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Interrogating Mutant Allele 
Expression via Customized 
Reference Genomes to Define 
Influential Cancer Mutations
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Genetic alterations are essential for cancer initiation and progression. However, differentiating 
mutations that drive the tumor phenotype from mutations that do not affect tumor fitness remains a 
fundamental challenge in cancer biology. To better understand the impact of a given mutation within 
cancer, RNA-sequencing data was used to categorize mutations based on their allelic expression. For 
this purpose, we developed the MAXX (Mutation Allelic Expression Extractor) software, which is highly 
effective at delineating the allelic expression of both single nucleotide variants and small insertions and 
deletions. Results from MAXX demonstrated that mutations can be separated into three groups based 
on their expression of the mutant allele, lack of expression from both alleles, or expression of only the 
wild-type allele. By taking into consideration the allelic expression patterns of genes that are mutated 
in PDAC, it was possible to increase the sensitivity of widely used driver mutation detection methods, as 
well as identify subtypes that have prognostic significance and are associated with sensitivity to select 
classes of therapeutic agents in cell culture. Thus, differentiating mutations based on their mutant 
allele expression via MAXX represents a means to parse somatic variants in tumor genomes, helping to 
elucidate a gene’s respective role in cancer.

Cancer is a complex disease, initiated by DNA alterations within genes that control multiple hallmarks of tumori-
genesis, such as deregulated cell growth and genomic instability1–3. Once the genomic architecture of a cancer cell 
is established, the cancer will continue to evolve to overcome additional regulatory mechanisms and eventually 
acquire the ability to progress to metastatic disease4,5. A primary goal in cancer therapeutics is to target selective 
pathways that are critical to the tumor’s growth and sustainability6,7. However, during tumorigenesis, not only 
do mutations responsible for the cancer phenotype arise, but also random mutations that have no effect on the 
fitness of the tumor. The difficulty in distinguishing driver and passenger mutations represents a core challenge in 
distilling meaningful functional information from tumor sequencing data8,9.

Many efforts are ongoing to determine which mutations contribute to the initiation and progression of cancer. 
To consolidate information regarding a mutation’s impact on the progression of cancer, well curated databases 
such as COSMIC10 have been established. However, these databases are incomplete and depend heavily on a com-
bination of DNA sequencing and computational software to identify a mutation’s potential contribution towards 
the development of a tumor11. Most driver mutation detection software is centered around one or a combination 
of three approaches: identifying genes that have an increased mutation rate among a subset of tumor samples12, 
evaluating the functional impact of the mutation13–15, and using network analysis to identify gene interactions 
that have increased mutation rates16,17. These computational approaches have contributed a great deal to our 
current understanding of how and which mutations are involved in the progression of cancer. However, there 
is a lack of concordance between positive results among the driver mutation identification approaches18. Also, a 
recent evaluation of commonly used driver mutation software demonstrated that in most cases, these approaches 
have high false positive rates19.
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One major limitation of established driver identification software is their principle focus on data derived from 
DNA sequencing and inferred presence of the protein. These approaches provide insight on the distribution of 
the mutation in cancer and potential function but do not incorporate crucial information on the transcription of 
the mutated gene. Assumptions on the presence of mutated transcripts can cause inaccurate conclusions as to the 
mutation’s impact within the tumor. Recent studies have demonstrated that integration of exome and transcrip-
tome genomic profiles can reinforce the interpretation of mutation events20,21. Thus, to increase the understand-
ing of somatic mutations in cancer, we combined exome and RNA-sequencing data to segregate tumor mutations 
based on their allelic expression.

To enhance mutation allelic expression detection, the software MAXX (Mutation Allelic Expression 
Extractor) was developed. MAXX has the capability to identify the allelic expression for small insertion and 
deletion (indel) mutations and single nucleotide variants (SNV), while maintaining high alignment precision. 
Accurate alignment of RNA-seq reads sets up the groundwork to detect correct RNA allele frequencies for genetic 
variants22,23. Evaluation of the allelic expression for thousands of mutations derived from pancreatic adenocar-
cinoma (PDAC) established that mutations can be separated into three expression groups based on the presence 
of RNA-sequencing reads from the mutant allele, wild type allele, or both alleles. These three mutation expres-
sion groups were established to have unique biological features that revealed expected characteristics of driver 
mutations, passenger mutations, and an understudied group of mutations that appeared to be selectively silenced 
within the tumor context. Mutation expression groups also assisted in the identification of PDAC subtypes that 
have prognostic relevance.

Results
Developing an unbiased tool to assess the allelic expression of somatic variants.  While there are 
multiple approaches to delineating if a particular mutation is expressed, much of this work has involved gene-spe-
cific analysis instead of a holistic evaluation of the cancer genome. To attain a global assessment of mutation expres-
sion within tumors, we quantified the allelic expression of thousands of mutations (missense, nonsense, and small 
insertion/deletion) derived from PDAC patient-derived cell lines, patient-derived xenografts (PDX), and primary 
tumors obtained from The Cancer Genome Atlas (TCGA)24,25. Because mutations can exist as either somatic sin-
gle nucleotide variant (SNV) or small insertion/deletion (indel), a unique approach was developed to confidently 
identify the allelic expression of all mutations. Rather than depend on tumor RNA-sequencing reads to be cor-
rectly aligned onto a standardized reference genome (e.g. Hg19), the MAXX (MAXX: Mutation Allelic Expression 
Extractor) method creates a new reference genome that is tumor selective and specifically extracts mutant allele 
expression. The MAXX approach utilizes mutation calls derived from DNA sequencing to generate a tumor-specific 
reference genome (Fig. 1a). This precise reference genome was then used in conjunction with Tophat226 to enhance 
the alignment of the tumor’s RNA-sequencing reads to the mutant allele. The approach of MAXX enables the calcu-
lation of precise RNA mutant allele frequencies for essentially any variant type that is defined by the DNA sequenc-
ing approach, allowing a comprehensive and unbiased analysis of mutation allelic expression.

Different patterns of variant allelic expression in tumor models.  To initially interrogate the efficacy 
of the MAXX pipeline, we generated mutation expression profiles, a file containing the DNA and RNA allele 
frequencies for all identified mutations, for 19 PDAC patient derived cell lines. These cell lines underwent both 

Figure 1.  Developing an unbiased tool to assess the expression of somatic variants. (a) Flowchart of the 
MAXX pipeline, which ultimately identifies the RNA read count for the mutant allele and the wild type allele. 
(b) Methodology for mutation expression group placement, represented as V-ex (blue), W-ex (green), and 
N-ex (red): V-ex, mutations that express the mutant allele; W-ex, mutations that only express the wild type 
allele; N-ex, mutations that don’t express the wild type allele or the mutant allele. (c) The number of mutations 
associated with each mutation expression group. These mutations were derived from 19 PDAC patient derived 
cell lines. (d) The fraction of each mutation expression group for all patient derived cell lines.
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RNA-sequencing and exome sequencing relative to the normal tissue. Cell line models were ideal for the primary 
evaluation of MAXX because of the absence of stromal contamination, substantially decreasing the confound-
ing feature of tumor purity27,28. Assessment of the nineteen mutation expression profiles identified that tumor 
mutations can be classified based on the number of reads that align to the wild type allele, mutant allele, or both 
alleles (Fig. 1b). In order to prevent misclassification between mutations that do and do not express the mutant 
allele, mutations that had a total RNA read count between three and nine were discarded from the study. All 
non-discarded mutations were placed into one of the following three mutation expression groups: 1. Mutations 
that express the variant allele, labeled as the variant expressed group (V-ex, Blue) 2. Mutations wherein only the 
wild type allele is expressed, labeled as the wild type expressed group (W-ex, Green). 3. Mutations that do not 
express the wild type or the mutant allele, labeled as the not expressed group (N-ex, Red). These three mutation 
expression groups have also been identified in patient derived cell lines from multiple myeloma patients29. The 
distribution of the three mutation expression groups was summarized across all patient derived cell lines (Fig. 1c). 
The N-ex group made up half of all the variants, while only a small subset of mutations fell into the W-ex group. 
This overall distribution was observed in all individual models, suggesting that the expression distribution is not 
specific to a given sequencing run or tumor (Fig. 1d).

MAXX pipeline accurately maps indels and is computationally efficient.  Previous studies have 
shown that RNA-sequencing aligners are capable of aligning SNV, but have poor alignment precision for reads 
containing an indel mutation30,31. However, the unique workflow of MAXX allows the allelic expression to be con-
fidently calculated for both SNV and indel mutations (Fig. 2a). To enhance indel alignment for RNA-sequencing 
data, which is a critical aspect in identifying accurate RNA allele frequencies20, MAXX generates a tumor-specific 
reference genome based on mutation calls derived from DNA sequencing. When comparing RNA allele frequen-
cies derived from bam files that were aligned with Tophat2 using either a MAXX or Hg19 reference genome and 
underwent important filtering steps for allelic expression analysis21,32, it was identified that the MAXX reference 
genome significantly enhanced the allelic expression of indel mutations, compared to the Hg19 reference genome 
(Fig. 2b). There was relatively little variation between SNV RNA allele frequencies using the MAXX or Hg19 
reference genomes.

Generating a reference genome for each tumor sample would require a significant amount of computational 
processing and storage for large studies. However, MAXX generated reference genomes are significantly smaller 
than the Hg19 reference genome. This decrease in size is due to the tumor reference genome containing only 

Figure 2.  MAXX pipeline accurately maps indels and is computationally efficient. (a) Integrative genomic 
viewer visualization of raw RNA-seq reads that aligned to the wild type allele or the mutant allele for a SNV, 
insertion, and deletion mutation. Non-gray colors represent an alternative nucleotide compared to the Hg19 
reference genome (b) Comparison of the RNA mutant allele frequencies calculated by using either the MAXX 
generated reference genome or the Hg19 reference genome. (c) The contrast between the RNA mutant allele 
frequencies identified by using either the MAXX generated reference genome or the Hg19 reference genome 
with an appended mutant genome created by MAXX.
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the wild type and mutant sequence for each gene harboring a mutation. Using a reference genome containing 
only the mutated genes significantly decreases the storage space and computational resources used to index the 
reference genome and run Tophat2 compared to the Hg19 reference genome (Supplementary Fig. 1). To deter-
mine if there is over selection of aligned reads due to the highly truncated genome, we compared RNA mutant 
allele frequencies established from an Hg19 reference genome with the appended MAXX mutant genome to a 
MAXX generated reference genome (Fig. 2c). These two reference genomes delivered virtually identical RNA 
mutant allele frequencies and placement of mutations into expression groups (Supplementary Fig. 2). Overall, 
this demonstrates that a simplified reference genome provides a robust substrate for differential alignment of 
transcript reads and can confidently be used to generate mutation expression profiles.

Mutant allele expression is associated with DNA mutant allele frequency, but not RNA expres-
sion level.  To resolve if the RNA mutant allele frequency is associated with the DNA mutant allele frequency 
in PDAC, we evaluated the dual relationship across the three mutation expression groups (Fig. 3a.) In general, 
the variant allele expression of V-ex mutations correlated with their DNA allele frequency (R2 = 0.59). This cor-
relation was similarly identified in another study using CT26, B16F10, and 4T1 mouse cell lines33. However, in 
our dataset it was observed that multiple genes with a V-ex mutation had a 100% RNA mutant allele frequency, 
despite having a DNA mutant allele frequency of ~50%. This discrepancy between DNA and RNA mutant allele 
frequencies suggests that the non-mutated allele of these genes is selectively silenced, which is a common phe-
nomenon for tumor suppressors34. N-ex and W-ex mutation expression groups have no expression of the mutant 
allele, and as expected they had an RNA mutant allele frequency of zero (Fig. 3b). To determine if a mutation 
expression group was biased towards a specific mutation type (missense, deletion, insertion, nonsense), as might 
be expected from processes such as nonsense mediated decay, the proportion of mutation types was measured 
between mutation expression groups (Supplementary Fig. 3). Statistical testing illustrated that there is no cor-
relation between the mutation type and mutation expression groups. Interestingly, the variant allele frequency 
of mutation expression groups established that mutation expression provides insight on mutation selectivity 
(Fig. 3c). The V-ex group has a significantly higher mean variant allele frequency than the other two groups, sug-
gesting that V-ex mutations have the greatest impact on tumor proliferation compared to W-ex and N-ex muta-
tions. As for the N-ex group, most mutations had a variant allele frequency between 30% and 40%, suggesting 
that many of these mutations, whilst not expressed, are in fact largely clonal in the tumor. In contrast, the mean 
variant allele frequency of the W-ex group is considerably lower than the other two mutation expression groups. 
To interrogate if there is some selective feature of mutations that leads to transcript loss, we compared the mean 
gene expression of samples that did not have a mutated allele to the mean gene expression of samples that did con-
tain a mutated allele (Fig. 3d). The overall expression of genes that contained a N-ex mutation is substantially less 
than genes with a V-ex or W-ex mutation, as expected. This confirms that genes with an N-ex mutation are rarely 

Figure 3.  Mutant allele expression is associated with DNA mutant allele frequency, but not RNA expression 
level. (a) All mutations identified within patient derived cell lines DNA allele frequency plotted against their 
corresponding RNA allele frequency. (b) Integrative genomic viewer representation of the exome sequencing 
and RNA sequencing for a V-ex mutation, W-ex mutation, and N-ex mutation. Non-gray colors represent 
the presence of conflicting nucleotides aligned to the Hg19 reference genome. (c) The distribution of DNA 
allele frequencies for the three mutation expression groups and statistical significance based on a two-sample 
t-test with a two-tail p-value. (d) Two sample paired t-test with a two-tail p-value between the average gene 
expression levels of samples with the mutated gene and samples without the mutated gene for each mutation 
expression group. (e) A box plot of the mean expression across 193 normal pancreas tissues of identified 
mutated genes within the patient derived cell lines. A two-sample t-test with a two-tailed p-value was used to 
compare mutation expression groups.
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expressed, and thus mutations within this class likely have little influence on PDAC proliferation. On the contrary, 
genes with a V-ex or W-ex mutation contained a relatively high gene expression within the tumor, suggesting that 
genes with a V-ex or W-ex mutation are important to the progression of the tumor. While significant differences 
were observed between mutated and unmutated genes among each expression group, the magnitude change was 
marginal. Interestingly, we identified a similar expression pattern of genes within each mutation expression group 
from 193 normal pancreas tissues obtained from the Genotype Tissue Expression (GTEx) database (Fig. 3e), fur-
ther suggesting that genes with an N-ex mutation have little relevance to pancreas tissues compared to genes with 
a V-ex and W-ex mutation. However, in regard to tissue specificity, no mutation expression group was observed 
to contain a high fraction of pancreas tissue specific genes (Supplementary Fig. 4). To determine if an increased 
gene expression, yet an absence of mutant allele expression of W-ex mutations was due to RNA splicing events, 
the exon expression of mutated and non-mutated exons was quantified (Supplementary Fig. 5). Equivalent to 
the transcript analysis, there was little variance between the mutated and non-mutated exon expression. These 
findings imply that there is not a strong selection against transcript or exon expression among any of the mutation 
expression groups.

PDAC associated genes mainly fall into the V-ex and W-ex groups.  To more fully understand the 
significance of mutation expression profiles, we evaluated the mutated genes within the three expression groups. 
In the context of PDAC tumors, it is well known that there are four genes that are frequently mutated and consid-
ered disease drivers: KRAS, TP53, SMAD4, and CDKN2A35. These four genes were repeatedly observed to con-
tain V-ex mutations, skewing the mutation frequency distribution of the V-ex group as shown in the violin plots 
(Fig. 4a). In comparison, the frequency distribution of mutated genes in W-ex and N-ex groups is heavily cen-
tered around one, implying little recurrence of such genes within PDAC. Oncogenes such as KRAS generally have 
a DNA mutant allele frequency of ~50%, because only one allele is required to be mutated for the gene to act as an 
oncogene36. However, in select cases there is specific selection for the expression of only the KRAS mutant allele. 
Interestingly, the ~100% expression of the KRAS mutant allele within these samples is largely due to an increased 
DNA mutant allele frequency, as opposed to allele specific gene expression (Fig. 4b). In contrast, tumor suppres-
sors TP53, SMAD4, and CDKN2A have mutation allele frequencies that approach 100% and mainly express only 
the mutated allele. In the case of SMAD4 and CDKN2A, this would be expected. However, as TP53 mutations can 
have gain of function mutations, this data suggests there is exceedingly strong pressure to lose the wild-type allele 
during tumor development within the pancreas.

In order to delineate the putative significance to cancer, we concentrated on the fraction of mutations in each 
mutation expression group that were present in either the COSMIC.v8010 or Tamborero et al.37 cancer associated 
gene datasets (Fig. 4c). As expected, due to the frequency of KRAS, TP53, SMAD4, and CDKN2A, the V-ex 
group contained the most statistically significant proportion of mutated genes which are associated with cancer. 
Comparing the W-ex group to the N-ex group demonstrated that the W-ex group had a significantly higher pro-
portion of mutated genes that are associated with cancer. To determine if there is a relationship between mutated 
cancer associated genes and mutation expression groups, network analysis was performed (Fig. 4d). Evaluation of 
the generated network indicates that cancer associated genes with a W-ex mutation are well integrated with can-
cer associated genes containing a V-ex mutation. As for genes containing an N-ex mutation, they were commonly 
found on the outsides of the network, having little contribution to the structure of the network. These results 
support the hypothesis that W-ex mutations occur in genes that are important to the tumor, despite their lack of 
clonal selection and mutant allele expression. In contrast, N-ex mutations appear to be in genes that have little to 
no impact on tumor progression.

Most, if not all, current driver mutation detection methods do not integrate allelic expression information 
when predicting influential cancer mutations. Thus, to determine if incorporation of mutation allelic expression 
can increase cancer gene specificity, we started by employing three commonly used driver mutation detection 
methods. The three methods selected were 2020+19, Muffin17, and OncodriveFM15. These methods were chosen 
because of their capability to handle indel mutations and relatively small sample sizes. When comparing the 
mutation expression group distribution of the top 50 ranked mutated genes identified by 2020+, Muffin and 
OncodriveFM, there was a consistent tradeoff between V-ex and N-ex groups (Fig. 4e). The driver mutation 
detection method 2020+ had the highest proportion of V-ex mutated genes, while OncodriveFM had the lowest 
proportion of V-ex mutated genes. To test the ability of each method to identify cancer associated genes from the 
Cosmic and Tamborero datasets, a Fisher’s Exact test was performed with the assumption that only the top 50 
mutated genes predicted by each method were cancer associated (Fig. 4f). Overall, Muffin outperformed 2020+ 
and OncodriveFM. When we removed the N-ex mutations from the top 50 putative driver mutations, all three 
methods had an increase of statistical significance in predicting cancer associated mutated genes. This suggests 
that incorporation of mutations’ allelic expression can assist in reducing false positive discovery rates of driver 
mutation detection methods and improve downstream analyses.

Conservation of mutational expression features from cell lines to PDX tumors.  To determine 
the efficacy of the MAXX pipeline in producing mutation expression profiles for tumors, the MAXX pipeline was 
evaluated on PDX models. Eight of the nineteen patient derived cell lines have matched PDX models24; there-
fore, these eight PDX models shared the same tumor specific reference genome as their corresponding cell line. 
However, these models had their own transcriptome sequenced. Similar to the cell line data, the three mutation 
expression groups were determined based on wild type and mutant allele read counts, and the RNA mutant allele 
frequency was plotted against the DNA mutant allele frequency (Fig. 5a). The PDX models demonstrated that 
mutation expression groups are present in both in-vitro and in-vivo. Equivalent to the cell lines, RNA mutant 
allele frequency is strongly correlated with DNA mutant allele frequency. Amongst the V-ex mutations, there was 
exceedingly high commonality in expression features between PDX and cell lines (Fig. 5b). This conservation 
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was even more extreme for N-ex mutations (Fig. 5c). However, W-ex mutations demonstrated more variabil-
ity between PDXs and their corresponding cell lines, where most of the unique W-ex mutations fell within the 
PDX samples (Fig. 5d). While evaluating how mutation allele frequency associates with the common vs unique 
between PDX and cell lines, V-ex variants demonstrated that there is clearly a relationship (Fig. 5e). Although not 
statistically significant, W-ex mutations demonstrated an opposite relationship. This result suggests that in part, 
the lack of conservation of mutation expression is a reflection of the sub-clonal feature of the specific variant.

Mutation expression profiles from primary tumors.  Primary tumors frequently contain stromal con-
tamination, which decreases the sensitivity of mutation calls and diminishes the RNA-sequencing reads associ-
ated with the tumor38. Consequently, stromal contamination has been reported to cause inaccurate results when 
performing DNA methylation and subtyping analyses28,39. Thus, to limit the issue of tumor purity, we focused 
on the 75 TCGA PDAC cases that had the highest tumor purity score determined by the software ESTIMATE40 
and had a V-ex mutation percentage of at least 10%. Similar to the cell line and PDX models, the three mutation 

Figure 4.  PDAC associated genes mainly fall into the V-ex and W-ex groups. (a) The gene mutation frequency 
of all V-ex, W-ex and N-ex mutations. (b) Comparison of the DNA allele frequency and RNA allele frequency 
for the most well-known PDAC mutations (KRAS, CDKN2A, SMAD4, TP53). (c) Fraction of mutations that 
are associated with the Cosmic and Tamborero cancer gene datasets for each mutation expression group. 
Statistical significance was performed using a two-proportion z-test between each of the mutation expression 
groups. (d) A network generated from the V-ex, W-ex, and N-ex mutated genes that were present in either the 
Cosmic or Tamborero datasets. (e) The distribution of mutation expression groups from the top 50 ranked 
mutated genes outputted by the driver mutation detection methods 2020+, Muffin, and OncodriveFM. (f) A 
Fisher’s exact test was performed on three driver mutation detection methods to quantify their ability to identify 
cancer associated genes from the Cosmic and Tamborero, based on their 50 top-ranked mutated genes. Cancer 
gene statistical significance was calculated for either all top 50 mutated genes or the top 50 mutated genes that 
did not contain an N-ex mutation.
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expression groups were present in the TCGA samples (Fig. 6a). However, the distribution of the tumor DNA 
mutant allele frequency is mostly between 0–50%, rather than 0–100% as it was for the cell lines (Figs 6a vs. 3a). 
To determine if stromal contamination also altered the RNA allele frequency, we focused on KRAS, CDKN2A, 
TP53, and SMAD4 mutations (Fig. 6b). While the range of the RNA allele frequency for KRAS and CDKN2A is 
comparable to that observed in cell line data, the range significantly changed for TP53 and SMAD4. This suggests 
that SMAD4 and TP53 expression is observed in both the tumor specimen and the stromal compartment. In spite 
of this complexity, most mutations in these canonical PDAC mutations were identified to be expressed within the 
tumor, as seen in the cell line and PDX data.

Using mutation expression and methylation profiles from TCGA samples, we were able to interrogate the levels 
of DNA methylation across mutation expression groups. To measure the methylation of genes containing a muta-
tion, the mean methylation percentage of each recorded CpG within the first exon was calculated41. Similar to the 
mutant gene expression analysis, the mean first exon methylation of samples that did not have a mutation in the gene 
was compared to the mean first exon methylation of samples that did contain the mutated gene (Fig. 6c). Evaluation 
of the coefficient of determination (R2) for each expression group demonstrated that there is little deviation between 
wild type and mutated gene first exon methylation. However, when comparing the average mutated first exon meth-
ylation between mutation expression groups, the mean first exon methylation of N-ex mutations is significantly 
higher than the V-ex and W-ex mutations (Fig. 6d). This finding suggests that hypermethylation of the gene is a 
probable explanation for lack of expression among genes with an N-ex mutation. When comparing the first exon 
methylation between the V-ex and the W-ex groups, genes containing a W-ex mutation were identified to have a sta-
tistically higher first exon methylation. One possible explanation of why the W-ex group had a statistically lower first 
exon methylation than the N-ex group, yet a statistically higher first exon methylation than the V-ex group, is that 
these genes are susceptible to allele specific methylation42. Allele specific methylation of genes with a W-ex mutation 
would also explain why the mutant allele transcript from these genes is undetectable.

Figure 5.  Conservation of mutational expression features from cell lines to PDX tumors. (a) Comparison of 
the DNA allele frequency and RNA allele frequency of each mutation derived from the PDX samples. (b–d) The 
overlap of V-ex, W-ex, and N-ex mutations between the corresponding cell line and PDX samples. Mutations 
classified as “discarded” in either the cell line or PDX data were excluded. (e) A two-tailed Wilcoxon Mann 
Whitney test between the DNA allele frequency of mutations that are present in both the cell line and PDX 
samples and the DNA allele frequency of mutations that are unique to either the cell line or PDX samples was 
performed for each mutation expression group.
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Separating mutations by expression significantly enhances PDAC subtyping.  In order to deter-
mine if mutation expression groups provide insight into prognostic relevance, the Network Based Stratification 
(NBS)43 pipeline was utilized on both the 19 patient-derived cell lines and 75 TCGA samples. NBS uses a 
protein-protein interaction network to separate samples into a predefined number of subtypes based on a muta-
tion sample matrix. To quantify the prognostic capabilities of mutation expression groups, a survival log rank 
statistic -Log10(p-value) was calculated for only the TCGA samples. The log rank statistic p-value was calculated 
for all possible combinations of mutation expression groups, using 3–8 predefined number of subtypes (Fig. 7a). 
The combination of mutation expression groups that had the strongest statistical prediction of prognosis was 
the V-ex and W-ex mutations. This held true regardless of the number of predefined subtypes. These findings 
further support that both the V-ex and W-ex mutations are relevant to tumor biology and occur within similar 
neighborhoods of the protein-protein interaction network. Comparatively, N-ex mutations have little influence 
on the progression of the tumor and appear to be randomly distributed within a protein-protein interaction net-
work. To compare the prognostic prediction of the V-ex and W-ex mutations to gene rankings of popular driver 
mutation detection methods, we performed a similar NBS analysis on results produced by 2020+, Muffin and 
OncodriverFM (Fig. 7b). To perform an unbiased comparison between all methods, the same input data was used 
for each method to produce a ranked list of mutated genes. Then for the NBS analysis, the same number of ranked 
mutated genes was used to generate a mutation sample matrix (n = 1,349). Compared to each driver mutation 
detection method, the combination of the V-ex and W-ex mutations provided the best prognostic prediction for 
each number of predefined subtypes. Thus, these results imply that that similar to Fig. 4f, current driver muta-
tion detection methods report many false positives which contaminate results and affect downstream analyses. 
However, by separating mutations based on their allelic expression, it was possible to remove a large subset of 
mutations that appear to have little to no influence on the progression of the tumor and significantly enhance 
prognosis prediction with an emphasis on mutation data.

The most statistically significant number of stratified subtypes based on the V-ex and W-ex groups was three. 
The Kaplan-Meier plot generated from this result is shown in Fig. 7c. To determine which genes were unique to the 

Figure 6.  Mutation expression profiles from primary tumors. (a) Comparison of the DNA allele frequency 
and RNA allele frequency of each mutation derived from the TCGA samples. (b) Correlation of the DNA allele 
frequency and the RNA allele frequency of CDKN2A, KRAS, SMAD4, and TP53 mutations identified within 
the TCGA samples. (c) The average first exon methylation of samples that didn’t contain the mutated gene 
was plotted against the average first exon methylation of samples that did contain the mutated gene. This was 
performed for non-discarded mutated genes that had available first exon methylation data. (d) A two-sample 
t-test with a two-tail p-value was performed on the mutant first exon methylation between each mutation 
expression group.
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newly established subtypes, a Wilcoxon Mann Whitney greater than test was performed on the NBS gene smooth 
scores between each two-way comparison of the three subtypes (e.g. subtype 1 vs subtype 2 and subtype 3).  
After adjusting the p-values using the Benjamini/Yekutieli method44, networks were generated for each subtype 
using genes that contained an adjusted p-value less than 0.01 (Fig. 7d). Subtype 1 and subtype 2 had uniquely 
defined networks centered around TP53 and SMAD4, respectively. GO term analysis identified that subtype 1 
mutations influence apoptosis pathways, while subtype 2 mutations are involved in cell differentiation pathways. 
In contrast, samples classified as subtype 3 had only a few statistically significant mutated interactions, and thus 
a well-structured network could not be generated. Interestingly, the sole mutation of either TP53 or SMAD4 was 
not sufficient to subtype the samples used in this study (Supplementary Fig. 6). This data supports the use of path-
way and MAXX analysis to decipher new prognostic subtypes based on mutation data.

In order to evaluate if such subtyping could have relevance to treatment of PDAC, statistical analysis was 
performed using drug response data from 13 of our 19 patient derived cell lines (Fig. 7e). Among the cell lines 
with drug sensitivity data, five were categorized as subtype 1, four were categorized as subtype 2, and four were 
categorized as subtype 3. To determine the significance of drug treatments between subtypes, a Wilcoxon Mann 
Whitney less than test was performed on the drug response area under the curve (AUC) values between each 

Figure 7.  Separating mutations by expression enhances PDAC subtyping. (a) The log rank statistic -log10(p-
value) based on the NBS results for 75 TCGA samples. The log rank statistic -log10(p-value) was calculated for 
the NBS results of all pairwise combinations of mutation expression groups from 3–8 number of predefined 
subtypes. (b) The log rank statistic -log10(p-value) based on the NBS results for 75 TCGA samples using 
the stratified samples based on results from 2020+, Muffin, OncodriveFM or V-ex and W-ex mutations. (c) 
Kaplan Meier plot for TCGA samples based on the NBS results using V-ex and W-ex mutations with number of 
subtypes equal to three. (d) Networks signifying the mutated pathways that are unique to subtype 1 and subtype 
2. (e) Cell line drug response data, grouped by identified subtypes and statistical significance via a Wilcoxon 
Mann Whitney less than test.
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two-way comparison of the three subtypes. The drugs that were most consistent between subtype 1 and subtype 
3 were, respectively, aurora kinase and EGFR inhibitors. Subtype 3 was also identified to respond better to mTOR 
inhibitors relative to the other subtypes. Unexpectedly, subtype 2 did not display selective sensitivity to any drug 
treatments. These results suggest that MAXX-derived data can be applied to predict drug sensitivity, in addition 
to prognosis.

Discussion
This study shows that tumor specific reference genomes generated via MAXX provide a substrate for a compre-
hensive analysis of mutation allelic expression. In comparison to standardized reference genomes, tumor specific 
reference genomes significantly enhance RNA-sequencing alignment of reads containing indel mutations. This 
feature allows accurate allelic expression to be detected for all mutation types. In the context of our analysis 
using nineteen patient derived cell lines, the capability to confidently detect allelic expression of indel mutations 
increased the mutation sample size by ~20%. MAXX also provided an unbiased allelic expression analysis among 
genes that commonly exhibit both SNV and indel variants (e.g. TP53 and SMAD4). The robustness of MAXX was 
measured on patient derived cell lines, PDX models, and primary tumors. Performing these analyses among dif-
ferent tumor models demonstrated that the MAXX pipeline is a comprehensive, consistent and computationally 
efficient method to identify mutation allelic expression. MAXX is also capable of generating customizable gene 
specific reference genomes that can be used as input for an alignment software to effectively query DNA or RNA 
allele frequencies for specific gene mutations from any organism with a reference genome and GTF file.

Centered on variants derived from PDAC, we report the discovery that mutation allelic expression can be used 
to separate mutations based on their respective impact on the tumor phenotype. The mutant expression group 
that was mainly responsible for the progression and clonality of the tumor was the V-ex group. This expression 
group consisted of not only the major PDAC oncogene (KRAS), but also all of the well-known PDAC tumor sup-
pressor genes (TP53, SMAD4, and CDKN2A). Regardless of their assumed loss of function, our data identified 
that it is common for tumor suppressors to be transcriptionally present. This finding supports that RNA allele 
frequencies derived from allelic expression analysis can effectively be used to identify bona fide tumor suppres-
sors. To illustrate, the well-known tumor suppressor gene SMAD4 commonly loses its expression of the wild type 
allele due to a homozygous deletion. Consequently, SMAD4’s role as a tumor suppressor can be identified using 
both DNA mutant allele frequencies and RNA mutant allele frequencies. However, within our cell and PDX data, 
it was observed that multiple mutated genes had an RNA mutant allele frequency of 100%, despite having a DNA 
mutant allele frequency of ~50%. Thus, MAXX derived RNA mutant allele frequencies are more suited to identify 
genes that lose their expression of the wild type allele, which is an expected feature of tumor suppressor genes, 
compared to DNA mutant allele frequencies. Two genes from our data set that had a ~50% variant DNA allele fre-
quency, a 100% variant RNA allele frequency, and have been demonstrated to act as tumor suppressors within the 
literature were DUSP545 and EI2446. Additional genes that had similar DNA and RNA frequency as DUSP5 and 
EI24 but no previous research on their potential role as a tumor suppressor were UBXN11, CAPN15, C6orf62, 
GPRIN1, KIAA2018, PCDHGA10, and PCGF1.

The mutation expression group that appeared to have little effect on tumor progression was the N-ex group. 
Despite their relatively high mutant allele frequency, N-ex mutations were identified to be within genes that had 
a significantly lower transcript level than genes containing a V-ex or W-ex mutation. Using TCGA methylation 
data, we identified that a large proportion of genes containing an N-ex mutation had a hypermethylated first exon, 
regardless of the presence or absence of a mutation. This finding suggests that genes harboring an N-ex mutation 
are genes that are typically the target of epigenetic silencing across pancreatic cancer. Thus, the minimal impact 
of N-ex mutations on tumor progression is partially explained by their occurrence within genes that are devel-
opmentally silenced or are within genes that are more susceptible to transcription silencing among tumor sam-
ples. We observed that some N-ex classified genes have been previously identified to be associated with cancer. 
However, in comparison to cancer associated genes with a V-ex or W-ex mutation, cancer associated genes with 
an N-ex mutation had little impact on well-characterized mutated PDAC pathways such as MAPK cascade, auto-
phosphorylation and stem cell maintenance. It was also observed that when taking into consideration whether a 
mutation was classified as an N-ex mutation, the mutation detection methods 2020+, Muffin, and OncodriveFM 
had an increased specificity for pre-classified cancer associated genes. Thus, we suggest that unexpressed genes 
that are the target of a mutation provide little insight into the current progression and therapeutic response of the 
tumor, relative to expressed genes that contain a mutation.

In addition to identifying groups of mutations that resemble driver mutations (V-ex) or passenger muta-
tions (N-ex), we found a third mutation group, the W-ex group, which appeared to be an understudied subset of 
mutations. Despite the lack of the mutant allele transcripts, W-ex mutations appear to be biologically relevant to 
the progression of the tumor, similar to V-ex mutations. In comparison to the N-ex group, the W-ex group had 
a significant proportion of cancer associated genes and high gene expression levels. However, W-ex mutations 
were more sub clonal and infrequent within tumor samples, relative to the V-ex and N-ex groups. These unique 
features of W-ex mutations suggest that this mutation expression group is unlike traditional passenger or driver 
mutations. Based on our results, one possible explanation of why only the wild type allele is expressed in genes 
containing a W-ex mutation is that this particular mutation impairs the functionality or translation of a gene that 
is important to the tumor’s progression. Thus, the tumor selectively silences the mutant allele and only expresses 
the wild type allele to maintain its phenotype. A potential example of this phenomena is the mutated gene LDHB 
in sample 810CL. A recent study that performed an RNA interference screen in KRAS dependent lung adenocar-
cinomas identified that LDHB was a strong regulator of cell proliferation in these tumors47. LDHB has also been 
shown to be responsible for altering the metabolic addiction in PDAC48. Interestingly, the mutated LDHB gene 
in sample 810CL had a DNA allele frequency of 62% and 1,587 reads that aligned to the wild type allele, but zero 
reads that aligned to the mutant allele. This supports the evidence that the non-mutated LDHB gene is potentially 
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a critical aspect within tumor sample 810CL. Additional confidently classified W-ex mutations from the cell line 
data that were noted to act in a similar manner as LDHB and have been shown to positively influence tumor 
progression are BCLAF1, JAK2, and KMT2D49–51. However, to identify exactly what impact W-ex mutations 
have on tumor progression, additional research is necessary. In regards to how the mutant allele of W-ex muta-
tions is repressed, we attempted to identify if this event was due to exon skipping or nonsense mediated decay 
due to having a higher proportion of nonsense and indel mutations52. Interestingly, neither of these mechanisms 
seemed to be involved in the silencing of the mutant allele. Alternatively, the mechanism of RNA-editing may be 
responsible for the inability to identify the mutant allele of W-ex mutations53. However, based on our statistical 
testing between the first exon methylation of V-ex mutations and W-ex mutations, we would suggest that the most 
probable mechanism of W-ex mutant allele repression is allele specific methylation42.

By classifying PDAC mutations based on their allelic expression, we were able to identify ~50% of all muta-
tions within this study as likely passenger mutations, increase the sensitivity of mutation detection methods, 
significantly enhance the prediction of PDAC prognosis using mutation data, and identify subtypes that are sta-
tistically sensitive to specific drug therapeutics in cell culture models. These results support the concept that both 
V-ex and W-ex mutations contribute to the biological features of the tumor, while N-ex mutations have little 
influence on the progression of the tumor. Thus, we conclude that the underutilized technique of allelic expres-
sion analysis of tumor mutations provides an effective top-level method to separate mutations based on their 
respective tumor impact. Based on these results within PDAC, we expect that allele expression analysis will be 
able to assist in other aspects of cancer biology. For example, this approach can be used to explore cancer epitope 
detection54 and interrogation of tumor clonality54,55. Because the MAXX pipeline enables accurate identification 
of allelic expression for all mutation types by increasing RNA-sequencing alignment, it represents the most inclu-
sive method to perform mutation allelic expression analyses. We anticipate that custom gene specific reference 
genomes generated via MAXX will become a prevalent aspect in performing mutation allelic expression analyses 
and will be employed to classify mutations for advancement of precision medicine.

Methods
Expanded overview of MAXX pipeline.  MAXX is a freely available tool (https://github.com/Adglink/
MAXX) that generates gene specific reference genomes to identify allelic expression. As input, MAXX requires a 
mutation file, a reference genome, and the reference genome’s corresponding GTF file. The reference files used in 
this study were GENCODE v19 for the patient derived models and GENCODE GRCh v21 for the TCGA data56. 
In brief, MAXX uses information from the GTF file to identify the sequence of the input genes within the fasta 
file. Once the sequence of the genes within the mutation list is identified, MAXX first uses the gene name to create 
a header tag (e.g. >KRAS). Then the header tag and wild type sequence are written to the new fasta file. Next, 
the mutated sequence and its header are generated. The mutation sequence is created based on the information 
from the mutation file, while the header is the gene’s name with a _Mut tag (e.g. >KRAS_Mut). The _Mut tag 
allows reads to be separated based on their alignment to either the wild type or mutated sequence. In cases where 
a gene contains multiple mutations, all mutations are inserted into the gene via a shifting algorithm. Because this 
study emphasized the allelic expression of mutations, MAXX is designed to only output the wild type and mutant 
sequence of genes presented in the mutation file. This approach dramatically decreases the size of the fasta file, 
which allows storage space and alignment run time to be more efficient compared to the Hg19 reference genome 
(Supplementary Fig. 1), while maintaining accurate RNA-sequencing alignment (Fig. 2c). In addition to the cus-
tom-made reference genome, MAXX also outputs an index file that identifies the new positions of the mutations 
in both the wild type and mutant sequence.

Because all of the PDAC samples within this study had undergone exome sequencing, we were able to use MAXX 
to generate a tumor specific reference genome for each sample. However, in situations where exome sequencing is 
not available, a reference genome could be generated using predefined mutations derived from other sequencing 
projects. Our tumor specific reference genomes where indexed using Bowtie2 v. 2.3.257. Then Tophat2 v. 2.1.126 was 
used to align the sample’s corresponding RNA-sequencing reads. In addition to the default parameters for Tophat2, 
the commands “-p 10,–no-coverage-search,–b2-very-sensitive” were used. To ensure the accuracy of calculated 
RNA-allele frequencies, the BAM files generated by Tophat2 underwent multiple filtering steps23,32. First, the PCR 
duplicates were removed, using the Picard Tools (http://broadinstitute.github.io/picard/) MarkDuplicates command 
where the input parameter REMOVE_DUPLICATES was set to “true”. Second, SAMtools v. 1.458 was used to keep 
the uniquely aligned reads via the command “samtools view -q 50 -b input.bam >output.bam”. Finally, because our 
data was paired-end, the additional step of singleton removal using the SAMtools v. 1.4 command “samtools view 
-F 8 -b input.bam >output.bam” was performed. The filtered bam file, tumor specific reference genome, and tumor 
mutation index file were then used as input for Bam-Readcount (https://github.com/genome/bam-readcount), 
which identified the number of reads that aligned to the mutant and wild type sequences.

RNA mutant allele frequency calculation.  To determine RNA mutant allele frequencies from the 
Bam-Readcount output, the number of reads that aligned to the mutant position of the mutated sequence was 
first calculated, then divided by the sum of the reads that aligned to the mutant position of both the wild type and 
mutant sequences. Due to the shifting of nucleotides from indel mutations, there were slight variations in the way 
the reads were calculated for the wild type allele and mutant allele between the different mutation types. For SNV 
mutations, the same position for the mutant allele and wild type allele was used to calculate the number of reads 
for each allele. As for deletion mutations, the wild type allele reads were calculated based on the average number 
of reads mapped at each deleted nucleotide, while the first position of the non-deleted nucleotide was used to 
calculate the number of mutant allele reads. To calculate the wild type and mutant allele read count for insertions, 
the average read count of reads aligned to each inserted nucleotide was used for the mutant allele, while the first 
position of the non-inserted nucleotide was used to calculate the number of reads for the wild type allele.
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Mutant expression classification expounded.  Based on the variant’s total read count and RNA mutant 
allele frequency, the mutation was placed into a mutation expression group (Fig. 1b). To prevent misalignments 
and poor sequencing depth at specific regions from biasing mutation expression group placement, mutations that 
had a total number of reads between three and nine were discarded from the study. It was also noted that a cut off 
of the number of reads that aligned to the mutant allele was required to differentiate W-ex mutations from V-ex 
mutations. Rather than have a distinct read count cutoff, the RNA mutant allele frequency of 2.5% was used to 
distinguish V-ex mutations from W-ex mutations.

Patient-derived cell lines gene expression.  Gene read counts were obtained using HTSeq59 on BAM 
files aligned to the Hg19 reference. The R package edgeR60 was then used to normalize the gene read counts.

Patient-derived cell lines exon expression.  Exon read counts were obtained using DEXseq61 on BAM 
files aligned to the Hg19 reference. The R package edgeR was then used to normalize the exon read counts.

Tissue specificity of patient-derived cell line variants.  The 193 GTEx pancreas tissue gene expression 
profiles were obtained from the website https://zenodo.org/record/838734#.XSe_GS3Myw4 62 under the R object 
“exp”. Information classifying whether the expression of a gene is specific to pancreas tissue was also obtained 
from the previously mentioned website, under the R object expTS.

Patient-derived cell lines and PDX models.  The establishment and variant calls of patient-derived cell 
lines and PDX models employed have been previously described24,63. The samples were exome sequenced and var-
iant calls were identified relative to the normal tissue from the patient from which the models were derived. There 
is a high level of conservation between the mutations present in the models and that shown in the primary tumor.

Sequencing of samples.  The patient-derived cell lines and PDX models were subjected to exome sequenc-
ing and RNA sequencing as previously published24,63.

Visualization of exome and RNA-sequencing reads.  Bam files derived from exome or RNA sequenc-
ing alignment were uploaded into the Integrative Genomic Viewer software v. 2.3.9364. The parameters filter 
duplicate reads and secondary alignments were set to true.

Generation and clustering of networks.  The Cytoscape65 environment, in conjunction with the 
Reactome database, was used to generate the networks presented in this study. After downloading the 
ReactomeFI66 plugin for Cytoscape, our gene lists were uploaded using the “Gene Set/Mutation Analysis” option. 
The 2016 Reactome FI network version was used to visualize the results. The clustering analysis performed on the 
subtype networks was accomplished using the ReactomeFI plugin “Cluster FI Network” option. Only the clusters 
that contained at least 10% of the genes within the network were analyzed. GO Terms and associated p-values for 
all networks were calculated via the ReactomeFI plugin “Analyze Module Functions” option. Network visualiza-
tion was enhanced using the R package ggnet2.

Driver mutation detection methods.  As stated previously, the driver mutation detection methods 
2020+19, Muffin17, and OncodriveFM15 were selectively chosen because of their capability to handle indel muta-
tions and relatively small sample sizes. Each method was run two times using either the 19 patient derived cell 
line data or a combination of the 19 patient derived cell line data and 75 samples from TCGA. In addition to mis-
sense, frame shift deletion, frame shift insertion, and nonsense mutations, silence mutations were included in the 
input data for 2020+ and OncodriveFM, as recommended. 2020+ was run using the cancer type specific analysis 
procedure found at http://2020+.readthedocs.io. Muffin was run using the default parameters and the results 
produced by NDMAX with the Humannet network were used. OncodriveFM was run with the parameter “–gt 1”,  
and as input the functional impact scores produced by SIFT14, PolyPhen-213, Vest67 and Chasm68 were used.

MAXX mutation expression profiles for TCGA data.  To generate a tumor specific reference genome for 
each sample within the TCGA-PAAD project, the somatic mutation data was obtained by downloading the PDAC 
Mutect2 annotation file from the website https://portal.gdc.cancer.gov/repository. This file, containing a list of all 
mutations for each TCGA PDAC sample, was used to generate MAXX appropriate mutation files for all available 
samples. The mutation files, GRCh38 v21 reference genome and GTF file were then used to generate tumor spe-
cific genomes via MAXX. Because the TCGA RNA-sequencing data needed to be re-aligned to the tumor specific 
genome, the RNA-seq fastq files were downloaded from https://portal.gdc.cancer.gov/legacy-archive/ and aligned 
using Tophat2. The rest of the analysis follows the same protocol as the cell line and PDX data to calculate muta-
tion expression groups. Due to the confounding feature of tumor purity, we focused on the 75 TCGA PDAC cases 
that had the highest tumor purity score and at least 10% of the mutations were classified as V-ex mutations. To 
assess the tumor purity of each TCGA PDAC sample, purity scores established by Yoshihara et al.40 were down-
loaded from http://bioinformatics.mdanderson.org/main/ESTIMATE.

Methylation analysis expounded.  The IIllumina Infinium HumanMethylation450 platform level 3 gen-
erated DNA methylation files for the TCGA samples used in this study were downloaded from https://portal.gdc.
cancer.gov/repository. Calculation of the first exon methylation was performed using a custom python script. The 
Hg19 reference genome and corresponding GTF file was first used to identify the first exon position of all genes 
containing a mutation; then the first exon methylation percentage was determined by taking the average beta 
values for all CpG nucleotides within the first exon. Genes with mutations that were identified to be within multi-
ple mutation expression groups between TCGA samples were excluded from the methylation analysis, as well as 
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mutations that were classified as “discarded” (Fig. 1b). Also, it was observed that approximately half of the genes 
within each mutation expression group did not contain first exon methylation data. This may occur because the 
CpG methylation was not available or analyzed in the first exon of these genes within the downloaded data.

Network based stratification analysis.  The NBS software was used to stratify the cell line and TCGA 
samples based on mutations associated with each combination of mutation expression groups. The NBS algo-
rithm was developed by Hofree et al.43, but the implementation of NBS by Morvan et al.69 was used to stratify 
our samples. The source code for this NBS implementation can be found at the github repository https://github.
com/marineLM/NetNorM. Multiple methods of stratification are provided, but to replicate the NBS method, the 
stratification_NMF.py script was used. This script requires a sample mutation matrix and a node edge matrix. 
The Pathway Commons v6 network70 (Commons.6.All.EXTENDED_BINARY_SIF.tsv) was used to generate the 
node edge matrix, while different combinations of mutation expression groups were used to generate the sample 
mutation matrix. To replicate our results, the following commands should be used as input for the stratification_
NMF.py function: method_rep = ‘smoothing’, method_norm = ‘qn’, k = ‘NA’, alpha = ‘0.5’, randomized = ‘False’, 
rs_rand = ‘NA’, and N = ‘3’.

Survival curves.  Survival information for the TCGA PDAC samples was obtained from the nationwideshil-
drens.org_clinical_patient_paad.txt file, downloaded from https://portal.gdc.cancer.gov/legacy-archive/ on 
September 6, 2017. The R package survival was then used to calculate the log rank statistic, log rank p-value, and 
generate the Kaplan Meier plot.

Data Availability
The MAXX software, which generates tumor specific references genomes based on a mutation list is available for 
download at https://github.com/Adglink/MAXX.
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