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Simple Summary: The humic lake represents a special kind of aquatic ecosystem with high humic
substances, low irradiance, and a high potential for greenhouse gas emissions. Despite the special
environment and biogeochemical processes in humic lake water, knowledge about the underlying
microbial-driven functions remains elusive. Here, we studied the compositions and functional gene
structures of microbial communities in a humic lake (HL) and a reference weakly alkaline lake (RAL).
We found that the high organic matter content in the HL supported higher gene diversity; and,
specifically, the carbon and nitrogen fixations, the degradation of various types of carbon, methane
oxidation and methanogenesis, ammonification, denitrification, and assimilatory N reduction might
be enhanced more in the HL than in the RAL. By contrast, the humic fractions in the HL might reduce
microbial metabolic potential for sulfur oxidation and phosphorus degradation. The potential inter-
actions between different functional microorganisms might be down-regulated provided that there
were more easily acquired nutrients in the HL. Overall, our results showed the functional gene “land-
scape” of microbial communities in the surface water of a humic lake, which helps understand the
biogeochemical processes and the remediation of organic matter pollution in lacustrine ecosystems.

Abstract: Humic lakes (HLs) are special water bodies (high organic matter content, low pH, and low
transparency) that are important sources of major greenhouse gases. The knowledge about microbial
functional potentials and the interactions among different genes in HL water has been scarcely
understood. In this study, we used 16S rRNA gene sequencing and the GeoChip 5.0 to investigate
microbial community compositions and functional gene structures in an HL and a reference weakly
alkaline lake (RAL). The HL microbial communities showed distinct compositions and functional
gene structures than those in the RAL. The functional gene diversity was significantly higher in the
HL than in the RAL. Specifically, higher gene relative intensities in carbon and nitrogen fixations, the
degradation of various types of carbon, methane oxidation and methanogenesis, ammonification,
denitrification, and assimilatory N reduction were observed in the HL samples. By contrast, the
metabolic potentials of microorganisms involved in dissimilatory N reduction, phosphorus degra-
dation, and sulfur oxidation were weaker in the HL than in the RAL. Despite higher functional
gene diversity, the interaction efficiency among genes (reflected by network geodesic distance and
clustering coefficient) might be reduced in the HL. Different functional microbes may develop less
interdependent relationships in acquiring nutrients given the high resource availability in the HL.
Overall, the enhanced microbial metabolic potentials and less efficient functional interactions might
have great consequences on nutrient cycling and greenhouse gas emissions in the HL ecosystem.
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1. Introduction

The humic lake (HL) is a distinct, dark-colored lake, with poor light transparency,
low pH, low oxygen, and high content of humic substances (HSs), usually due to a large
input of allochthonous (terrestrially derived) organic matter [1,2]. HSs are complex and
heterogeneous mixtures formed by biochemical and chemical reactions during the decay
and transformation of biomass, a process known as humification [3]. They represent one of
the most important components of the total carbon on earth and comprise 50–75% of the
dissolved organic carbon (DOC) in water [4]. The high concentration of HLs in the lake
had a great role in the carbon and other nutrients’ cycling processes [5], which were largely
driven by planktonic microorganisms [1,6].

Due to the general absence of planktivorous and piscivorous fish, the trophic interac-
tions between microbes and other organisms might be less complex in the HL ecosystem [7].
The specialized physicochemical and biological conditions have possibly resulted in dis-
tinct microbial communities and their functions. The pelagic microorganisms contributed
greatly to the primary and secondary production in the HLs [8], since the enriched organic
carbon promoted microbial growth and the dark humic substances hindered the growth
and production of aquatic plants [1]. Evidence has shown that the unique environmental
conditions of HLs can result in unique bacterial populations, such as the soil II-III clade of
Actinobacteria [9]. The specialized bacterial populations may conduct differential functions
in HLs than in common lakes. There has been emergent evidence about microbial commu-
nity compositions in HLs [9,10] and the functions of some specific taxa in the degradation
of organics in HLs [11,12].

Microbial functional gene compositions provide more direct evidence than taxonomic
compositions in inferring the material cycling and functional processes in an ecosystem [13].
Among technologies used to study microbial functional genes, the GeoChip is a high-
throughput microarray-based genomic technology to study various biogeochemical pro-
cesses and functional activities [14]. There has been some works using GeoChip to study
microbial functional genes in natural lakes and artificial aquatic ecosystems. The carbon,
nitrogen, phosphorous, and sulfide cycling functions and the metabolic pathways have
been investigated [15–17]. Gene compositions and functional potentials can be regulated
by environmental variables such as pH, DOC, and nitrogen nutrients [18–20]. For HL
lakes, the specific functions such as the degradation of recalcitrant carbon, the utilization of
glycolate [21], and the transformation of organic pollutants [22] have already been studied.
These functions could show elevated activity in HLs and have temporal patterns linked
with other organisms in water. However, little is understood about the whole-community
functional genes and the potential interactions of symbiotic genes in HLs.

Here, we studied a HL (pH 5.16) and a reference common lake (weakly alkaline, pH 8.3,
RAL) in Denmark. The GeoChip 5.0 was used to investigate the functional gene differences
in the two lakes. The gene association networks were used to infer the potential interactions
among different symbiotic functional genes. We hypothesized that (a) the functional gene
composition and their functional activities were greatly different between the HL and the
common RAL, and (b) the special physicochemical traits in the HL may result in disparate
interaction patterns of functional genes than those in the reference common lake. Our
results may provide clues for understanding element cycling processes and the amendment
of organic matter pollution in lacustrine ecosystems.

2. Materials and Methods
2.1. Sampling and Water Properties Determination

We selected two lakes with significantly different total organic carbon (TOC) contents.
One of the lakes had a TOC value of 31.90 mg·L−1 and a pH value of 5.16, hereafter referred
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to as HL. The TOC content of the other lake was 4.01 mg·L−1 (pH, 8.30), hereinafter referred
to as RAL. According to the shape and size of the lake, six points with a distance of no less
than 10 m from the border were randomly chosen for the sampling. They were uniformly
distributed across the whole lake to best represent water samples from the lake.

About 500 mL of surface water (0–50 cm) was gathered with an aseptic plastic bottle
at each sampling site. The water samples were filtered through 0.2-µm-pore-size Isopore
filters (Merck Millipore, Billerica, MA, USA), and the filters were stored at −20 ◦C for
further analysis. The water conductivity and pH were measured in situ with the YSI650
MDS multiport at each sampling site. About 300 mL of surface water was simultaneously
sampled for determinations of the contents of total organic carbon (TOC), total nitrogen
(TN), total phosphorus (TP), total iron (TFe), and nitrate/nitrite nitrogen (NOx

−) [23].

2.2. DNA Extraction and GeoChip Analysis

A phenol–chloroform extraction method [24] was used to extract the microbial DNA
from the stored filters and purified using the Wizard DNA clean-up kit (Promega, Madison,
WI, USA). The purified DNA was then quantified using the PicoGreen dsDNA Assay kit
(Invitrogen, Waltham, MA, USA). Finally, the DNA samples were put on the GeoChip 5.0
platform for analyzing different functional genes. The sample preparation and analysis
steps were described in the work [14].

2.3. Data Preprocessing

The raw data from the GeoChip platform were uploaded to the web-based pipeline
(http://ieg.ou.edu/microarray/, accessed on 1 October 2021) for analysis [25]. Briefly, the
following procedures were taken: (a) signals with a signal/noise ratio smaller than 2 (poor
quality or noise signals) were discarded before downstream analyses; (b) to reduce the
biased effects caused by too low and too high gene intensities, intensities greater than 1
were taken the logarithms and divided by the mean signal intensity; (c) the relative signal
intensity (as a proxy for metabolic potential) was finally generated by standardizing the
signal values based on the total probe number of each sample [26].

2.4. Network Construction

For both lakes, the cellobiase, FTHFS, gdh, rubisco, glucoamylase, mcrA, narG, nrfA,
sox, and xylA (descriptions of the functional gene groups and their coded enzymes are
shown in Table S1) were the main gene groups involved in element cycling. They were
selected to construct a molecular ecological network based on the correlations between
different genes. The random matrix theory (RMT) approach was used to determine the
correlation threshold for non-random associations from the correlation matrix [27,28]. The
standardized Geochip data were uploaded to a web-based pipeline for network analysis
(http://ieg4.ou.edu/MENA/, accessed on 1 January 2022) [29]. In the pipeline, the data
preprocessing, correlation calculation, and the RMT-based determination of the adjacency
matrix were done in sequence. Finally, the functional gene network was constructed from
the adjacency matrix. The network topology was visualized by Cytoscape 3.8.0. [30]. For
simplicity, we chose the top five genes with high connectivity to display the important
network structure.

2.5. Statistical Analyses

The alpha diversity index and phylogenetic information for functional genes in all sam-
ples were calculated in the web-based pipeline (http://ieg.ou.edu/microarray/, acessed
on 1 February 2022). The differences in alpha diversity index and gene relative inten-
sities between the two lakes were tested for significance by the Student t tests. Three
non-parametric multivariate (Adonis, Anosim, and MRPP) statistical methods were used to
test the differences in gene compositions between the two lakes. The above statistical tests
were done in the R language environment with the packages “vegan” [31] and “base” [32].

http://ieg.ou.edu/microarray/
http://ieg4.ou.edu/MENA/
http://ieg.ou.edu/microarray/
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3. Results
3.1. Environmental Characteristics

There were distinct differences in the physical and chemical properties between the
HL and the RAL (Table 1). The RAL was much larger in area than the HL. The HL was an
acidic lake with a pH of 5.16, much lower than the pH of the RAL sample (8.30). There
were more nutrients in the water in the HL than in the RAL. For example, the total organic
carbon (TOC) was about seven-fold higher in the HL than in the RAL. The contents of
total nitrogen, total phosphorus, and total ferrous in the HL were about 2–4 times those in
the RAL. The content of dissolved inorganic-N (NOx

−) was also slightly higher in the HL
water. The water conductivity was similar in the two lakes.

Table 1. Physical and chemical properties for the HL and the RAL. pH, TOC, TP, TFe, TN, NOx
−,

conductivity, and area.

Lake pH TOC
(mg·L−1)

TP
(mg·L−1)

TFe
(mg·L−1)

TN
(mg·L−1)

NOX
−

(mg·L−1)
Conductivity

(µS·cm−1)
Area
(km2)

HL 5.16 31.9 0.17 0.87 2.04 0.02 297 0.03
RAL 8.3 4.01 0.09 0.21 0.75 0 274 0.15

3.2. Overview of Microbial Functional Gene Composition and Structure

A total of 38,988 genes were detected from all samples, grouped altogether into 12 func-
tional gene categories (e.g., carbon, nitrogen, phosphorus, and sulfur cycling, organic
metabolism, metal homeostasis, secondary metabolism, virulence, and others). Phylogenet-
ically, 1065 genes came from archaea, 3708 genes from fungi, 33,732 genes from bacteria,
and 483 genes were unclassified. The HL exhibited significantly higher gene richness (mean
± SD, 32,463 ± 3158) than the RAL (26,488 ± 3596) (Student t test, p < 0.05, Figure 1A).
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Figure 1. Differentiations between the HL and the RAL in microbial functional genes. (A) gene rich-
ness, significant differences between the HL and the RAL were signified with the “*” above the middle
of bars for different gene categories; (B) the distributions (shared or unique) of the detected genes
in certain biogeochemical cycling processes; and (C) the plot showing detrended correspondence
analysis results based on the Bray–Curtis dissimilarity of functional gene compositions.

The two lakes shared nearly 79% of the total genes, and the HL had many more
unique genes (number: 7430) than the RAL (number: 697). Among the unique genes in
HL samples, the proportion of secondary metabolism genes was the highest (Figure 1B).
Like the situation for gene number, the HL had significantly higher diversity (Shannon
index and Inverse Simpson index) but lower evenness (Pielou’s and Simpson’s evenness)
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values than the RAL (Figure 2). Overall, significant differences in microbial functional gene
compositions were observed between the HL and RAL (Figure 1C, Table S2).
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diversity indexes were used, including the diversity indexes (the Shannon-Weaver index and the
inverse of Simpson) and the evenness indexes (the Pielou’s evenness and the Simpson’s evenness).

3.3. Functional Genes Involved in the C Cycle

The carbon cycling gene category boasted the highest number of genes; the gene intensity
from this category was notably higher in the HL than in the RAL (p < 0.05, Figure 3A,B).

For the carbon fixation pathways, the ATP citrate lyase (aclB), carbon-monoxide dehy-
drogenase (CODH), and ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) gene
groups were detected in both lakes, but only the rubisco gene (a key enzyme involved in
the Calvin cycle [33]) showed a significant difference in signal intensity between the two
lakes (p < 0.01, Figure 3A). The metabolic potential of acetogenesis (i.e., FTHFS (formylte-
trahydrofolate synthetase) in the Wood–Ljungdahl pathway), methanogenesis (i.e., methyl
coenzyme M reductase subunit A (mcrA)), methane oxidation (i.e., pmoA (particulate
methane monooxygenase), and mmoX (soluable methane monooxygenase)) were also sig-
nificantly higher in the HL (Figure 3A, p < 0.05 in all cases). Most of the carbon fixation
genes were derived from Alphaproteobacteria and Gammaproteobacteria, and the relative
proportions of these two bacteria were significantly higher in the HL (p < 0.05, Figure S1).

The total signal intensities of all the examined carbon degradation genes were higher
in the HL compared with the RAL (Figure S2), which may be ascribed to the higher
abundance of some common carbon degradation microorganisms, including Actinobacteria,
Gammaproteobacteria, and Bacilli in the HL (p < 0.05, Figure S1). Compared with the
RAL, the most significantly enhanced carbon degradation genes in the HL were related to
cellulose metabolism (cellobiase, increasing 0.039%), two genes in hemicellulose metabolism
(xylose isomerase (xylA) and xylanase, increasing 0.033% and 0.008%, respectively), and one
involved in starch metabolism (glucoamylase, increasing 0.027%, Figure 3B). However, the
relative signal intensities of two aromatic metabolizing genes (vanillate demethylase (vanA)
and vanillin dehydrogenase (vdh)) and a lignin degradation gene (manganese peroxidase
(mnp)) were lower in the HL (Figure 3B).
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Figure 3. The differences in microbial metabolic potentials between the HL and the RAL based on
the relative gene signal intensities. (A) Carbon fixation and methane cycling processes. i: autotrophic,
ii: acetogenesis, iii: methanogenesis, iv: methane oxidation. (B) Carbon degradation processes.
i: starch, ii: hemicellulose, iii: cellulose, iv: chitin, v: aromatic, vi: lignin. (C) Nitrogen cycling
processes. i: nitrogen fixation, ii: ammonification iii: denitrification, iv: nitrification, v: assimilation N
reduction, vi: dissimilation N reduction, vii: anammox. (D) Phosphorus cycling processes, sulfur
cycling processes and metal metabolism. i: Phosphorus cycle and sulfur cycle (ii: adenylate sulfate
reductase, iii: sulfide oxidation, iv: sulfite reduction, v: sulfur oxidation). The “*”and “**” indicate
significant differences in gene intensities with p < 0.05 and p < 0.01, respectively, in the Student t test.

3.4. Functional Genes Involved in N Cycle

There were 16 gene groups affiliated in the N cycling category, among them the N
fixation genes (nitrogenase gene (nifH)) were the most different between the HL and the
RAL. The relative signal intensity of the nifH in the HL was 0.076% higher than that in the
RAL (Figure 3C). The taxa–function relationship analysis revealed that the nifH is mainly
derived from the Clostridia and Alphaproteobacteria, of which the relative abundances
were significantly higher in the HL (p < 0.05, Figure S3). In addition, the two ammonifica-
tion genes, glutamate dehydrogenase (gdh) and urease (ureC), increased 0.027% and 0.001%,
respectively, more in the HL than in the RAL samples. The nitrification gene (hydroxy-
lamine oxidoreductase (hao)) and the dissimilation N reduction gene (ammonia-forming
cytochrome c nitrite reductase (nrfA)) increased 0.005% and 0.04% more in the HL than in
the RAL samples, respectively (Figure 3C). The same patterns were also observed in the
three denitrification genes (nitrous oxide reductase (nosZ), cytochrome cd1 nitrite reductas
(nirS) and copper containing nitrite reductase (nirK), which increased 0.049%, 0.063%,
and 0.032%, respectively (Figure 3C). Accordingly, the relative abundances of denitrifying
bacteria in Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were sig-
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nificantly higher in HL samples (p < 0.05, Figure S3). By contrast, the metabolic potential of
the assimilation N reduction in the RAL was higher than that in the HL (Figure 3C).

3.5. Functional Genes Involved in Phosphorus and Sulfur Cycle

Among the three phosphorus cycling genes, only the metabolic potential of polyphos-
phate biosynthesis (i.e., the ppk gene) was significantly higher in the HL than in the RAL
(p < 0.01, Figure 3D). This was in accordance with the higher relative abundances of
Gammaproteobacteria and Alphaproteobacteria in the HL (p < 0.05, Figure S4). By con-
trast, the phytase genes involved in phytic acid hydrolyzing and the ppx genes for inor-
ganic polyphosphate degradation had significantly higher metabolic potentials in the RAL
(p < 0.05, Figure 3D).

For the sulfur cycling gene category, the adenylate sulfate reductase genes and the
sulfite reduction genes had significantly higher signal intensities in the HL (Figure 3D,
p < 0.05, in all cases), which was in accordance with the higher abundance of microorgan-
isms involved in adenylate sulfate reductase production (from Deltaproteobacteria and
Gammaproteobacteria) and sulfite reduction (from Deltaproteobacteria) in the HL (Figure
S4, p < 0.05, in all cases). However, the functional potential of a sulfur oxidation gene (sox)
was significantly higher in the RAL compared with the HL (p < 0.01, Figure 3D).

3.6. Microbial Functional Gene Network Analyses

Two functional gene molecular ecological networks were constructed, using 3275 genes
in the HL and 2584 genes in the RAL samples, respectively. We obtained 2005 nodes and
5551 links (66.8% negative and 33.2% positive) for the HL, and 1703 nodes and 4667 links
(54.5% negative and 45.5% positive) for the RAL networks, respectively (Figure 4).
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Figure 4. Differences in the network topology of key functional genes and the connectivity of the top
five ranked genes in the HL and the RAL. The colors of the nodes indicate different functional genes.
The solid black line indicates a positive relationship between the two nodes, and the short-dotted
red line indicates a negative relationship. The size of each node is proportional to the number of
connections (degrees).

The two networks were both scale-free (R2 > 0.85), and the clustering coefficients
and harmonic geodesic distance were significantly different from those of the random
networks (Table 2), suggesting that the fMENs of functional genes in both the HL and the
RAL showed non-random small-world characteristics. Compared with the RAL network,
the HL network generally had longer geodesic distances, lower clustering efficiencies, and
more modules (Table 2). Two of the top five ranked genes in the HL were nosZ, and the
other three were FTHFS, cellobiase, and gdh. Two of the top five ranked genes in the RAL
were sox, and the other three were cellobiase, nosZ, and gdh. The network interactions of the
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five genes in the RAL were more complicated than those in the HL in terms of network
connectivity and topology (Figure 4).

Table 2. Major topological properties of the empirical fMENs of core genes in the HL and the RAL and
their associated random networks. * The number of genes used in the network construction. † The
number of nodes in the fMEN. ‡ The parameters were generated from 100 randomly rewired networks.

Empirical Networks Random Networks ‡

Lake
No. of

Original
Genes *

Similarity
Threshold

(St)

Network
Size (n) †

No. of
Links

R Square of
Power-Law

Average
Connectivity

(avgK)

Harmonic
Geodesic
Distance

(HD)

Average
Clustering
Coefficient

(avgCC)

Modularity
(No. of

Modules)

Harmonic
Geodesic
Distance

(HD ± SD)

Average
Clustering
Coefficient

(avgCC ± SD)

Average
Modularity
(M ± SD)

HL 3275 0.99 2005 5551 0.88 5.537 4.96 0.21 0.842 (279) 3.668 ± 0.012 0.019 ± 0.002 0.396 ± 0.003
RAL 2584 0.99 1703 4667 0.852 5.481 4.585 0.297 0.834 (172) 3.401 ± 0.014 0.052 ± 0.003 0.396 ± 0.003

4. Discussion
4.1. Differences in Microbial Functional Gene Compositions and Structures between the HL
and RAL

In this study, we investigated the functional gene compositions in microbial com-
munities from an HL and a reference natural RAL and found higher diversity and lower
homogeneity in the HL compared to the RAL samples (Figure 2). This may be attributed
to the high content of DOC in the HL water due to an exceptionally large input of al-
lochthonous organic matter [1,2]. As an important nutrient source that may regulate
microbial communities [34], the higher DOC content might sustain more functional genes
to show metabolic activity in HL samples (Figure 1A). Compared with the RAL, the HL
had more special environmental conditions, e.g., low pH, poor light, low oxygen, but high
content of HS (Table 1), which usually represents a harsh environment that filters out the
adapted microbial species and functions [35], meaning lower homogeneity in the HL than
that of the RAL (Figure 2).

For phylogenetic compositions, the HL and RAL shared the same dominant bacterial
phyla, such as Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Verrucomi-
crobia (Figure S5A), which was typical for most lake bacterioplankton communities [36].
However, at the class level, the two lakes had disparate phylogenetic compositions. Com-
pared with the RAL, the relative abundances of the class Gammaproteobacteria, Bacteroidia,
and Bacilli (especially the genus Paenibacillus) were higher in the HL (Figure S5B, Table S3).
The persistent dominance of Gammaproteobacteria and Bacteroidia was also observed in
another humic lake [9]. Interestingly, though the relative abundances of Alphaproteobac-
teria, Actinobacteria, and Verrucomicrobiae were lower, the relative abundances of some
genus within these class, for example, Rhodobacter (Alphaproteobacteria), Microbacteriaceae
(Alphaproteobacteria), and Prosthecobacter (Verrucomicrobiaewas) were much higher in the
HL (Figure S5, Table S3). Some members of the Rhodobacter and Prosthecobacter had a high
capacity for utilizing organic materials [37,38].

4.2. Differences in Metabolic Potentials between the HL and the RAL

Aquatic bacteria play key roles in greenhouse gas emissions in HLs due to their
metabolic activities in utilizing the high content of organic carbon in water [39,40]. Genes
for degradation of a wide range of carbon, ranging from the labile type (e.g., glucoamylase)
to the recalcitrant type (e.g., ligninase), showed higher intensity in the HL than in the RAL,
indicating that the high amount of carbon in the HL water could induce the “priming effect”
for a variety of carbon types. Intriguingly, the carbon fixation gene (i.e., the rubisco gene)
also showed a higher intensity in the HL samples, which may be ascribed to the fact that the
HL inhabited more Gammaproteobacteria, from which many autotrophic microorganisms
use the Calvin cycle for carbon fixation [41]. Previous studies have reported that HSs
could stimulate CH4 oxidation by acting as an electron shuttle and extracellularly directing
electrons to high-valent chemicals [42]. This stimulation of CH4 oxidation was verified by
our study, in that the metabolic potential of methane oxidation (i.e., pmoA and mmoX) was
significantly higher in the HL than in the RAL. Accordingly, the aerobic MOB from the
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genus Methylobacter (Gammaproteobacteria) were more abundant in the HL. The elevated
methane oxidation may further lead to local oxygen scavenging [43], resulting in a positive-
feedback loop to sustain higher potential methanogenesis (mcr gene more intensified,
Figure 2) in anoxic microsites.

Our study showed that there was a significant difference in the relative signals of the
nifH gene group between the HL and RAL (Figure 3C, p < 0.05). The main components
of humic (humic acid and fulvic acid) can significantly increase the growth efficiency and
nitrogen fixation capacity of N-fixing bacteria [44]. Denitrification, as a heterotrophic
pathway, is an important link between the C and N cycles. Previous studies have revealed
that humic acid could promote heterotrophic denitrifying bacteria, such as the Thauera,
which could utilize HSs as an electron shuttle to improve denitrification performance,
especially for nitrite reduction [45]. They were also detected in our study, and their nosZ
and nirS intensities were significantly enhanced more in the HL than in the RAL (Student t
test, both cases, p < 0.05). The relative intensities of most denitrification genes (except the
narG and norB) were higher in the HL than in the RAL, implying that the denitrification
processes (though not all steps) were promoted (Figure 3, p < 0.01), which may result in the
quick removal of N in the water. This may help explain why there was much less difference
in NOX

− contents, compared with the great difference in TN content, between the two
lakes (Table 1). The enhanced nitrogen-fixing and denitrification processes implicated more
rapid N cycling in the HL than in the clear RAL.

We observed enhanced microbial sulfate reduction potential but lower sulfide oxida-
tion potential in the HL than in the RAL (Figure 3D). The high organic carbon availability
in HLs was preferential for the heterotrophic sulfate-reducing bacteria [46], and the high
content of humic substances often leads to lower oxygen levels in HL water [47], which
may promote sulfur reduction but inhibit sulfur oxidation. The enhanced sulfate reduction
and lower sulfide oxidation suggested more deposition of sulfur (e.g., in the form of sulfide
metal) in the HL. We also observed less phosphorus degradation potential in the HL than in
the RAL (Figure 3D). The humic acid fractions could inhibit phosphatase by binding with
some active sites of plant-derived enzymes [48] and inhibit the activity of plant phytase
by forming complexes with the enzyme substrates and having considerable absorption
properties [49]. Our results suggest that similar mechanisms may also be responsible for
microbial phosphatase and phytase (i.e., the lower ppx and phytase gene intensities) in the
HL water.

4.3. Potential Interactions between Functional Genes

The special environmental characteristics of the HL resulted in distinct microbial
community structures and also special functional gene network topological traits compared
with the RAL. The negative links in the network may represent the competition or difference
in metabolic preferences among community members [50,51]. In our study, the HL network
had a higher proportion of negative correlations, which implicated that the refractory
HSs aggravated the competition in HL microbial communities [35]. The networks with
a shorter path length can transmit environmental fluctuations to the whole network in
a shorter time and rapidly change the structure and function of the network [17]. The
higher percentage of positive links in a network also favored quick and broad feedback
in the community to environmental perturbations [52]. The average path distance was
longer and the positive edge proportion was smaller in the HL, which indicated that the
interactions between functional genes in the HL might be less efficient and respond less
quickly to the changes in the environment than those in the RAL. Some studies have shown
that the bacterial communities in a humic lake were relatively resilient to extreme weather
events [53]. In addition, there was higher resource availability in the HL water (reflected by
the higher contents of organic carbon, total nitrogen, phosphorus, and ferrum) (Table 1),
which might reduce the inter-dependent relationships between different functional groups
in acquiring nutrients for their growth [54]. Two of the top five high-degree genes in the
HL network were the nosZ gene, highly connecting with the cellobiase, nrfA, and xylA genes,
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which reflected the enhanced nitrogen-reduction processes, and these processes depended
on the degradation of organic carbons in the HL water. The highlighted sox gene in the
RAL network reflected that the sulfur oxidation was characterized in the clear water of
the RAL, which developed high correlations with the carbon-fixation genes (rubisco and
FTHFS) and the nosZ gene. Similar gene co-occurrence of the sox and the carbon-fixation
and denitrification genes were also found in a movile cave [55], which suggested that
the chemolithoautotrophic sulfur-oxidizing bacteria might play a key role as a primary
producer in the studied RAL ecosystem.

5. Conclusions

Our study showed that the special environmental characteristics in the HL water (high
content of organic matter (with the humic substances as the main component), total nitrogen
and phosphorus, and relatively low pH) could impact bacterioplankton communities to
form unique functional gene compositions and result in disparate ecological processes
compared with the reference RAL. The abundant organic matter might shed “priming
effects” for the degradation of various carbon types in the HL and increase the metabolic
potential of microorganisms to participate in processes such as methanogenesis, nitrogen
fixation, and denitrification. These processes may lead to enhanced emissions of greenhouse
gases (CO2, CH4, and N2O) in HLs [56]. However, the relatively low pH and some humic
fractions in the HL water may exert inhibitions on the degradation of aromatic organic
carbon, sulfur oxidation, and phosphorus degradation in the HL (Figure 5). The high
amount of organic matter in the water might also change the interactions among different
functional microorganisms, reducing the inter-dependent (or synergistic) relationships
within the community to acquire nutrients for their growth. The validity of our results
could be further tested using biogeochemical monitoring and other “omic” approaches
(such as metatranscriptomics, metaproteomics, and metabolomics).
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