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Abstract: Iron deficiency (ID), with or without anemia, is responsible for physical fatigue. This effect
may be linked to an alteration of mitochondrial metabolism. Our aim was to assess the impact of
ID on skeletal striated muscle mitochondrial metabolism. Iron-deficient non-anemic mice, obtained
using a bloodletting followed by a low-iron diet for three weeks, were compared to control mice.
Endurance was assessed using a one-hour submaximal exercise on a Rotarod device and activities of
mitochondrial complexes I and IV were measured by spectrophotometry on two types of skeletal
striated muscles, the soleus and the quadriceps. As expected, ID mice displayed hematologic markers
of ID and reduced iron stores, although none of them were anemic. In ID mice, endurance was
significantly reduced and activity of the respiratory chain complex I, normalized to citrate synthase
activity, was significantly reduced in the soleus muscle but not in the quadriceps. Complex IV
activities were not significantly different, neither in the soleus nor in the quadriceps. We conclude
that ID without anemia is responsible for impaired mitochondrial complex I activity in skeletal
muscles with predominant oxidative metabolism. These results bring pathophysiological support to
explain the improved physical activity observed when correcting ID in human. Further studies are
needed to explore the mechanisms underlying this decrease in complex I activity and to assess the
role of iron therapy on muscle mitochondrial metabolism.

Keywords: iron deficiency; striated skeletal muscle; physical capacity; fatigue; mitochondrial
metabolism; complex I

1. Introduction

Fatigue is one of the main symptoms of iron deficiency (ID), even in absence of anemia.
Iron deficiency-related fatigue may present as a mental or as a physical fatigue, affecting
mainly endurance, and correction of ID has been shown to improve both fatigue and
physical activity [1–8]. In some populations such as heart failure patients, ID, likely through
muscle fatigue, is also responsible for a deterioration of the quality of life, a worsening of
dyspnea and a worsening of the prognosis of heart failure [9–12]. Interestingly, intravenous
iron therapy has also been shown to improve these parameters in heart failure patients,
even in the absence of anemia [13–17].

Mechanisms linking ID to muscle fatigue are still poorly understood. The main
hypothesis is that ID is responsible for an alteration of mitochondrial muscle metabolism,
iron being present in both iron-sulfur centers and in cytochromes of the mitochondrial
respiratory chain. Animal studies performed many years ago reported various quantitative
and functional anomalies in mitochondrial respiratory chain enzymatic complexes in both
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skeletal muscles and heart [18–22]. However, the proper role of iron deficiency was difficult
to evaluate in these studies, because of a severe anemia systematically observed in their
animal models.

We recently developed a mouse model of ID without anemia, in which we assessed
the impact of iron deficiency on mitochondrial metabolism in the myocardium [23]. In
this model, the mitochondrial respiratory chain complex I activity was decreased in car-
diomyocytes, which might explain, at least in part, a significant reduction of left ventricular
function and in physical capacity during endurance exercises. However, ID may also impact
the mitochondrial metabolism of peripheral skeletal muscle, as recently reported [24,25].
The aim of this study was to assess the impact of ID on the respiratory chain complex I
activity of two types of striated muscle fibers in a mouse model of ID without anemia.

2. Materials and Methods
2.1. Animals and Ethics

All experiments were performed in accordance with the guidelines from Directive
2010/63/EU of the European Parliament on the protection of animals used for scientific
purposes (laboratory authorization of the laboratory #00577). The protocol was approved
by the Ethics Committee in animal experimentation of Pays de la Loire and by the French
Ministry of Higher Education and Research (APAFiS #6780).

Male C57BL/6 mice (Janvier, Le Genest St Isle, France) were used for all experiments
and all of them were eight-week-old at the start of the experiments. Mice were four per
cage, housed in a temperature-controlled room (21 ◦C) with a 12 h/12 h light-dark cycle.
They were fed either with an iron-deficient diet or a normal diet depending on their group
and had access to tap water ad libitum.

The mouse model of ID without anemia (ID group) was obtained as previously de-
scribed: on day 1, mice had a 250–300 µL blood withdrawal performed using a retro-orbital
collection with a calibrated heparinized capillary tube. Mice were then immediately fed
with an iron-depleted diet (C1038 pellets containing 6 mg iron/kg, Genestil SA, Royau-
court, France) for three weeks [23]. As previously shown, mice were considered to have
an ID without anemia on the last day of the third week (Day 21) [23]. Control group mice
(C group) were fed with a normal diet (M25 pellets containing 150 mg iron/kg, Special
Diets Services, France) during the whole study.

Blood withdrawal and sampling were performed under inhaled anesthesia with
isoflurane 2% and all efforts were made to minimize suffering. Euthanasia of the animals
was made by cervical dislocation, under inhaled anesthesia with isoflurane 2% too, in order
to avoid the deleterious effects of CO2 on mitochondrial metabolism.

2.2. Experimental Design

Each group (ID and C) included eight mice. On day 0 and day 21, mice performed
the physical exercises on a Rotarod device. The mice were euthanized on day 21 after
the physical exercises and a blood sample, the liver, the spleen and muscle samples of
quadriceps and soleus were taken. All muscles were immediately frozen in liquid nitrogen
after sampling and stored at −80 ◦C until analyses.

2.3. Physical Tests

We used a Rotarod device to assess physical capacities of the animals, as already
described [23,26]. The Rotarod is a device with a 3 cm diameter cylinder on which mice
were individually placed. The cylinder rotated at a progressive acceleration speed followed
by a stable speed until the fall of the mouse that made stop the cylinder. The time without
falling and the falling speed were automatically recorded (HARotarod software version
1.40) and the calculation of the distance performed by the animals during the total exercise
time was done.

The day before the test, the mice were trained to the device by performing an exercise
with a constant acceleration speed of 10 to 20 rpm for 180 s followed by a constant speed of
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20 rpm. Each time the mice fell, they were immediately put back on the cylinder which
restarted its rotation with the same acceleration from 10 to 20 rpm. This training exercise
was stopped after 15 min of running on the cylinder in total.

We assessed endurance of the animals over 1 h using two consecutive 30-min tests.
On the day of the test (Day 0), the protocol consisted of a first test (“test 20”) at a constant
acceleration speed of 10 to 20 rpm for 180 s followed by a constant speed of 20 rpm. The
test was stopped after 30 min of exercise and was immediately followed by a second test
at a constant acceleration speed of 10 to 30 rpm for 180 s followed by a constant speed of
30 rpm. This test was also stopped after 30 min of exercise.

2.4. Hematological Parameters

Hemoglobin concentration (Hb), hematocrit (Ht), mean corpuscular volume (MCV),
mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC),
reticulocyte count, reticulocyte hemoglobin content (RetHb) and percentage of hypochromic
red blood cells (% Hypo RBC) were measured using a hematological automate Sysmex
XE-5000 (Sysmex France, Villepinte, France) on the blood samples obtained on Day 21.

2.5. Tissue Iron Content

Splenic and liver iron contents were measured after tissue digestion by trichloroacetic
acid, hydrochloric acid and thioglycolic acid, using the iron quantification by the Ferene
method on a biochemical automate ARCHITECT c16000 (Abbott France, Rungis, France),
as previously described [23,27].

2.6. Mitochondrial Enzymatic Activities

Enzymatic activities were measured in two types of skeletal striated muscle: the
quadriceps muscle, which has both oxidative and glycolytic metabolisms, and the soleus,
which is mainly oxidative.

Complex I, primarily affected in the heart in our previous study, and complex IV
activities were measured at 37 ◦C with a UVmc2 spectrophotometer (SAFAS, Monaco),
according to standard methods [28]. Results were normalized to the citrate synthase
activity, an enzyme of the Krebs cycle reflecting the mitochondria content.

Post-nuclear muscle homogenates were prepared at 4◦C. The muscle isolation buffer
used was composed of 220 mM mannitol, 75 mM saccharose, 10 mM Tris, 1 mM EGTA
adjusted to pH 7.2. The muscle sample was rinsed in the isolation buffer and transferred
into a glass tube containing 10 times its weight of the same buffer or 20 times its weight for
the soleus. The muscle was homogenized at 1000 rpm with a Potter-Elvehjem PTFE and
was centrifuged at 650 g for 20 min. The supernatant was sampled, and the operation was
repeated on the pellet. Both supernatants were combined to constitute the post-nuclear
muscle homogenate, which was used immediately.

Briefly, NADH ubiquinone reductase (complex I) activity was assayed in KH2PO4
buffer (50 mM, pH 7.5), containing 3.75 mg/mL fatty acid-free BSA and 0.1 mM decylu-
biquinone. 10 mM NADH was added to initiate the reaction. Parallel measurements in
presence of rotenone (2.5 µM) were used to determine the background rate. Cytochrome
c oxidase (complex IV) activity was assayed in a 92–97% reduced cytochrome c solution.
Citrate synthase (CS) activity was assayed in a 0.15 mM DTNB, 0.1% Triton, 0.5 mM
oxaloacetic acid and 0.3 mM acetyl-CoA solution. Absorbance changes due to the respec-
tive substrate conversions were monitored at 340 nm for complex I, 550 nm for complex
IV, and 412 nm for CS. Enzymes activities of complex I and IV, expressed as nmol sub-
strate/min/mg of proteins using the Beer Lambert’s law, were then normalized to the CS
activity. Reagents were purchased from Sigma-Aldrich (Lyon, France) and NADH from
Roche Applied Sciences (Lyon, France).
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2.7. Statistical Analysis

Data are reported as medians [interquartiles 25–75%] or numbers (percentages). Cat-
egorical and numerical data were compared using the Fisher’s exact test and the Mann–
Whitney test respectively. All tests were two-tailed and a p-value less than 0.05 was
considered significant. Analyses were performed the software JMP (SAS Institute, Inc.,
Cary, NC, USA).

3. Results
3.1. Description of the Mouse Model of ID

As shown in Figure 1A,B, none of the mice were anemic, with hemoglobin and
hematocrit levels greater than 13 g/dL and 40% respectively, without differences between
ID and C mice groups. Conversely, the mice of the ID group had hematological signs of
ID including a significant decrease in RetHb and a significant increase in % Hypo RBC
(Figure 1C–H). Furthermore, tissue iron stores in the spleen and liver were significantly
reduced (Figure 1I,J).
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Figure 1. Hematological parameters and iron stores measured on Day 21. (A) Hemoglobin concentration; (B) hematocrit;
(C) mean corpuscular volume; (D) mean corpuscular hemoglobin; (E) mean corpuscular hemoglobin concentration; (F)
reticulocyte count; (G) reticulocyte hemoglobin content; (H) percentage of hypochromic red blood cells; (I) iron content
in the spleen; (J) iron content in the liver. C (blue boxes), control group; ID (red boxes), ID group; N = 8 in each group.
Box-plots represent medians, interquartile ranges and upper and lower values according to Tukey’s method. * p < 0.05,
significantly different from control group.

3.2. Animal Physical Endurance

The physical capacities of the animals were similar on Day 0 in both groups
(Figure 2A–E). On Day 21, ID mice achieved significantly lower maximum times on
Rotarod than ID mice on Day 0 and than control mice on Day 0 and Day 21 (Figure 2A–C).
The number of falls per test was significantly higher in ID mice on Day 21 than in control
mice (Figure 2B–D). Consequently, the distance performed over one hour was significantly
reduced in ID than in Control mice (Figure 2E). Mice of the group C had improved their
total distance compared to Day 0, although the mice of the group ID had not. We also
observed that mice in the ID group had a significantly lower weight at week 3 than Control
mice (Figure 2F).
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number of falls in test 1 (speed of 10 to 20 rpm for 180 s followed by a constant speed of 20 rpm), (C)
maximal durations and (D) number of falls in test 2 (speed of 10 to 30 rpm for 180 s followed by a
constant speed of 30 rpm), (E) distance over 1 h performed by mice, and (F) weight of mice. C (blue
boxes), control group; ID (red boxes), ID group; N = 8 in each group. Box-plots represent medians,
interquartile ranges and upper and lower values according to Tukey’s method. * p < 0.05 compared
with control group on the same day; # p < 0.05 compared with the same group on Day 0.

3.3. Mitochondrial Enzymatic Activities

The maximal activities of complex I, complex IV and citrate synthase are shown in
Figure 3. The activities of complexes I and IV, together with citrate synthase, were all sig-
nificantly reduced in the soleus muscle of ID mice, suggesting a decrease in mitochondrial
content. When the activities of complexes I and IV were normalized to those of citrate
synthase, we observed a significant decrease in the activity of complex I in the soleus,
without significant differences in activity for complex IV in the soleus and for complexes I
and IV in the quadriceps.
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4. Discussion

In this study, confirming that ID without anemia is associated with a decrease in
endurance capacity, we showed a predominant impact of ID on complex I activity in
oxidative skeletal muscle.

The impact of ID, independently of anemia, on physical capacities is difficult to
measure. In our mouse model, we used long and submaximal exercises on a Rotarod device
to assess endurance. Using this test, we observed a reduction in the distance achieved
in one hour of about 15% in ID mice. Overall, previous animal studies found a decrease
in both maximum oxygen consumption and endurance capacity [18–21,29]. However, in
these studies evaluating physical capacities in ID animals, ID was accompanied by severe
anemia, at least at some point of their experiments. Davies et al. showed in a mouse model
of ID anemia that anemia mainly alters maximum oxygen consumption [19]. The increase
in hemoglobin levels was indeed associated with an early improvement of maximum
oxygen consumption after dietary iron repletion, while physical endurance was improved
several days later. These results led the authors to suggest that the maximum oxygen
consumption, and therefore the capacity to exercise with maximum effort, is mainly due
to a reduction of hemoglobin level, whereas endurance seems rather dependent on the
oxidative capacities of the muscle, i.e., on mitochondrial metabolism. Conversely, Willis
et al. observed in rats fed with an iron-depleted diet a significant decrease in endurance
several days before the fall in hemoglobin level and, after an iron dextran injection once
the animals were anemic, a very fast improvement (beginning at the 15th hour) of the
running time on a treadmill, i.e., before the increase in hemoglobin level [21]. In the model
used in the present study, we had previously observed that ID without anemia affected
endurance rather than short intense training exercises (e.g., forced swimming exercise) [23].
We confirm here the impact on endurance using a longer test (one hour in total).

In humans, psychic fatigue is a frequent symptom of ID without anemia, which is
effectively corrected by iron therapy [1,2]. However, it has also been shown that physical
capacities may be improved by iron repletion [30]. The benefit of ID correction, using
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intravenous iron, has also been demonstrated in heart failure patients [13–17,31]. Inter-
estingly, recent data show that heart failure patients with ID have a greater depletion
of phosphocreatine in the gastrocnemius muscle (measured by 31P magnetic resonance
spectroscopy), which could partly explain muscle fatigue [24]. Likewise, Charles-Edwards
et al. recently observed that iron therapy allows iron-deficient heart failure patients to
decrease the regeneration time of skeletal muscle phosphocreatine [25]. Phosphocreatine
is necessary during muscle contraction since it makes it possible to give a phosphate to
ADP in order to regenerate ATP, and is itself regenerated at rest from ATP supplied by
the respiratory chain and glycolysis. Thus, the impairment of physical capacities of these
patients could be linked, at least in part, to the impairment of skeletal muscle function due
to mitochondrial metabolism dysfunction.

In our mouse model of ID without anemia, we confirmed this impairment of skeletal
muscle mitochondrial function in the soleus, but not in the quadriceps. This difference
is probably explained by the fact that the soleus muscle is a muscle encompasses a large
majority of oxidative type I and type IIA fibers (“red muscle”), while the quadriceps is a
mixed muscle containing essentially types II, fast-twitch glycolytic, fibers but a reduced
content in type IIA and type I, oxidative, fibers [32]. Type I and IIA fibers, rich in mi-
tochondria, mainly use oxidative capacities of the cell, promoting a higher resistance to
fatigue. Conversely, other type II fibers have a lower mitochondria density and have
greater glycolytic than oxidative capacities, allowing a significant muscle strength but not
a high resistance to fatigue. These particularities probably explain why endurance, which
involves fibers with higher oxidative capacities, are mainly affected, in our model and
in humans.

We observed in our model that mitochondrial complex I activity was reduced in skele-
tal muscle in presence of ID, as we had previously observed in the myocardium [23]. This
reduction of activity of about 30% seems to be less important than in anemic animals [19],
and, while previous studies using anemic animals showed decreased activities of the
4 complexes of the respiratory chain, it seems here to primarily affect the complex I. This
result may be explained by the larger number of iron-sulfur centers located in complex I, in
comparison with the three other complexes [33]. Iron atoms of iron-sulfur centers, present
in complexes I (8–9 iron-sulfur centers), II (3 iron-sulfur centers) and III (1 iron-sulfur
center), and iron atoms of heme cytochromes, present in complexes II (1 cytochrome), III
(2 cytochromes) and IV (2 cytochromes), have an essential role for the function of the respi-
ratory chain. Indeed, their capacity to change very easily from a ferrous (Fe2+) to a ferric
(Fe3+) state facilitates the transfer of electrons required to induce the proton gradient across
the inner mitochondrial membrane. Future studies should try to explain the mechanisms
leading to the reduction of complex I activity. In our mouse model, we previously observed
that this decrease seemed to be linked to a decrease in the overall amount of this complex
in the myocardium [23]. The decrease in production of iron-sulfur centers could thus be re-
sponsible for a reduction in iron-sulfur centers, leading to a decrease in complex I assembly.
However, other mechanisms have been suggested to explain the impact of ID on muscle
mitochondrial metabolism, such as an early transition to anaerobic metabolism [34,35], the
decrease in the transcription of genes coding for mitochondrial proteins mediated by the
IRP/IRE intracellular iron homeostasis system [36], or even mitochondrial morphological
alterations [37,38]. Interestingly, we also observed in our study a significant decrease in
the activity of citrate synthase in the soleus muscle. The activity of this enzyme, present in
the mitochondrial matrix, is commonly used as a reflect of mitochondrial mass [39]. The
citrate synthase reduction therefore strongly suggests a decrease in mitochondrial content
in soleus muscle, which could be linked to impaired mitochondrial biogenesis or turnover
in response to iron ID.

Although these results need to be verified in humans, they open an important avenue
for further studies aiming to explore the role of iron in muscle fatigue. A study is under-
way to evaluate mitochondrial metabolism of cardiomyocytes in cardiac surgery patients,
according to their iron status (NCT03541213). Future studies could also focus on skeletal
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muscle function in patients with or without heart failure. They could allow the widening
of iron treatment indications in non-anemic ID patients, as already recommended for heart
failure patients [40], especially in situations where recovery of muscle function is required,
as in the postoperative period.

This study has some limitations, related in part to the use of an animal model and a
limited number of animals. Moreover, we made the choice to use only male mice to create
the mouse model of ID without anemia, in order to avoid blood loss linked to the menstrual
cycle, that could have been responsible for unwanted anemia. However, both male and
female mice will have to be used in future research using this model of ID without anemia,
in order to verify whether the impact of iron deficiency is different in female mice. In
addition, while the use of a Rotarod device allowed us to evaluate endurance function
at a submaximal effort, other functions, such as motivation, coordination or even animal
learning are probably involved with the use of this device [41] and may be altered by
ID [42,43]. Future human studies will have to use validated tests such as cycloergometer
tests, the 6-min walk test, or fatigue and quality of life questionnaires. Finally, due to the
small size of soleus muscles, we chose to measure maximal activities of the respiratory
chain complexes by spectrophotometry only. Indeed, this method can detect a moderate
decrease in an enzymatic complex activity, while oxygraphy only detects this decrease
from a higher threshold of inhibition of the complex. However, oxygraphy analyzes will
be necessary subsequently to assess the functionality of the whole respiratory chain, in
our mouse model and in humans, to further explore the impact of the metabolic changes
observed here.

5. Conclusions

In our murine model of ID without anemia, we confirmed that ID negatively affects
endurance and is responsible for a decrease in complex I activity in the skeletal striated
muscle with a predominant oxidative activity. These results bring new evidence for the
rationale of physical fatigue associated to iron deficiency and the potential usefulness of
iron therapy to prevent these symptoms.
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