is good reason to think that activity-dependent inhibition arises from intrinsic neuronal

mechanisms–from slow, spike-dependent hyperpolarising currents. A conspicuous feature of

many VMN neurons is that, in vivo, spikes are followed by a prolonged relative refractory

period, as evidenced by spontaneous spike patterning [20]. Other neurons have a brief refrac-

tory period followed by a brief period of hyperexcitability. Such spike-dependent hyperexcit-

ability might arise either by intrinsic mechanisms (depolarising after-potentials (DAPs) that

can arise by multiple mechanisms over different time scales), or by recurrent excitatory

pathways.

Detailed analysis of spiking activity in neurons of the VMN in vivo [20] previously detected

a number of distinctive electrophysiological “phenotypes”–consistent patterns of spiking
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activity that could be classified into about nine behavioural types. These types vary in complex-

ity: some cells show apparently random spike intervals, shaped only by an initial refractory

period, while others show short rapid bursts of spikes, or underlying oscillatory activity. Here

we used modelling to explore what combinations of distinct cell properties and network con-

nectivity might explain the heterogeneity observed in the VMN.

We modelled single neurons of the VMN using an integrate-and-fire based model with

post-spike excitability modified by simplified afterpotentials. We have previously used this

approach to model hypothalamic oxytocin and vasopressin neurons: these have no direct or

indirect, synaptic interactions between them, so we can directly infer intrinsic properties from

their spiking patterns. We found that a model neuron with two spike-dependent mechanisms

mimicking a large, brief post-spike hyperpolarisation (a hyperpolarising afterpotential, HAP)

and a small but prolonged post-spike afterhyperpolarisation (AHP) can very closely match the

spike patterning of oxytocin cells in vivo [21,22] and that these simplified activity-dependent

potentials are consistent with a biophysically detailed Hodgkin-Huxley type model of those

neurons [23]. In modelling vasopressin cells, a close quantitative match to their more complex

phasic burst spiking patterns could be achieved with the addition of a DAP and a spike-sup-

pressed hyperpolarisation, acting together to produce emergent bistability, and resulting in

intrinsic bursting activity [24].

In the VMN, however, spiking patterns are the product of intrinsic mechanisms combined

with network interactions. To model VMN neurons therefore requires assembling a network,

but the intrinsic properties of the neurons comprising that network cannot be inferred directly

from their observed spiking patterns. Accordingly, we began with minimalist assumptions

about their intrinsic properties as inferred from studies of these neurons in vivo, using an inte-

grate-and-fire based model as a flexible template constrained to be consistent with experimen-

tal observations. We then constructed network models with the challenge of finding simple

explanations of those patterns. Finally, with a network model framework that seemed able to

explain most observed patterns, we asked what information processing features of such net-

works are likely to be relevant for a decision-making network.

The recorded VMN spike data, model source code, and software, compiled for Windows

PC, are available at https://github.com/HypoModel/VMNNet/releases.

Results

We used a library of extracellular recordings from 271 neurons of the VMN of anaesthetised

male rats [20]. These comprised time series of spike events collected with a temporal resolution

of 0.1 ms from recording periods of 15–60 min. In the original publication of these data, the

neurons were classified into types from clusters of approximately equal size displaying differ-

ent spike patterning, detected by analysis of hazard functions constructed from the interspike

intervals (ISIs). We selected extracts of five recordings from each type for further analysis and

for fitting with single neuron models. The neurons were chosen to represent the range of pat-

terning within each cluster, and extracts were chosen that showed apparent stationarity, as

assessed by a relatively constant minute-by-minute level of activity.

For each extract we constructed the ISI distribution in 5-ms bins and the corresponding

hazard function, and calculated the index of dispersion (IoD) of firing rate across bin widths

of 0.5,1,2,4,6,8 and 10s (IoD range) (Fig 1). The hazard function transforms the ISI distribution

to display how the excitability of a neuron changes with time after a spike. The IoD of firing

rate, calculated at multiple bin widths, gives a measure of the variability of a neuron’s firing

rate and how this depends on the timescale over which the firing rate is measured. Purely ran-

dom spiking will produce an IoD of 1 independent of the timescale. Regular spiking activity
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Fig 1. Neural subtypes in the VMN identified by spike patterning. Typical examples of each cell type previously identified [20] from 271 in vivo extracellular

recordings of the VMN. The left column shows extracts of firing rate in 1-s bins, to the right of these are the corresponding ISI distribution constructed in 10-ms bins
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will produce an IoD of<1, while clustered spiking activity will have an IoD > 1 that strongly

depends on the timescale. This measure of variability is much more sensitive to slow activity-

dependent influences on spike activity than the ISI distribution or hazard function. In oxytocin

cells, a slow AHP causes the IoD to reduce as the binwidth increases [21], while a slow DAP

can have the opposite effect.

Our neural model is based on the leaky integrate-and-fire model enhanced by the addition

of post-spike potentials; it is similar to the ‘spike response’ model [25] but retains a differential

equation based form. Activity-dependent potentials, in the form of the HAP, AHP, and DAP,

are simulated by spike-triggered step changes in membrane potential followed by exponential

decay. In contrast to the classic integrate-and-fire model, there is no post-spike reset of the var-

iables, allowing the DAP and AHP in particular, with their longer half-lives, to accumulate

across multiple ISIs. We have previously shown that this modelling of post-spike potentials

can be closely mapped to detailed biophysical models, matching the time course and spike pat-

terning effects of voltage- and Ca2+- activated ionic conductances [23]. The model’s parame-

ters are based on our previous model of oxytocin neurons [21], which shows similar spike

rates and patterning to the “random” type VMN neurons. Oxytocin neurons have been studied

in great detail both in vitro and in vivo and we have good quantitative measures of parameters

such as resting potential and spiking threshold, and magnitude of potentials such as the HAP

and AHP. We don’t have the same data for VMN neurons but they are likely to be similar and

we know from modelling the oxytocin neurons that the model’s behaviour is not dependent

on precise values for these parameters [21].

The output of the model is a series of spike times that can be analysed in the same way as

recorded spike data. Fitting the model involves identifying values for parameters correspond-

ing to the mean synaptic input rate and the half-lives and magnitudes of the post-spike poten-

tials. We assume that synaptic input is a mixture of a fixed ratio of excitatory postsynaptic

potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) of fixed magnitude and half-

life, so only a single parameter Ire defines the synaptic input. The best fit was determined by

comparing the ISI distribution, hazard function, and IoD values between model output and

target data.

VMN cell types determined by the intrinsic neuron parameters

Using two post-spike potentials the model has 11 parameters, but only five of these are

required to fit the model to data from a given VMN cell (one for input rate, two for the HAP,

and two for the optional AHP or DAP) making it amenable to an automated fitting procedure

based on a genetic algorithm (GA), and enabling a more objective and thorough exploration

of the parameter space. The GA based technique involves generating a population of random

parameter sets, using each set to run the model and generate a fit score, and then ‘evolving’

these over a number of generations to find a best fit. For each cell, we fitted the model (default

parameters in Table 1) using a population size of 128 parameter sets in each generation; this

was run for 40 generations, varying the parameters within a physiologically plausible range

(Table 2). We have previously demonstrated with the same model and fit scoring that this is

sufficient to make a robust exploration of the parameter space [23].

over 500 s of spontaneous activity, the corresponding hazard function, and the IoD range. Cells were classified on the basis of ISI analysis. “random”, “slow DAP”,

“longtail” (type 1 and 2), and “broad” cells show mostly random patterning subject to varying lengths of post-spike refractory period. “Regular” cells show highly

regular spike intervals. “doublet”, “doublet-broad”, and “oscillatory” cells show more complex patterning including short bursts and bimodal ISI histograms. The

oscillatory cells have multimodal ISI distributions. Many cells show an increasing IoD range, indicating either a noisy input signal or some positive feedback

mechanism, generated either by an intrinsic post-spike depolarisation or network mutual excitation.

https://doi.org/10.1371/journal.pcbi.1007092.g001
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To choose a final fit for each cell, we ran the algorithm 100 times and chose the final param-

eter values as the median values from the 10 best fits. The best fits showed little variation in

parameter values, giving confidence in the final fit parameters. For each cell we repeated this

process using just an HAP, an HAP and an AHP, and an HAP and a DAP. We also tested the

combination of HAP, AHP, and DAP but did not find any cells where the fit could be substan-

tially improved by using all three.

Of the nine cell types recognised previously, five types could be well-fitted by the single neu-

ron model (Fig 2 and S1–S5 Figs). Four of the five cells originally classified as “random cells”

[20] were fitted by a fast HAP (mean λHAP = 9.1 ms) and a short AHP (mean λAHP = 92 ms);

the fifth required a DAP for a good fit, to match high IoD values. Four other cell types (“slow

DAP”, “longtail1”, “longtail2”, and “broad”) could also all be well fitted with the model, and

the fit scores and parameters for all 25 cells are given in S1 Table. Fig 2 shows examples of the

fits achieved for one cell of each of these five types, and the fits for all cells are shown in S1 to

S5 Figs.

The “slow DAP” cells have a peak in their hazard function that was previously attributed to

a DAP. However, this could equally arise from a very fast HAP (mean λHAP = 4.7 ms): if λHAP

is less than the PSP half-life (7.5 ms) then the accumulated EPSPs that have triggered the spike

can have a depolarising effect that outlasts the HAP [26]. Only one of the “slow DAP” cells

needed a DAP for the best fit.

The two classes of “longtail” cells could all be fitted with a slow HAP (“longtail1” mean

λHAP = 39 ms and “longtail2” mean λHAP = 57 ms). Most also required a small DAP for their

Table 1. Single neuron model default parameters.

Name Description Value Units

Ire external input rate 300 Hz

Iratio inhibitory input ratio 1 -

eh EPSP amplitude 3 mV

ih IPSP amplitude -3 mV

λsyn PSP half life 7.5 ms

kHAP HAP amplitude per spike 30 mV

λHAP HAP half life 8 ms

kAHP AHP amplitude per spike 0 mV

λAHP AHP half life 500 ms

kDAP DAP amplitude per spike 0 mV

λDAP DAP half life 1000 ms

Vrest resting potential -62 mV

Vthresh spike threshold potential -50 mV

https://doi.org/10.1371/journal.pcbi.1007092.t001

Table 2. Single neuron model fitting parameter ranges.

Name Min Value Max Value

Ire 100 2000

kHAP 0 100

λHAP 2 100

kAHP 0 5

λAHP 50 1500

kDAP 0 10

λDAP 20 2000

https://doi.org/10.1371/journal.pcbi.1007092.t002
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best fit, with none needing an AHP. The “broad” cells are characterised by a hazard function

which has a very slowly decaying refractory period. This was fitted by a fairly slow but small

HAP (mean λHAP = 22 ms; mean kHAP = 20 mV).

The most important factors in distinguishing between these cell types were the HAP param-

eters (Fig 2), and the ovals in Fig 3 illustrate the range for each cell type. The previous type clas-

sifications remained robust on the basis of model fitting but show some overlap in HAP

parameters. The duration of the apparent relative refractory period observed in hazard func-

tions mainly reflects the combined effects of the HAP magnitude and half-life. We estimated

this duration as the time taken for the membrane potential of a model cell to return to within 1

mV of the resting potential after a spike in the absence of any synaptic input. The “random”

cells and “slow DAP” cells have relative refractory periods of 48 ms and 31 ms respectively

(estimated from median parameter values for the cluster); the “longtail1” and “longtail2” cells

have relative refractory periods of 198 and 293 ms; and the “broad” cells a relative refractory

period of 96 ms.

Four of the five “broad” cells needed an AHP as well as an HAP to achieve the best fit, while

six of the ten “longtail” cells needed a small but slow DAP as well as an HAP. In neurons with

an AHP, the IoD decreases with increasing binwidth, as previously observed in oxytocin neu-

rons [21,23]. The slow DAP has the opposite effect, producing a higher IoD with longer bin-

widths (Fig 4). Essentially, a slow DAP makes cells more ‘bursty’ by its positive feedback

effects, while a slow AHP makes them more stable by its negative-feedback effects. Thus

requiring model cells to fit IoD range data ensures that they capture these features of recorded

neurons.

The sixth cell type, “regular cells”, have a hazard function that rises monotonically to very

high values and have a very low IoD. This is consistent with a resting potential which lies

above the spiking threshold, and a slowly decaying post-spike hyperpolarization that acts as a

pacemaker current. However, as we see below, this is not the only way that such patterning

can arise.

We conclude that a substantial portion of the heterogeneity in the spike patterning of VMN

neurons is due to heterogeneity in their intrinsic mechanisms that shape post-spike excitabil-

ity. The dominant effect of these is activity-dependent inhibition, and under this there are two

substantial subpopulations (Fig 3), distinguished by differences in the duration of post-spike

hyperpolarisation. The “random” and “slow DAP” cells displayed a relatively brief hyperpolari-

sation whereas the “longtail1”, “longtail2”, and “broad” cells displayed a long hyperpolarisa-

tion, and hereafter we call these consolidated types ‘fast HAP’ and ‘slow HAP’ cells

respectively.

Fitting these cells with a single neuron model subject to random synaptic input shows that

the spike patterning in these cell types can be explained purely by intrinsic properties that

shape post-spike excitability, using known mechanisms such as the HAP and DAP. It does not

assume that they are disconnected from other neurons but rather that there is no coordinated

patterning or feedback in the inputs they are receiving. The more complex patterned cell types

which could not be fitted with the single neuron model indicate either some unknown intrin-

sic mechanism or some non-random structure in their inputs. Our subsequent studies tested

the idea that this might be the consequence of local network interactions.

VMN cell types determined by network interactions

Three VMN cell types—those originally classified as “doublet”, “doublet-broad”, and “oscil-

latory” cells—have multi-modal ISI histograms and hazard functions that we could not match

with the single neuron model. To test the idea that these might be network generated, and
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Fig 2. Single neuron model fits. Using automated fitting we produced close matches to the spike patterning of “random”, “slow DAP”, “longtail1”,

“longtail2”, and “broad” type VMN neurons, using a single neuron integrate-and-fire based model receiving random synaptic input at a fixed rate. Each row

shows a single neuron and its best model fit. The 1-s binned spike rate (1st column) shows the match to spiking rate and variability but not detailed

patterning. The fit is measured using a weighted sum of the match to the ISI distribution (2nd column), the hazard function (3rd column), and the IoD range

(4th column). The best fits use either just an HAP, an HAP and an AHP, or an HAP and a DAP, indicated in the 3rd column. The early mode in the ISI

distribution of the “random” and “slow DAP” type neurons indicates a short refractory period, corresponding with a faster (shorter half-life) HAP fit than in

the “longtail1”, “longtail2”, and “broad” type neurons.

https://doi.org/10.1371/journal.pcbi.1007092.g002
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based on the evidence that most of the VMN neurons are glutamatergic [19], we began by con-

structing a network of neurons connected by excitatory synapses.

The simplest cell types, those that could be well fit by the fast HAP and slow HAP single cell

models, defined the building blocks for the subsequent network models. For initial testing we

constructed networks of 50 model neurons (Fig 5) with identical intrinsic parameters, based

on ‘fast HAP’ cells (kHAP = 40, λHAP = 10) or ‘slow HAP’ cells (kHAP = 20, λHAP = 40), both with

no AHP or DAP (parameters in Table 3). We used a simple model of synaptic transmission

where a single spike generates a single EPSP, of fixed amplitude, subject to a transmission

delay. Summation of PSPs within a single time step is linear, although non-linearity is intro-

duced by their exponential decay. The network is randomly generated, with any two neurons

having a chance of connecting defined by parameter esyn1. The connections have a fixed

strength defined by parameter synweight which is used to modify the magnitude of PSPs trig-

gered by spikes generated within the network.

Such networks tended to over-synchronise, shifting suddenly from slow spiking to fast syn-

chronised bursts. We therefore increased the noise and variation in the synaptic connectivity

by adding a random chance of failure to synaptic transmission (fixed at probability 0.5) and a

variable transmission delay. This produced a more gradual evolution of spike patterning as the

synaptic connectivity was progressively increased. In the VMN there are likely to be varied

Fig 3. HAP parameter range across cell types and single neuron fits. Each cloud shows five sample fits (each dot a fit) colour coded

according to the previously classified VMN cell types (Fig 2). Plotting fits using the HAP fit parameters (kHAP and λHAP), defining the HAP

magnitude and half-life, shows a good correlation with cell type. The x-axis is plotted on a natural log scale. The coloured dots show

individual cell fits. The white dots and crosses show the mean and standard deviations. The cloud ovals show the range. Longer half-life

values tend to correlate with a smaller magnitude. The clouds show overlap, but overall the results are consistent with previous

classification, and consistent with the inference that the dominant intrinsic property which differentiates spike patterning across these types

is the HAP.

https://doi.org/10.1371/journal.pcbi.1007092.g003
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transmission delays between neurons, depending on varied propagation delays, dendritic tree

structures, and synapse locations, although how much they might vary is very hard to estimate.

To test this assumption we went back to our experimental data to find paired recordings of

coupled VMN cells that could be analysed to measure their coupling latency (S6 Fig). The two

pairs shown in this Figure show latencies consistent with transmission delays in the range of 5

to 15 ms.

The ‘fast HAP’ network, subject to the same random input signal, shows a gradual shift to

much faster more regular spiking as the connectivity increases (Fig 6). There are no new

matches to other types of VMN neurons. However, in the ‘slow HAP’ network, as the connec-

tivity increases, the firing rate increases, and the ISI distributions of individual cells become

less skewed until they develop a second mode, matching the spiking observed in “doublet”

neurons (Fig 7). With further increases in connectivity, these neurons display regular short

bursts of spikes. The change in patterning appears to depend on the combination of intrinsic

properties and network connectivity, with the slow HAP forming a negative feedback to

counter the positive feedback of the excitatory connections.

The progressive changes in the ISI distribution with increasing esyn1 closely correspond to

the ISI distributions of several VMN cell types (Fig 7). Thus, a fixed slow HAP neuron model

with a single parameter change increasing network connectivity is sufficient to reproduce

much of the heterogeneity observed in VMN spiking patterns.

Fig 4. Using a DAP to fit an increasing IoD range. Noise or variability in the spike rate is measured using the IoD. The presence of a large AHP results

in a decreasing IoD range, where variability is less at larger binwidths [21]. An increasing IoD range can be mimicked either by a highly variable input

signal, or by the amplification of variability due to the action of a DAP. The green in vivo example here is a “random” type cell which shows an

increasing IoD range. The ISI distribution can be closely matched by a model neuron with only an HAP (red data), but to also fit the increasing IoD

range requires a model neuron with a DAP as well as an HAP (blue data).

https://doi.org/10.1371/journal.pcbi.1007092.g004
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Network model fitting

We further tested the ability of the network model to match VMN cell patterning, attempting

precise fits to five sample cells from the “doublet” and “doublet-broad” cell types. We

attempted to adapt the automated fitting to the network model with a network version, but

this was not sufficiently robust in the quality and consistency of the fits it produced. However,

Fig 5. Single cell-type excitatory network. In this network model, identical model neurons are randomly connected,

with a chance of connection from one neuron to another defined by esyn1. Connection can independently go in both

directions. Network synaptic transmission is modelled by a single spike generating a single EPSP in connected

neurons, subject to random transmission failure (0.5 chance), and fixed random transmission delay within a defined

range, usually 5–15 ms. Neurons also receive randomly timed external synaptic input at a defined rate, of mixed EPSPs

and IPSPs.

https://doi.org/10.1371/journal.pcbi.1007092.g005

Table 3. Single cell type network model parameters (others as in Table 1).

Name Description Value Units

vmn1 number of type 1 neurons 50 -

Ire external input rate 200 Hz

Iratio inhibitory input ratio 0.5 -

kHAP (fast) HAP amplitude per spike 40 mV

λHAP (fast) HAP half life 10 ms

kHAP (slow) HAP amplitude per spike 20 mV

λHAP (slow) HAP half life 40 ms

esyn1 type 1 to type1 connection probability 0.5 -

synweight1 network PSP weighting 1 -

syntrans synaptic transmission probability 0.5 -

Δmin transmission delay minimum 5 ms

Δrange transmission delay random component 10 ms

ksyn network PSP magnitude 3 mV

λsyn network PSP half-life 7.5 ms

https://doi.org/10.1371/journal.pcbi.1007092.t003
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using manual parameter adjustment, informed by the matches observed in Fig 7, we could

achieve close fits with 50-neuron network models to both the “doublet” and “doublet-broad”

type neurons (S7 and S8 Figs; parameters in S2 Table).

Fig 6. Increasing connection density in an excitatory ‘fast HAP’ network. Each row illustrates a single network model of 50 slow HAP

neurons, with connection probability (esyn1) increasing down the rows. All other neuron model parameters are fixed. In each row, the first

and second columns show the spiking and ISI distribution for one neuron in the network. Neurons within each network show very similar

patterning, with some small variation due to the random connections and random external input signal. The third column shows the

summed activity of all neurons in the network. As esyn1 increases, the spike rate increases, the ISI distribution becomes less skewed and the

amplitude of the mode increases, but there is otherwise no change in spike patterning. At higher connectivity the summed population

activity (right column) shows the shift from slow to fast spiking sustained by the network.

https://doi.org/10.1371/journal.pcbi.1007092.g006
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The fits require the right balance between the random external input, determined by Ire and

Iratio, and the network generated input, determined by esyn1, synweight1, and Δrange. Producing

Fig 7. Increasing connection density in an excitatory ‘slow HAP’ network. Each row illustrates a single network model of 50 slow HAP

neurons, with connection probability (esyn1) increasing down the rows. All other neuron model parameters are fixed. The example data for

each network (1st and 2nd column) shows the spiking and ISI distribution for a typical single neuron. Neurons within each network model

show very similar patterning, with some small variation due to the random connections and random external input signal. The in vivo column

shows recorded VMN cells which have not been directly fitted, but which show patterning very similar to those of neurons in the

corresponding network model. As esyn1 increases, the ISI distribution becomes less skewed and the amplitude of the mode increases until a

second mode appears, accompanied by the appearance of short bursts. As the second ISI mode grows and dominates, the bursts become faster

and more regular, matching “doublet” type VMN cells. The population column (far right) shows the summed spiking activity of the 50 neurons.

The noisy synchronisation of the network produces conical peaks that form oscillations.

https://doi.org/10.1371/journal.pcbi.1007092.g007
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the first, mode of the ISI histogram, which corresponds to the short ISIs of the doublets (and

multiple spike short bursts), requires sufficient network input (it cannot be produced by the

random external input alone). The width of this first mode is determined by the variability in

network transmission (Δrange,). The second mode corresponds to the longer ISIs, and is mainly

determined by features of the external input. The overall skew of the ISI distribution–the

length of the tail–decreases with Ire. The position of the second mode is strongly influenced by

the HAP half-life (λHAP). All of these parameters influence the spike rate, and have to be com-

pensated against each other. Increasing Ire for example increases the height of the first mode

which might be compensated by reducing esyn1. Thus fits fall within a consistent range, but

are not unique. To study this we attempted multiple fits in an example “doublet-broad” cell

(S2 Table), testing fits fixed by different Iratio and synweight1. A larger Iratio can be compensated

by a smaller Ire and shorter λHAP., and a larger synweight1 can be compensated by a smaller

esyn1. Thus manual fitting, while not exhaustive or fully objective, gives a good understanding

of how the model is working, and the essential balance between activity-dependent and -inde-

pendent input signals, and intrinsic properties.

The network fits to the “doublet” cells use a neuron model with parameters in the range of

the “longtail1” neurons. The “doublet broad” type fits mostly use a neuron model with param-

eters in the range of the “broad” neurons. However, some of the previously “doublet” classified

cells do not have a second mode, and these cells (doublets19 and doublets22 in S7 Fig) can be

fitted by a single neuron model.

VMN cell types in a randomly heterogeneous network

The fits thus far establish the intrinsic properties and network connectivity required to match

VMN neurons but do not demonstrate how the heterogeneous cell types might co-exist. To

test the ability for matches to multiple VMN cell types to co-exist in a single model network we

generated a network of 200 randomly varied model neurons, with three parameters randomly

varied on a normal distribution. The neurons are based on our ‘slow HAP’ model, but include

random variation in λHAP (mean = 40, SD = 20) sufficient to produce some cells which fall in

the ‘fast HAP’ range. We also applied random variation to the input rate (Ire, mean 150, SD 45)

and network connectivity (esyn1, mean 0.12, SD 0.15) parameters. Neurons with an esyn1 of 0

or less do not receive any connections from the network, but can still send connections to

other neurons.

The network was run for 2000 s and the resulting varied ISI distributions for each neuron

are presented in S9 Fig. For comparison, in S10 Fig, we include ISI distributions for our library

of recorded VMN cells, presented in the same scaling and format. The ISI distributions show

matches to both the single mode, and multi-mode distributions observed in the VMN cells.

The majority can be matched to “longtail”, “broad”, or “doublet-broad” type cells, but there

are also examples of “doublet”, “random”, “slow DAP”, and “oscillatory” type cells. All of the

model cell distributions are consistent with those observed in the VMN, including some silent

cells. This a very over-simplified representation of the VMN networks where we would expect

neurons to be much more structured and entrained than pure random heterogeneity, but it

shows that the proposed variations in intrinsic neural properties and network connectivity are

capable of explaining the range of spike patterning phenotypes observed in vivo.

Network based signal generation

To begin investigating the function of such a network, we looked at the summed population

spike activity of the 50 ‘slow HAP’ neurons (Fig 7), reasoning that the summed activity of a

network cluster might form a signal to a downstream neuronal target population. When the
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network is highly connected and shows two distinct modes in the ISI histogram, spiking in

individual neurons consists of short bursts. The period of these bursts is determined by the

competing drives of the synaptic input rate and the duration of the HAP (which accumulates

across the very short ISIs of the burst). If the network is very highly synchronised then the

summed activity consists of sharp distinct peaks, but with the combined noise of random vari-

ation in synaptic input, network connections, and transmission delays these peaks become

more like an oscillatory waveform. Thus, as esyn1 increases, the summed activity shifts from

flat random activity to strong oscillating peaks, indicating that the network can function as a

signal generator, turning random synaptic input into a rhythmically oscillating signal.

We explored this further by testing a 100-neuron network of the same ‘slow HAP’ neurons

with fixed esyn1 = 0.35 (equivalent to esyn1 = 0.7 in the 50-neuron network) with increasing

rates (Ire) of random synaptic input (Fig 8). Coherent oscillating output appears at ~2.3 Hz (Ire
= 130). The oscillation frequency increases with the input rate, peaking at ~6 Hz (Ire = 600). To

illustrate the collective network signal, we simulated the effect that the summed spiking activity

might have on the membrane activity of a downstream neuron. This uses a reduced version of

our network transmission model to model the input potential that would result from each

spike generating an EPSP, essentially producing a smoothed version of the summed spike

counts (Fig 8C). We further tested the scalability of the network with up to 500 neurons and

produced similar results with esyn1 scaled to match the increased population, i.e. a 500 neuron

network used esyn1 = 0.07 (S11 Fig). The low connection probability between two individual

neurons is countered by the larger number of neurons providing a greater chance of indirect

connections.

Analysis of oscillatory spike patterning

The good fits to the “doublet” and “doublet-broad” neurons suggest that much of the more

complex spike patterning observed in VMN neurons can be explained by excitatory networks

of simple cells of the single ‘slow HAP’ type. However, a model network with a single simple

cell type cannot explain the ISI distributions of “oscillatory” VMN cells (Fig 1). These have a

multimodal ISI distribution, including modes at multiples of a period corresponding to a ‘fun-

damental frequency’ of 2.5–4 Hz, but also a prominent “early” mode at about 20 ms. A rhyth-

mic signal sufficient to generate spiking on its own would produce only a single periodic

mode, thus this periodic excitability suggested the idea that the oscillatory spiking activity is

due to a subthreshold rhythmic signal overlaid by a random input signal. The multiple modes

in the ISI histogram arise because, in any given cycle, whether or not a spike will be triggered

is subject to this randomness. Experimental evidence for an underlying rhythmic signal is

apparent in the average spike-triggered field potential of recorded oscillatory neurons [20].

The network of cells with a fixed slow HAP generates such a rhythm, but weakening the

rhythmic signal to subthreshold by reducing network connectivity also breaks the rhythm gen-

eration, suggesting the need for heterogeneity of intrinsic neuron parameters. Initial attempts

at matching the multi-modal ISI distribution using random parameter variation of slow HAP

neurons produced multi-modal histograms in some slower firing cells, but these lacked the

first short ISI mode. A second problem was variation between runs. If the random element in

intrinsic properties was large enough to produce results different in interesting ways from that

achieved with a network of identical neurons, then it also became less consistent. Only some

runs produced cells which showed multi-modal histograms. Thus, a ‘slow HAP’ neuron net-

work can produce a rhythmic signal at the expected frequency, but not the multi-modal ISI

distribution. Heterogeneity is necessary, but needs to be more controlled.
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Neurons which are sufficiently connected and which have a HAP slow enough to generate

the oscillatory signal are also not capable of producing the early ISI mode, indicating the need

for additional cells with a shorter HAP. We therefore explored a two cell-type network of ‘slow

HAP’ neurons generating a rhythmic input for ‘fast HAP’ neurons, with both cell types also

receiving random input (Fig 9).

Two cell-type oscillatory network

We used an interconnected population of 100 neurons (esyn1 = 0.35) with a slow HAP (kHAP =

60 mV, λHAP = 50 ms;) (type 1) and fed their outputs to 100 fast HAP neurons (kHAP = 60 mV,

λHAP = 5 ms) (type 2), parameters in Table 4. The ‘fast HAP’ neurons receive connections

from the ‘slow HAP’ neurons with probability esyn12 = 0.2 but are not connected to each

other. We also tested interconnected ‘fast HAP’ neurons, and connections from the ‘fast HAP’

neurons to the ‘slow HAP’ neurons. As these made no substantial difference to the results, we

retained the simpler network, but importantly the results are not dependent on such a specific

structure. To reduce the sharpness of the rhythmic peaks, compared to Fig 8, we increased the

random component of the synaptic transmission delay (synrange) from 10 to 15 ms. The ‘slow

HAP’ neurons received random input Ire = 200, and the ‘fast HAP’ neurons received random

Fig 8. Excitatory network functioning as a signal generator. A network of 100 slow HAP neurons with esyn1 = 0.35

(similar to esyn1 = 0.7 in a 50 neuron network) tested with increasing rates of random input signal. (A) Summed

activity of the neurons in the network, in 1-ms bins. As the input rate increases, a rhythmic population signal appears.

(B) The rhythmic signal increases in oscillation frequency over a range from ~2.5 to 6 Hz as the input rate increases.

(C) The green trace simulates the average postsynaptic signal generated by the neurons in the network in the condition

indicated by the green circled dot in B.

https://doi.org/10.1371/journal.pcbi.1007092.g008
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input Ire2 = 80. With this, the network output was an approximately sinusoidal rhythm in the

low theta range.

Fig 9. Two cell-type oscillatory network. (A) A network of 100 slow HAP neurons (esyn1 = 0.35) is extended by adding receiving fast HAP neurons

(connection probability from slow HAP neurons esyn12 = 0.2), which also receive their own random external input. (B) The slow HAP neurons

synchronise to generate a 3 Hz rhythmic signal; these neurons each now show a unimodal symmetrical ISI distribution with a mode corresponding

to the frequency of the generated rhythm. These distributions are very like those of “regular” VMN neurons. (C) The summed activity of the slow

HAP neurons shows that the activity of these neurons in the network is approximately synchronous. Synchrony is deliberately reduced by increasing

the random element of the transmission delay (synrange) to produce more oscillatory summed activity. (D) The fast HAP neurons that receive this

rhythmic input, combined with a random external input, display multimodal ISI distributions very like those of “oscillatory” neurons in the VMN.

(E) The mean input waveform shows the mean model voltage over all spikes (at time 0) in a single fast HAP neuron, closely matching the mean

waveform analysis applied to in vivo “oscillatory” neuron data in Fig 8A2 of [20] that showed a subthreshold 3 Hz rhythm.

https://doi.org/10.1371/journal.pcbi.1007092.g009
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Fig 9 shows the ISI distributions for single neurons from the network of each cell type. The ISI

distribution in the ‘slow HAP’ cells shows a single sharp mode at 300 ms, like the “regular” VMN

neurons identified by Sabatier and Leng (2008). The fast HAP distribution shows a close match to

the “oscillatory” VMN neuron of Fig 1, with a sharp early peak, followed by decaying modal peaks

at 300-ms intervals. We applied the same spike waveform analysis as performed in [20] to the mod-

el’s recorded membrane potential, producing another close match to the experimental data (Fig 9).

Thus it seems that the diverse firing patterns observed in the VMN in vivo can all be

accounted for by two intrinsic cell types receiving random external inputs and with varying

degrees of random excitatory synaptic interactions between them, possibly structured into

multiple sub-networks.

Synchronous and bistable activity in VMN neurons

A prediction of the excitatory network model is that we should see cells in vivo which show a

high degree of synchrony in their spiking activity. To look for evidence of this, we returned to

the library of VMN neurons and inspected the original voltage recordings to find examples

where, as well as the spikes from the cell analysed, smaller spikes from a second cell in the

background that could be extracted by waveform analysis. From this, we found six examples of

pairs of very tightly coupled cells, one of which is shown in Fig 10.

Many VMN neurons in vivo also show bistability, switching between prolonged periods of

fast and slow spiking (see Fig 9 in [20], and in one case we recorded a pair of such cells for a

prolonged period, and recognised synchronous changes in activity (Fig 11A). These cells are

also evidence for the VMN’s ability to act as a switching, decision-making network. Even

under anaesthesia we would expect to see active decision-making mechanisms in neurons

involved in regulating physiological processes; generally the homeostatic functions of hypotha-

lamic neuronal circuits function normally under urethane anaesthesia. As well as spontaneous

switching of activity, the switching can also be triggered by systemic injections of CCK [27]

which mimic peripheral signals arising from the gut. CCK predominantly inhibits VMN neu-

rons and can switch a bistable cell from stable high frequency firing to a prolonged low activity

state which typically ends with an abrupt return to high-frequency firing (Fig 12A).

Model network generated bistability

Changes to the input rate in the networks tested so far produce only gradual shifts in output

spiking activity and brief input perturbations produce no sustained change in activity. Thus

Table 4. Two cell type network model parameters (others as in Tables 1 and 3).

Name Description Value Units

vmn1 number of type 1 neurons 100 -

vmn2 number of type 2 neurons 100

Ire type 1 external input rate 180 Hz

Ire2 type 2 external input rate 80 Hz

Iratio inhibitory input ratio 0.5 -

kHAP type 1 HAP amplitude per spike 60 mV

λHAP type 1 HAP half life 50 ms

kHAP2 type 2 HAP amplitude per spike 60 mV

λHAP2 type 2 HAP half life 5 ms

esyn1 type 1 to type1 connection probability 0.35 -

esyn12 type 1 to type 2 connection probability 0.2 -

Δrange transmission delay random component 15 ms

https://doi.org/10.1371/journal.pcbi.1007092.t004
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the strength and duration of the excitatory network connections is not sufficient for self-sus-

taining activity. However, adding a DAP to the neurons in a 100-neuron slow HAP network

(esyn1 = 0.25) (parameters in Table 5) can make excitation self-sustaining. At Ire = 100 the net-

work sits in a stable slow spiking state (0.85 spikes/s). At Ire = 103 or 104 the network switches

to fast spiking state after a delay subject to the randomly timed PSPs. At Ire = 110 the network

switches to a stable fast firing state (~6 spikes/s). For a given mean input rate, the network is

IS
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Fig 10. Synchronous spiking in the VMN. (A) Extract from the voltage trace of a recording of spike activity in the VMN (see [20]). In this

recording, two cells were recorded that were clearly distinguished by spike height and waveform; the smaller spikes are arrowed in red, the

larger spikes in blue. (B) Virtually all of the larger spikes was immediately preceded–with a slightly variable latency–by a smaller spike. (C) ISI

distribution of the cell with the larger spikes, constructed over 300 s. This distribution is typical of “longtail1” cells in the VMN [20]. (D) Cross-

correlation of 300 s of activity of the two cells distinguished by different spike heights–times of the smaller spike as a function of time relative to

the larger spikes.

https://doi.org/10.1371/journal.pcbi.1007092.g010
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typically stable in one or the other state, with no slowly decaying or accumulating element.

The range of parameters which produce stability depend on a balance between input rate (Ire),
connection density (esyn1), and the DAP (kDAP and λDAP). A lower input rate can be compen-

sated by a higher connection density, and a lower connection density can be compensated by a

larger DAP. However, a larger DAP or higher connection density also produces a higher pla-

teau firing rate, and so matching this to the in vivo examples here constrained the parameters

used. Fig 11B shows an example with a noisy Ire (mean = 100, tau = 120 s, amp = 0.05) where

the network randomly switches between states, like the spontaneous in vivo bistable activity

observed experimentally and shown in Fig 11A.

We failed to reproduce bistable behaviour with just a DAP, or just the excitatory connec-

tions. Thus, the bistability requires both intrinsic and network generated positive-feedback

mechanisms. We tested this further by using short negative and positive perturbations to a

fixed Ire to simulate transient inhibitory and excitatory signals (Fig 11). To match the in vivo
experiment (Fig 12A) which shows a spontaneous return to the high state following inhibition

by a CCK injection we set Ire = 104 (Fig 12B). To test switching by both excitatory and inhibi-

tory pulses we set Ire = 100 (Fig 12C). Here short (2-s) perturbations are sufficient to switch the

network between slow and fast stable states, demonstrating that the network can self-sustain

both slow and fast spiking under the control of transient signals.

Fig 11. Spontaneous bistable activity in VMN neurons in vivo and in the model. (A) The double recording shows an example of two

VMN neurons, recorded with a single electrode, showing loosely synchronous spiking activity with spontaneous switching between slow

and fast spiking states. (B) An excitatory network model of slow HAP neurons with the addition to each neuron of a DAP generates

bistable activity, with switching triggered by changes in external input activity. A noisy, rather than fixed Ire (mean Ire = 100) produces

spontaneous switching between slow and fast spiking states, similar to the in vivo examples in A.

https://doi.org/10.1371/journal.pcbi.1007092.g011
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Fig 12. Stimulated bistable switching activity in VMN neurons in vivo and in the model. (A) Most VMN neurons are inhibited after

systemic injections of CCK. In this neuron, as in many others of the VMN [27], CCK triggers the switch from a fast spiking to a slow

spiking state which is maintained well beyond the duration of CCK action (systemically applied CCK disappears from plasma with a half-

life of ~ 5 min). (B) In the same network model of Fig 11B, with a fixed input rate (Ire = 100), 2-s negative and positive perturbations

(middle and lower panel) (Ire -50, Ire +50) were used to simulate inhibitory, and in (C) both stimulatory and inhibitory injected signals

such as CCK or ghrelin, matching the stimulation-triggered switching between states observed in vivo.

https://doi.org/10.1371/journal.pcbi.1007092.g012

Table 5. Bistable network model parameters (others as in Tables 1 and 3).

Name Description Value Units

vmn1 number of type 1 neurons 100 -

Ire type 1 external input rate 100 Hz

Iratio inhibitory input ratio 0.5 -

kHAP type 1 HAP amplitude per spike 30 mV

λHAP type 1 HAP half life 40 ms

kDAP DAP amplitude per spike 0.75 mV

λDAP DAP half life 750 ms

esyn1 type 1 to type1 connection probability 0.25 -

Δrange transmission delay random component 10 ms

https://doi.org/10.1371/journal.pcbi.1007092.t005
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Discussion

The aim of this study was to use spiking neural models to bridge between the electrophysiology

of the VMN and its hypothesised function as a decision-making network. Previous studies had

identified a set of neural subtypes based on patterning in recorded spike times [20]. Some of

these can be fitted by a simple single neuron model, but the more complex cell types, showing

patterning features such as short bursting and oscillatory activity, cannot. However, as we

showed here, they can be well matched by a network of simple neuron models.

The vast majority of synaptic connections within the VMN are glutamatergic (see Introduc-

tion), and we therefore attempted to build network models using only excitatory connections.

The single neuron model fits, making predictions about the intrinsic electrophysiological

properties that underlie the spike patterning, divide the simpler cell types into two classes, fast

HAP, and slow HAP. Using these as building blocks, we developed three types of network

model which can explain the more complex spike patterning.

We showed that a network of slow HAP cells with mutual excitatory connections can gen-

erate close matches to the patterning in the “doublet” and “doublet-broad” VMN cells and

mimic the short bursting activity observed in some recorded VMN neurons. Looking at the

progressive changes in spike patterning with increasing network connectivity also revealed

close matches to “longtail1” and “longtail2” cells, suggesting that the variation observed

between these cell types may be due to different degrees of connectivity rather than varied

intrinsic properties.

We have shown here that such networks can function as a signal generator, turning a ran-

dom noise input into a rhythmic output in the high delta/low theta range. We showed that

such a network of slow HAP cells projecting to fast HAP cells can closely match the distinctive

multi-modal ISI distribution of “oscillatory” VMN neurons. Conventionally, rhythm genera-

tion in neural networks makes use of inhibitory and excitatory connections [28–31], but in

this network the only inhibitory influence is intrinsic, arising from the HAP. We showed that

an approximately sinusoidal waveform can be generated by a network that is deliberately not

over-synchronised: weakening the synchronisation of the network by adding noise to synaptic

transmission results in more wave-like summed activity, producing an oscillating signal.

These controlled examples using one or two types of homogeneous neuron models show

how the more complex spike patterning observed in the VMN can arise, but leave the question

of how the multiple patterning types might co-exist. The fitting of multiple recorded cells sug-

gested that the intrinsic properties of the neurons in the VMN are highly heterogeneous. By

generating a more heterogeneous network model, with variation in both intrinsic properties

and network connectivity, we can produce a single network that shows matches to all of the

observed VMN cell types. Producing the more simply patterned cell types requires that some

cells receive less local input than others, making a prediction for the structure in the VMN.

These neurons might serve as pacemakers for rhythm generation, or as a first layer that

receives more of the external input signals. Less local inputs can occur either because of fewer

actual connections, or because variations in input activity mean that afferent cells are silent.

The library of recorded VMN neurons consists of only active cells; in fact very many VMN

neurons are silent or very slow firing, such that we cannot discover their patterning.

It has been proposed that slow rhythms are important for facilitating the transfer of infor-

mation between brain regions [32]. For example, if a neuron ensemble A projects to a neuron

ensemble B, a subthreshold theta input from ensemble C to both A and B will, by coherently

enhancing presynaptic excitability in A and postsynaptic excitability in B, selectively enhance

communication from A to B. In particular, theta oscillations have been reported to synchro-

nize the basolateral amygdala with the hippocampus and medial prefrontal cortex during
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periods of conditioned and innate fear in mice [33]. The amygdala has a rich reciprocal inter-

connection with the VMN [34] and has a common involvement in the regulation of fear, appe-

tite and sexual behaviour [35]. Theta rhythms are also notably present in regions close to the

VMN–the posterior hypothalamus and the supramamillary nucleus [36].

As summarised in the Introduction, there is evidence that the VMN is involved in decision

making. A network which makes decisions in response to transient signals must be able to sus-

tain its new state beyond the duration of that signal, while remaining responsive to new signals

that might cancel that decision. An example might be feeding in a wild environment where a

sensed danger would require switching from feeding behaviour to fight or flight behaviour.

This requires bistable network activity. Here, we found that a network of mutually connected

neurons, each with a slow HAP, and a DAP, can match the bistable activity observed in some

VMN neurons. Using an excitatory network to generate bistability uses similar principles to

previous work such as [37]. However, here the presence of a DAP is critical for this behaviour:

neither the DAP or excitatory connections are alone sufficient. The bistability is highly robust:

it is possible to generate spontaneous switching through random variations in input, but only

within a very small range of input activity. Reliably triggering a switch in state requires a signal

that is sustained for ~ 2 s, and the network is thus sufficiently responsive without being vulner-

able to noise. By tuning the noise input signal and using transient inhibitory and excitatory

perturbations to simulate injected signals such as CCK and ghrelin, this network can match

the observed spontaneous, and stimulated bistable activity of VMN neurons, in particular the

switching between slow and fast spiking states that has been observed in vivo.

Finally, we note that if two such clusters are interconnected by the sparse inhibitory neu-

rons present in the VMN, this will generate reciprocal bistability. This suggests a natural mech-

anism by which the VMN can reciprocally regulate competing behavioural desires.

Methods

The spiking model

Single neurons are modelled using the integrate-and-fire based model previously described in

[21]. For each neuron, an external input signal Iext is generated using twin random Poisson

processes to generate EPSP and IPSP counts en and in at each time step (dt = 1 ms in the results

here), using mean rates Ire and Iri. We tested smaller time steps down to 0.1-ms to confirm that

a 1-ms step was sufficiently accurate, while maintaining a practical runtime. The IPSP rate, Iri
is defined as Iri = Iratio Ire and the external input rate is controlled using just Ire. The PSPs have

fixed amplitudes eh = 3 mV and ih = -3 mV and are summed to give the input Iext:

Iext ¼ ehen þ ihin

In the single neuron model, Iext composes the entire input signal I such that I = Iext. This is

summed to form the synaptic component of the membrane potential, Vsyn, decaying exponen-

tially with half-life λsyn corresponding to time constant τsyn.

dVsyn

dt
¼ �

Vsyn

tsyn
þ I

Vsyn is initialised to 0 mV. Time constants are calculated from half-life parameters using:

tx ¼
lx

lnð2Þ

where x is the variable concerned.
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The HAP variable decays exponentially with half-life parameter, λHAP, and is incremented

by kHAP when a spike is fired:

dHAP
dt
¼ �

HAP
tHAP

þ kHAPd

where δ = 1 if a spike is fired at time t, and δ = 0 otherwise. The AHP and DAP use the same

form:

dAHP
dt
¼ �

AHP
tAHP

þ kAHPd

dDAP
dt
¼ �

DAP
tDAP

þ kDAPd

At t = 0, the three post-spike potential variables are initialised to their respective k parameter

values, and remain cumulative, with no post-spike reset. The voltage components are summed

with the resting potential, Vrest, to give the membrane potential V:

V ¼ Vrest þ Vsyn � HAP � AHPþ DAP

When V exceeds the spike threshold, Vthresh, and the time since the previous spike exceeds the

2 ms absolute refractory period, a spike is fired, though its form is not modelled.

The network model

To model a network we run multiple copies of the spiking model, calculating network input

activity at each time step. Each spiking model independently generates its random external

input signal. The network connections are static, and randomly generated before running the

model, with each neuron connecting to each other neuron with probability esyn. In models

with two neuron types, the connection probability is defined between each pair of types. The

results here have type 1 neurons connected to each other with probability esyn1 and type 1 neu-

rons connected to type 2 neurons with probability esyn12. At each time step (1ms) the network

generated EPSPs are summed for each neuron to generate its network input signal, Inet. Each

connection also has a varied transmission delay component, randomly generated in a range

defined by Δrange.

Network input

To model variable transmission delay, each neuron stores a 20-ms network input queue.

When a neuron fires a spike, it sets a flag that it is active. At the beginning of each time step,

each neuron checks for active flags on each of its connections. If a connection is active, the

neuron generates a uniform random value rtrans in range 0 to 1. If rtrans > P(trans), where P
(trans) is the transmission probability (in all the results here set to 0.5), then transmission is

successful. The transmission delay Δtrans is calculated as the sum of a fixed base component

Δmin and a uniform random component ranging from 0 to Δrange. Δtrans is either fixed for each

connection at network generation or generated dynamically for each transmission event. Test-

ing both methods showed no effect on the results. Δtrans is thus defined:

Dtrans ¼ Dmin þ Drangeurand

where urand is a uniform random number between 0 and 1. The input queue is then incremen-

ted at position Δtrans. After input processing, each neuron moves its queue forward one step
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and the first queue position then gives the current count of network EPSPs, nn. The network

input potentials have fixed amplitude nh = 3 mV to give network input:

Inet ¼ nhnn

Input I then becomes:

I ¼ Iext þ Inet

Noise input

Most of the results here use a fixed rate external input, defined by parameter Ire. This is used to

generate randomly timed EPSPs and IPSPs, producing an input signal with noise on a tens of

millisecond time scale. A more noisy input signal can be generated by applying Gaussian noise

to Ire using an Ornstein-Uhlenbeck process. Ire becomes a variable, defined:

dIre ¼
mnoise � Ire
tnoise

dt þ knoise
ffiffiffiffiffi
dt
p

grand

where μnoise is the noise mean, τnoise is the noise time course or decay rate, and knoise is the

noise amplitude. grand is a Gaussian (or normal) distributed random number with mean = 0

and standard deviation = 1. The variable Ire is initialised to Ire = μnoise.

Spike patterning analysis and in vivo data

The data from the model and from experimental recordings consist of series of spike times.

These are used to calculate mean firing rates and to generate ISI distributions and hazard func-

tions, calculated from the ISI distributions as described in [38]. The ISI distributions are calcu-

lated as histograms of all the ISIs calculated from the spike times, counted in 5-ms bins. To

compare data with varied spike counts, the bin counts are normalised and scaled to total

10000. The hazard function converts the absolute probabilities of the ISI distribution into con-

ditional probabilities, so that each bin gives the chance of firing a spike in that time window

(or bin), (hazard in bin [t, t+5]) = (number of intervals in bin [t, t+ 5]) / (number of intervals

of length> t). The hazard thus shows how excitability change over time in the period follow-

ing a spike.

Index of dispersion (IoD), calculated as the variance of a variable divided by its mean, is

used here to measure the variation in binned spike rate across time, as previously described in

[21]. Using spike times from a recorded cell or generated by the model, we count the number

of spikes in successive bins. We then calculate the mean and variance of these bin counts to

generate the IoD of spike rate across time. This is repeated for bin sizes of 0.5 s, 1 s, 2 s, 4 s, 6 s,

8 s, and 10 s to generate the IoD range. Purely random spike times, with no activity-dependent

influence, will produce a flat IoD range.

The previously published in vivo spike data for model fitting are from extracellular record-

ings of cells in the ventromedial nucleus (VMN) of urethane-anaesthetised rats, as detailed in

[20].

Automated model fitting

The automated fitting used to fit the single neuron model to recorded cell data uses an evolu-

tionary genetic algorithm (GA) based method, described in detail in [23]. A population of ran-

domly generated (within specified ranges) parameter sets are run with the model and

compared with the recorded cell data using a set of weighted fit measures based on the ISI dis-

tribution (divided into head range and tail range), hazard function, and IoD range, to calculate
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a single value fit score. The best parameter sets (the ‘parents’) are then interbred to create the

next generation. The GA parameters (Table 6) include the weights for the four fit measures,

and the range parameters for the ISI distribution measures. Only the ISI range parameters

were altered between fits, tuned to match the ISI distribution of individual cells. We ran the

GA for 40 generations each with a population size of 128. This was sufficient for the population

to converge. The result is picked as the best scoring parameter set from the final generation.

For each fit the GA was run 100 times, with the final fit calculated as the median parameter

values of the best 10. This was repeated for each fitted cell with HAP only, HAP + AHP, and

HAP + DAP.

The GA uses a GPU based implementation with the GPU code developed in Nvidia’s

CUDA [39]. A single run of the GA takes 18s running on a GeForce GTX 960 GPU.

Implementation

The model is implemented in custom software developed in C++, compiled in Microsoft

Visual Studio 2010. The graphical interface is developed in our own modelling software devel-

opment toolkit, based on wxWidgets [40] and available at https://github.com/HypoModel/

HypoModBase. At each 1-ms time step, the software processes input, membrane potential and

spiking for each neuron in turn, using a single thread loop. A single run of a two cell type net-

work with 200 neurons, simulated for 2000s, takes 43s. on an Intel i7-5960X processor running

at 3.0GHz.

The C++ source code for the model and the GA, and a working version of the software

compiled for Windows PC is available at https://github.com/HypoModel/VMNNet/releases.

The code for the model is specifically in file “vmnmod.cpp”. The software archive includes all

the spike data and parameter files used to generate the figures in this paper.

Supporting information

S1 Fig. Single neuron model fits to “random” cells.

(EPS)

S2 Fig. Single neuron model fits to “slow DAP” cells.

(EPS)

Table 6. GA and fit measure parameters.

Parameter Value

model run time 1000s

population size 128

parents 32

generations 40

mutation probability 0.05

ISI head fit weight 200

ISI tail fit weight 100

Hazard fit weight 100

IoD range fit weight 100

ISI head start 0

ISI head stop 50

ISI tail start 50

ISI tail stop 200

https://doi.org/10.1371/journal.pcbi.1007092.t006
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S3 Fig. Single neuron model fits to “longtail1” cells.

(EPS)

S4 Fig. Single neuron model fits to “longtail2” cells.

(EPS)

S5 Fig. Single neuron model fits to “broad” cells. S1–S5 Figs show the full data of which

examples are shown in Fig 2, where the GA was used to produce close matches with a single

neuron model to the spike patterning in five of the VMN cell types, comparing the ISI distribu-

tion, hazard function, and IoD range. The parameters are give in S1 Table.

(EPS)

S6 Fig. Latency distribution between spikes of two coupled VMN cells. Detailed legend on

figure.

(EPS)

S7 Fig. Network model fits to “doublet” cells.

(EPS)

S8 Fig. Network model fits to “doublet-broad” cells. S7 and S8 Figs show network model fits

to cell types which could not be fitted using the single neuron model. The “doublet” type how-

ever appears to include two subtypes, one of which does not show the second ISI mode which

characterises network model generated “doublet” type patterning. The single mode subtype

can be well fitted by the single neuron model. The “doublet-broad” cells all required the net-

work model to produce a good match.

(EPS)

S9 Fig. Varied ISI distributions in a heterogeneous network. Using parameters based on the

‘slow HAP’ network of Fig 7, a 200 neuron heterogeneous network was generated by applying

normally distributed random variation to parameters λHAP, Ire, and esyn1. The 5-ms bin ISI

distributions are all scaled with x-axis 0–1000 ms, and y-axis 0–500 ISIs.

(PDF)

S10 Fig. ISI distributions for the VMN cell recording library. For comparison with S9 Fig,

this shows ISI distributions for a library of spike pattern classified in vivo VMN cell recordings,

from which the cells fitted in this paper were selected from. The final page shows all the cells

fitted in this paper. The 5-ms bin ISI distributions are all scaled with x-axis 0–1000 ms, and y-

axis 0–500 ISIs, unless otherwise stated.

(PDF)

S11 Fig. Effect of esyn1 scaling against network size in a slow HAP network (matching

esyn1 = 0.7 in Fig 7).

(EPS)

S1 Table. Single neuron model fit parameters. The best GA fit scores and parameters used to

generate S1–S5 Figs.

(DOCX)

S2 Table. Network model fit parameters. The parameters used to generate S7 and S8 Figs.

(DOCX)

S1 Dataset. In vivo recorded VMN spike time data. Text files of the spike time data used in

the paper.

(ZIP)
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28. Buzsáki G. Theta Oscillations in the Hippocampus. Neuron. 2002; 33: 325–340. https://doi.org/10.

1016/S0896-6273(02)00586-X PMID: 11832222

29. Selverston AI, Moulins M. Oscillatory neural networks. Annu Rev Physiol. 1985; 47: 29–48. https://doi.

org/10.1146/annurev.ph.47.030185.000333 PMID: 2986532

30. Smerieri A, Rolls ET, Feng J. Decision Time, Slow Inhibition, and Theta Rhythm. J Neurosci. 2010; 30:

14173–14181. https://doi.org/10.1523/JNEUROSCI.0945-10.2010 PMID: 20962238

Emergent decision making and rhythm generation in a network model of the VMN

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007092 June 3, 2019 29 / 30

https://doi.org/10.1016/j.neuron.2017.05.038
https://doi.org/10.1016/j.neuron.2017.05.038
http://www.ncbi.nlm.nih.gov/pubmed/28648498
https://doi.org/10.3389/fnsys.2017.00042
http://www.ncbi.nlm.nih.gov/pubmed/28642689
https://doi.org/10.1016/j.yhbeh.2015.05.023
https://doi.org/10.1016/j.yhbeh.2015.05.023
http://www.ncbi.nlm.nih.gov/pubmed/26122289
https://doi.org/10.1038/nn.4644
https://doi.org/10.1038/nn.4644
http://www.ncbi.nlm.nih.gov/pubmed/28920934
https://doi.org/10.1210/en.2017-00606
http://www.ncbi.nlm.nih.gov/pubmed/29186377
https://doi.org/10.1016/j.bbr.2017.04.030
http://www.ncbi.nlm.nih.gov/pubmed/28435125
https://doi.org/10.1016/j.bbr.2015.07.013
http://www.ncbi.nlm.nih.gov/pubmed/26205826
https://doi.org/10.1016/j.celrep.2017.11.089
http://www.ncbi.nlm.nih.gov/pubmed/29262334
https://doi.org/10.3389/fendo.2013.00035
https://doi.org/10.3389/fendo.2013.00035
http://www.ncbi.nlm.nih.gov/pubmed/23518828
https://doi.org/10.1016/j.physbeh.2007.05.021
http://www.ncbi.nlm.nih.gov/pubmed/17586536
https://doi.org/10.1111/j.1460-9568.2008.06389.x
https://doi.org/10.1111/j.1460-9568.2008.06389.x
http://www.ncbi.nlm.nih.gov/pubmed/18671740
https://doi.org/10.1111/jne.12358
http://www.ncbi.nlm.nih.gov/pubmed/26715365
https://doi.org/10.1210/en.2017-03068
https://doi.org/10.1210/en.2017-03068
http://www.ncbi.nlm.nih.gov/pubmed/29342276
https://doi.org/10.1371/journal.pone.0180368
https://doi.org/10.1371/journal.pone.0180368
http://www.ncbi.nlm.nih.gov/pubmed/28683135
https://doi.org/10.1371/journal.pcbi.1002740
https://doi.org/10.1371/journal.pcbi.1002740
http://www.ncbi.nlm.nih.gov/pubmed/23093929
https://doi.org/10.1152/jn.00190.2004
http://www.ncbi.nlm.nih.gov/pubmed/15277599
https://doi.org/10.1002/9781119159438.ch5
https://doi.org/10.1002/9781119159438.ch5
https://doi.org/10.1111/j.1460-9568.2010.07144.x
http://www.ncbi.nlm.nih.gov/pubmed/20377625
https://doi.org/10.1016/S0896-6273(02)00586-X
https://doi.org/10.1016/S0896-6273(02)00586-X
http://www.ncbi.nlm.nih.gov/pubmed/11832222
https://doi.org/10.1146/annurev.ph.47.030185.000333
https://doi.org/10.1146/annurev.ph.47.030185.000333
http://www.ncbi.nlm.nih.gov/pubmed/2986532
https://doi.org/10.1523/JNEUROSCI.0945-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20962238
https://doi.org/10.1371/journal.pcbi.1007092


31. Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH. Inhibition-based rhythms: experimental

and mathematical observations on network dynamics. Int J Psychophysiol. 2000; 38: 315–336. https://

doi.org/10.1016/S0167-8760(00)00173-2 PMID: 11102670

32. Colgin LL. Mechanisms and functions of theta rhythms. Annu Rev Neurosci. 2013; 36: 295–312. https://

doi.org/10.1146/annurev-neuro-062012-170330 PMID: 23724998

33. Stujenske JM, Likhtik E, Topiwala MA, Gordon JA. Fear and safety engage competing patterns of theta-

gamma coupling in the basolateral amygdala. Neuron. 2014; 83: 919–933. https://doi.org/10.1016/j.

neuron.2014.07.026 PMID: 25144877

34. Renaud LP, Hopkins DA. Amygdala afferents from the mediobasal hypothalamus: an electrophysiologi-

cal and neuroanatomical study in the rat. Brain Res. 1977; 121: 201–213. PMID: 832160

35. King BM. Amygdaloid lesion-induced obesity: relation to sexual behavior, olfaction, and the ventrome-

dial hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2006; 291: R1201–1214. https://doi.org/

10.1152/ajpregu.00199.2006 PMID: 16778067

36. Kowalczyk T, Bocian R, Caban B, Konopacki J. Atropine-sensitive theta rhythm in the posterior hypo-

thalamic area: in vivo and in vitro studies. Hippocampus. 2014; 24: 7–20. https://doi.org/10.1002/hipo.

22167 PMID: 23836546

37. Renart A, Brunel N, Wang X-J. Mean-Field Theory of Irregularly Spiking Neuronal Populations and

Working Memory in Recurrent Cortical Networks. Computational Neuroscience: A Comprehensive

Approach. Chapman and Hall/CRC Press; 2003. pp. 431–490.

38. Sabatier N, Brown CH, Ludwig M, Leng G. Phasic spike patterning in rat supraoptic neurones in vivo

and in vitro. J Physiol. 2004; 558: 161–180. https://doi.org/10.1113/jphysiol.2004.063982 PMID:

15146047

39. Parallel Programming and Computing Platform | CUDA | NVIDIA. Available: http://www.nvidia.com/

object/cuda_home_new.html

40. wxWidgets: Cross-Platform GUI Library. Available: http://wxwidgets.org/

Emergent decision making and rhythm generation in a network model of the VMN

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007092 June 3, 2019 30 / 30

https://doi.org/10.1016/S0167-8760(00)00173-2
https://doi.org/10.1016/S0167-8760(00)00173-2
http://www.ncbi.nlm.nih.gov/pubmed/11102670
https://doi.org/10.1146/annurev-neuro-062012-170330
https://doi.org/10.1146/annurev-neuro-062012-170330
http://www.ncbi.nlm.nih.gov/pubmed/23724998
https://doi.org/10.1016/j.neuron.2014.07.026
https://doi.org/10.1016/j.neuron.2014.07.026
http://www.ncbi.nlm.nih.gov/pubmed/25144877
http://www.ncbi.nlm.nih.gov/pubmed/832160
https://doi.org/10.1152/ajpregu.00199.2006
https://doi.org/10.1152/ajpregu.00199.2006
http://www.ncbi.nlm.nih.gov/pubmed/16778067
https://doi.org/10.1002/hipo.22167
https://doi.org/10.1002/hipo.22167
http://www.ncbi.nlm.nih.gov/pubmed/23836546
https://doi.org/10.1113/jphysiol.2004.063982
http://www.ncbi.nlm.nih.gov/pubmed/15146047
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://wxwidgets.org/
https://doi.org/10.1371/journal.pcbi.1007092

