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SUMMARY
Estrogen and progesterone have been extensively studied in the mammary gland, but the molecular effects
of androgen remain largely unexplored. Transgender men are recorded as female at birth but identify as male
and may undergo gender-affirming androgen therapy to align their physical characteristics and gender iden-
tity. Here we perform single-cell-resolution transcriptome, chromatin, and spatial profiling of breast tissues
from transgender men following androgen therapy. We find canonical androgen receptor gene targets are
upregulated in cells expressing the androgen receptor and that paracrine signaling likely drives sex-relevant
androgenic effects in other cell types. We also observe involution of the epithelium and a spatial reconfigu-
ration of immune, fibroblast, and vascular cells, and identify a gene regulatory network associated with
androgen-induced fat loss. This work elucidates the molecular consequences of androgen activity in the
human breast at single-cell resolution.
INTRODUCTION

Hormones regulate mammary gland development, menstrual

cycles, pregnancy, lactation, and malignant transformation.

The most critical hormones for tissue homeostasis are estrogen,

progesterone, prolactin, and oxytocin, which signal via receptors

in luminal and myoepithelial (basal) cells constituting the mam-

mary epithelium. Oxytocin receptors (OTR) are expressed by

myoepithelial cells, while the intracellular nuclear receptors for

estrogen and progesterone (ER and PR, respectively) and the

transmembrane receptor for prolactin (PRLR) are expressed by

luminal epithelial cells.1–3 These hormone receptor-expressing
This is an open access article under the CC BY-N
(HR+) cells communicate hormone signals to proximal cells via

paracrine signaling cascades that stimulate growth and secre-

tory activity depending on reproductive status.4

Androgen acting via the androgen receptor (AR) is another

important sex hormone in women that modulates breast devel-

opment and function. AR is more ubiquitously expressed than

ER or PR and is detected in multiple breast cell subtypes,

including epithelial cells, fibroblasts, and adipocytes.5,6 It is

generally accepted that androgens counteract estrogen and

can inhibit thelarche (pubertal breast development) in boys and

in girls with pathologically elevated androgen levels.7,8 AR is ex-

pressed in 60%–90% of all breast cancers, and recent data
Cell Genomics 3, 100272, March 8, 2023 ª 2023 The Author(s). 1
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Figure 1. Multi-modal single-nuclei sequencing and spatial proteomics identify molecular distinctions between the breasts of transgender

men and cisgender women

(A) Color code for breast samples analyzed, as well as the age, menopausal status, and length of androgen therapy for their corresponding patient.

(B) Uniform manifold approximation and projection (UMAP) plots annotated by cell type (left) and gender ID (right), with snRNA-seq on top and snATAC-seq data

at the bottom. Luminal-HR+, hormone receptor-expressing luminal cells; luminal-HR–, hormone receptor-negative luminal cells; basal, basal/myoepithelial cells;

blood EC, blood endothelial cells; lymph. EC, lymphatic endothelial cells; vasc. acc., vascular accessory cells.

(legend continued on next page)
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show AR is a tumor suppressor in ER+ disease.5,9 This opens

possibilities for context-specific AR-targeted breast cancer

treatments and demands a deeper understanding of androgen

action in the breast.9,10

One opportunity to study androgen signaling in the human

breast lies in tissues from transgender men receiving gender-

affirming treatment. Transgender describes a discordance be-

tween the gender identity of a person and their sex recorded at

birth.11 Transgender men are recorded female at birth, but iden-

tify as male, while cisgender women are recorded female at birth

and identify as such. Many transgender men undergo gender-af-

firming androgen therapy, which is often complemented by

gender-affirming mastectomy.12–15

This study elucidates changes induced in the breasts

following exposure to androgen. We performed single nucleus

RNA and assay for transposase-accessible chromatin (ATAC)

sequencing (small nuclear RNA sequencing [snRNA-seq] and

small nuclear ATAC sequencing [snATAC-seq]) on mastectomy

specimens from transgender men undergoing gender-

affirming androgen therapy and compared them to samples

from cosmetic mammary surgeries in cisgender women. We

also used co-detection by indexing (CODEX) multiplex immu-

nohistochemistry (IHC) staining to study structural changes

and how androgen influences cell-cell interactions. This multi-

modal single-cell atlas represents a comprehensive resource

to study the molecular consequences of androgen activity in

the human breast.

RESULTS

Breast cells are silenced by androgen exposure
We analyzed nuclei and tissues from nine transgender men un-

dergoing gender-affirming androgen therapy and subcutane-

ous mastectomy. For comparison, we studied breast tissue

from nine cisgender women who had cosmetic mammary sur-

gery (Figures 1A and S1A–S1C; Table S1; STAR Methods). We

refer to samples from cisgender men, transgender men, and

cisgender women as cis-male, trans-male, and cis-female

respectively. We analyzed 38,762 trans-male and 66,926 cis-

female nuclei with snRNA-seq, as well as 30,927 trans-male

and 27,459 cis-female nuclei with snATAC-seq. Cells were

classified in the transcriptomic data using curated markers,

whose promoter accessibilities were used to annotate corre-

sponding snATAC-seq populations (Figures 1B, S1D, and

S1E; Table S2). We also created eight tissue microarrays

(TMAs) from the left and right breasts of most individuals that

we analyzed with a CODEX antibody panel designed based

on the nuclei data, providing spatial information for 161,241
(C) Fluorescence microscopy images of breast tissues, with each marker identifyi

HR+; ACTA2, smooth muscle structures; CD31, endothelial; LYVE1, lymphatic ve

(D) Uniquemolecule identifiers (UMIs) detected in each cell of the snRNA-seq data

excluding 43 outliers to improve interpretability (p values, Wilcoxon: ***p % 5.29

(E) Mean fraction of spliced transcripts detected in the snRNA-seq data based

excluding 49 outliers to improve interpretability of the plot (p values, Wilcoxon: *

(F) Ratios of nucleosome bound to nucleosome-free genomic fragments in each

limits were set to 0.3–1.5, excluding 90 outliers to improve interpretability of the pl

10�5).
trans-male and 156,842 cis-female cells (Figures 1C and S1C;

Table S3; STAR Methods).

Within the snRNA-seq data, the epithelium contained hormone

receptor-positive and -negative luminal cells (luminal-HR+ and

luminal-HR�, respectively), as well as myoepithelial/basal cells

(Figures 1B and S1D). The vasculature contained blood and

lymphatic endothelial cells (blood EC and lymph. EC) as well as

pericytes and vascular smooth muscle cells, which clustered

into a group we termed vascular accessory cells (vasc. acc.).

The stroma contained adipocytes and fibroblasts, while the im-

mune compartment harbored myeloid and lymphoid clusters

(Figures 1B and S1D). snRNA- and snATAC-seq cell proportions

were correlated, except vascular accessory cells were not de-

tected in the chromatin samples, where epithelial cells consti-

tuted greater proportions, likely due to cell-type-specific vulnera-

bilities to the different assay conditions (Figures 1B, S1F, and

S1G).Most TMA cells could be correspondingly annotated based

on staining patterns, but some stromal cells were negative for all

markers (designated stroma-other) and a group of cells that

exclusively stained for the actin regulatory protein ENAH could

not be identified (Figures S1H and S1I).

Our cohort contained pre- and post-menopausal cis-female

samples, enabling analysis of how menopausal status affected

comparisons (Figure S1J; Table S1). Relative to androgen-

induced changes, there were few differences between cells

from pre- and post-menopausal cis-female samples or between

cells from different types of cosmetic surgeries (Figures S2A and

S2B). Furthermore, similar differential gene-expression patterns

were observed when trans-male cells were compared with pre-

and post-menopausal cis-female cells (Figure S2C). Based on

these observations, pre- and post-menopausal cis-female sam-

ples were consolidated for subsequent analyses.

There were fewer unique molecular identifiers and genes

captured in trans-male nuclei despite higher corresponding

library sequencing saturation rates (Figures 1D and S3A).

Analysis of the Genotype-Tissue Expression (GTEx) database

also found fewer genes expressed in cis-male breast tissues

compared with cis-female samples (Figures S3B and

S3C). Pathway analysis showed no indication of cell stress,

apoptosis, or degradation, while instead revealing upregulation

of splicing factors in the trans-male samples, consistent with

increased rates of exon mapping read counts (Figures 1E,

S3A, and S3D; Table S4). Genes related to protein translation

were also downregulated, coinciding with a higher degree of

nuclear condensation, although DAPI staining indicated nuclei

were not smaller in trans-male samples, with some cell types

showing increased staining areas (Figures 1F, S3D, and S3E;

Table S4).
ng a major cell class or structure: KRT8, pan-luminal; TP63, basal; AR, luminal-

ssels; PDGFRB, fibroblasts; CD45, immune; PLIN1, adipocyte.

, split by cell types and gender ID. Horizontal axis limits were set to 350–30,000,

3 10�203, **p % 1.63 3 10�97, *p % 2.66 3 10�71).

on velocyto (La Manno et al., 2018).16 Horizontal axis limits were set to 0–50,

**p % 2.32 3 10�277, **p % 6.33 3 10�93, *p % 5.04 3 10�6).

cell of the snATAC-seq data, split by cell types and gender ID. Horizontal axis

ots (p values, Wilcoxon: ***p% 3.763 10�137, **p% 4.673 10�45, *p% 7.643
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Figure 2. Hormone-responsive epithelial cells of the trans-male breast are altered for genes that show sex bias in other tissues

(A) UMAP of luminal-HR+ snRNA-seq data showing detected subclusters with RNA-velocity streams overlayed (left) and gender identity (right).

(B) RNA-velocity pseudotime ordering of trans-male and cis-female luminal-HR+ cells. Time 0 (T0) in the center and respective endpoints of cis-female and trans-

male lineages (T1) at the outer maxima. Annotation bars show gender identity and subcluster assignment of each cell. Rows are annotated with highly differ-

entially expressed genes or subcluster markers.

(legend continued on next page)
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Hormone-responsive luminal cells activate male gene
programs during androgen therapy
Luminal-HR+ cells, the only cell type to express RNA for AR,

ESR1, and PGR, showed the largest treatment-associated chro-

matin changes (Figures S3F and S3G). This luminal subclass

formed six subclusters that showed strong trans-male and cis-

female bias (Figures 2A, S4A, and S4B). RNA-velocity analysis

also suggested trans-male and cis-female cells follow diverging

trajectories to terminate at two distinct states (Figures 2A and

2B). The luminal-HR+ subcluster containing most trans-male

cells (lup 2) was associated with fatty acid metabolism and cal-

cium signaling, while the major cis-female subclusters (lup 1

and lup 3) were associated with growth factors and estrogen

signaling as well as mammary gland development (Figure S4B;

Table S5). There was also one minor subcluster, making up

only 3% of lumina-HR+ cells, which was enriched for ribosomal

genes (labeled ‘‘ribo’’) and another subgroup modestly associ-

ated with trans-male cells that expressed cycling genes (labeled

‘‘cycling’’), but it only constituted 0.4% of the population and

cycling genes were unchanged overall (Figures 2A and S4B;

Tables S5 and S6). The most evenly shared subcluster (lup 4)

associated with steroid metabolism and androgen response

genes and had low ESR1 expression (Figures 2A, 2C, and

S4B; Table S5). Coincident with luminal progenitors being ER�

and lipid metabolism being a regulator of progenitor cell mainte-

nance, various trajectory analyses implied lup 4 might represent

a less differentiated state (Figures 2A, 2B, S4C, and S4D).2,17

Androgen did notmarkedly affectAR orESR1 levels in luminal-

HR+ cells, but the canonical ER target PGR was reduced, in

accordance with other studies of AR action in the breast

(Figures 2C and S4A).9,18 However, AR nuclear to cytoplasmic

AR staining ratios were higher in trans-male luminal-HR+ cells

and AR-motif accessibility increased, indicating enhanced ca-

nonical AR activity (Figures 2D, S4E, and S4F). In addition to

androgen response elements (AREs), trans-male cells showed
(C) Left panel overlays hormone receptor RNA expression on UMAP from (A). R

across luminal-HR+ cells in the CODEX data (p value, Wilcoxon: PGR = 0.00041

(D) Left panel shows per nucleus ChromVAR motif enrichment z scores for AR

luminal-HR+ snATAC-seq data (p value, Wilcoxon: <2.2 3 10�16). Right panel sh

from each TMA region (p value, Wilcoxon: 0.00021).

(E) RYR2 chromatin accessibility (top) for cis-female (purple) and trans-male (ora

CCCTC-binding factor (CTCF). The RYR2 gene body (light green) is shown with

chromatin accessibility data for the genomic region in tissues with varying RYR

structure of the same region in PANC-1 (pancreas) and MCF-10A (breast) cell lin

(F) AR-motif binding sites (redmarkers) across open chromatin regions of theCUX

(light green), exon boundaries (dark green), and promoter (arrow) are shown belo

(G) Average RNA (left, adjusted p value, model-based analysis of single-cell tran

(right, p value, Wilcoxon: 0.027) of CUX2 in cis-female and trans-male tissues.

(H) Effect sizes of CUX2 sex bias in GTEx tissues, as a function of median AR expr

and male bias, respectively.

(I) Chromatin accessibility (top) around the PGR locus in trans-male and cis-femal

with promoter (arrow) and exon boundaries (dark green). The one significantly a

covery rate [FDR] <0.05), magnified on the bottom left. Bottom right shows impor

co-bind with AR and determine the directionality of the transcriptional change, wi

panel.

(J) Top left panel shows AR, JUN, and ESR1 chromatin footprints in cis-female

chromatin accessibility in peaks containing no ESR1 motif, only ESR1 motifs, or b

peaks overlapping only ESR1 motifs or both ESR1 and JUN motifs among all, cis

shows the fraction of peaks overlapping both ESR1 and JUN motifs that had in v
increased binding motif accessibility for other steroid receptors

and several members of the forkhead family of transcription fac-

tors, consistent with known features of AR signaling (Fig-

ure S4G).19,20 This is exemplified by differential upregulation of

Ryanodine receptor 2 (RYR2) at both the RNA and protein level

(Figures 2E, S2C, and S4H; Table S6).21 RYR2 regulates heart

and blood vessel calcium signaling events and calcium-depen-

dent insulin secretion in the pancreas.22–24 In these organs,

RYR2 loci show accessibility at AR and FOXA1 DNA binding mo-

tifs that are natively inaccessible in breast tissue (Figure 2E).23,25

AR activation in luminal-HR+ cells also induced altered chro-

matin accessibility around the promoter of the most upregulated

transcription factor, CUX2 (Figures 2F, 2G, and S2C; Table S6).

CUX2 normally shows the highest expression in the prostate,

and CUX2 is also higher in cis-male liver and breast samples

compared with cis-female tissues (Figures 2H and S5A). Indeed,

the top up- and downregulated genes in luminal-HR+ cells

showed strong cis-male and -female sex bias, respectively, in

breasts and other organs (Figures S5B–S5E).

Most trans-male patients, including all studied here, experi-

ence cessation of menses within 6 months of treatment. Hence,

we thoroughly examined PR activity, which is critical for ovula-

tion and was the most downregulated transcription factor in

androgen-treated luminal-HR+ cells (Figure S2C; Tables S1

and S6).26–28 Consistent with published AR chromatin immuno-

precipitation sequencing (ChIP-seq) data, our snATAC-seq

data showed multiple areas of open chromatin overlapping

AREs near the PGR locus, but only one small open chromatin

peak emerged after androgen therapy (Figure 2I).9 Notably,

that peak and others contain binding motifs for transcription fac-

tors identified in a broader analysis as likely co-repressors at

accessible ARE-associated downregulated genes, with NFIC

and FOXA1 also showing co-regulatory function in the prostate

(Figures 2I and S6A; STAR Methods).29,30 PGR motif accessi-

bility gains after androgen therapy were only superseded by
ight panel shows boxplots of hormone receptor staining intensities averaged

).

(Catalog of Inferred Sequence Binding Preferences [CisBP] M03389_2.00) in

ows average nuclear to cytoplasmic staining ratios for AR in luminal-HR+ cells

nge) luminal-HR+ cells, with highlighted motif binding sites of AR, FOXA1, and

promoter (arrow) and exon boundaries (dark green). Also shown (center) is

2 expression and Hi-C data (bottom) comparing three-dimensional chromatin

es.

2 locus in luminal-HR+ cells from cis-females and trans-males.CUX2 gene body

w.

scriptomics [MAST]: <2.2 3 10�16) and per-region average staining intensity

ession (vertical axis and dot size). Positive and negative values indicate female

e luminal-HR+ and luminal-HR– cells. The PGR gene body (light green) is shown

ltered chromatin peak is indicated by a gray shaded area (Wilcoxon false dis-

tance levels of transcription factors inferred through random forest analyses to

th the corresponding DNA binding sites at the PGR locus shown above the top

and trans-male luminal-HR+ cells. Bottom left panel shows average log2FC of

oth ESR1 and JUN motifs. Bottom right panel shows the fraction of chromatin

-female-specific, and trans-male-specific luminal-HR+ peaks. Top right panel

itro ChIP-seq evidence for both JUN and ESR1 binding.
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Figure 3. AR activity drives fibroblast’s response to hormone-replacement therapy

(A) UMAP depicting fibroblast subclusters (top) in snRNA-seq data (matrix 1 and 2,matrix-type fibroblasts; lipo-f, lipo-fibroblasts; vasc-f, vascular-like fibroblasts)

and the distribution of patient samples in each gender identity (bottom).

(B) Heatmap shows scaled average expression of snRNA-seq markers identified for each of the fibroblast subclusters.

(C) Motif footprints for AR (AR-CisBP M03389_2.00) among trans-male and cis-female fibroblast cells. Top panel shows the transposase bias-corrected signal,

and the bottom panel shows the transposase bias.

(D) Right panel shows the enrichment of motifs among unique accessible chromatin peaks of fibroblast cells from cis-female and trans-male samples. Left panel

shows the fraction of the peaks of the corresponding cells that overlap with the motif.

(E) Average ratio of AR staining intensity in fibroblast nucleus compared with the cytoplasm in tissue regions of each sample type (p value, Wilcoxon; 1.23 10�8).

(F) Left panel boxplots show the fraction of cis-female (purple) and trans-male (orange) cells corresponding to five different classes of fibroblasts detected in

tissue regions of CODEXmicroarray data (p values, Wilcoxon: fibr-main = 0.00011, fibr-epi = 0.0046). Right panel shows the scaled staining intensities of various

markers that distinguish the five subtypes of fibroblasts.

(G) Boxplots show per-region average distance for each of the five subtypes of fibroblasts to the most proximal epithelial cell.

(H) Violin plots show the RNA expression of laminins LAMA2 (top) and LAMB1 (bottom) in fibroblast subclusters, split by sample type (adjusted p values, MAST:

LAMA2 in lipo-f = 2.603 10�63, matrix 1 = 5.113 10�175, matrix 2 = 1.033 10�69, vasc-f = 1.993 10�10; LAMB1 in lipo-f = 3.713 10�35, matrix 1 = 1.463 10�55,

matrix 2 = 3.08 3 10�87, vasc-f = 2.58 3 10�13).

(I) AR binding sites (red markers) across genomic regions of LAMA2 and LAMB1. Gene bodies are shown (light green) with the promoter (arrow) and exon

boundaries (dark green). Genomic window shows chromatin accessibility in cis-female (purple) and trans-male (orange) fibroblasts.

(legend continued on next page)
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those for AR and NR3C1, which is likely an artifact of AR and

PGR motif sequence similarity based on reduced levels of PGR

RNA and protein expression (Figure S4G).31,32 Indeed, PGR

binding sites were enriched near AREs, and linear regression

showed PGRmotif accessibility could not be predicted from cor-

responding gene expression like for other nuclear receptors

(Figures S6B and S6C).

ER binding motif accessibility was largely unaltered by

androgen therapy, but estrogen signaling pathways were down-

regulated (Figures 2C, 2J, S3F, and S4B; Table S6). AR can

sequester essential ER co-activators, and one related mecha-

nism for estrogen signaling regulation in the normal breast may

involve AP-1 transcription factors such as BATF, which facilitate

ER signaling (Figures S2C, S4B, S4G, and S6D; Table S6).9,33,34

The archetypical AP-1 factor JUN, which physically interacts

with both ER and AR, was also decreased in expression and

motif accessibility, and ER binding sites co-located with JUN

motifs were more likely to decrease in accessibility after

androgen therapy (Figures 2J and S2C; Table S6).35–38

Among genes potentially affected by lowered ER and AP-1

factor binding, we found the growth factors amphiregulin

(AREG) and epiregulin (EREG), which are estrogen responsive

in breast cancer (Figures S2C, S5E, and S6E–S6G;

Table S6).39–43 However, at the protein level, AREG increased

and became more concentrated in luminal-HR+ cells (Fig-

ure S6G). AREG secretion depends on membrane-bound pro-

AREG cleavage via matrix metalloproteases such as ADAM17,

which is downregulated in luminal-HR� and basal cells, poten-

tially causing un-cleaved pro-AREG accumulation in luminal-

HR+ cells (Figure S6H).44,45 This may also explain why the

AREG receptor EGFR was downregulated in neighboring basal

cells but upregulated in luminal-HR+ cells (Figure S6I).

Altered fibroblast signaling to epithelial cells through
reduced laminin production
Fibroblasts are AR+ cells that influence the breast epithelium

through the extracellular matrix (ECM; Figure S3F).46,47 Based

on RNA, breast fibroblasts consist of two matrix subtypes, a

lipo-fibroblast group expressing PPARG and vascular-like cells

that express endothelial genes such as NRP1 (Figures 3A and

3B; Table S5).48,49 Chondrocytes were also detected. After

androgen therapy, fibroblasts show increased AR-motif accessi-

bility, centrality of AR-motif occurrence with respect to peak

summit, and increased AR nuclear to cytoplasmic staining

(Figures 3C–3E). Immunostaining also showed higher propor-

tions of AR+ fibroblasts (fibr-main) and an AR+ epithelial associ-

ated (fibr-epi) fibroblast subgroup staining for keratin 8 and 23

due to epithelial cell proximity (Figures 3F and 3G).

TheECMconstituent laminins LAMB1 and LAMA2were down-

regulated after androgen therapy andwere also lower in cis-male

breast samples (Figures 3H, S2C, and S5E; Table S6). Chromatin

data suggest ARE accessibility and a potential for direct AR-

mediated repression at these laminins, but no differentially
(J) Boxplots show per-region average LAMA2 (left) and LAMB1 (right) staining int

Wilcoxon: LAMA2 = 0.64, LAMB1 = 0.0079).

(K) Boxplots show the average RNA expression of ITGB1 among luminal-HR+, lu

10�16).
accessible peaks emerged after androgen therapy (Figure 3I).

LAMB1 immunostaining was also reduced in trans-male cells

from the LAMB1+ subcluster (fibr-LAMB1+), but LAMA2 protein

changeswere not detected (Figures 3F and 3J). When examining

possible responses to altered laminin composition, we found the

ITGB1 integrin receptor for LAMB1 was downregulated in ECM

interfacing basal cells (Figure 3K).50,51

The breast epithelium shows reduced myoepithelial
coverage and becomes infiltrated by stromal cells after
androgen therapy
Androgen response was also studied in the basal and luminal-

HR� cells that constitute the rest of the epithelium (Figures 1B

and S7A). Acini and ductal structures had reduced size and

proximal ACTA2 staining coverage after androgen therapy

(Figures 4A, 4B, S7B, and S7C). Basal cell proportions were un-

changed in the RNA data, but androgen therapy transitioned

these cells away from two subclusters (bas 1 and bas 3) toward

one other (bas 2) with reduced expression of the lactation-asso-

ciated genes ACTA2 and OXTR as well as TP63, suggesting

contractile impairment, but only TP63 showed corresponding

protein changes (Figures 4C, 4D, and S7D; Table S5).52–54

OXTR gene expression was also lower in cis-male breast sam-

ples, and RNA-velocity analysis indicated androgen-treated

basal cells follow a unique trajectory and converge at a terminal

state where smooth muscle contraction, focal adhesion, and cell

junction organization are reduced (Figures 4C, 4E, S5E, and

S7E). For the latter pathway, this likely results from reduced

BACH2 expression, whose DNA binding motif is enriched at

corresponding genes and whose expression is also lower in

cis-male breasts (Figures 4F, S5E, S7F, and S7G; Table S7).

Luminal-HR� cells showed no subcluster redistribution

following androgen therapy, but structural pathways of focal

adhesion, adherens junctions, and actin cytoskeleton regulation

were downregulated (Figures 1B, 4G, S7H, and S7I; Tables S6

and S7). Significant loss of ITGA2 and ITGB8 in androgen-

treated luminal-HR� cells and in epithelial enriched cis-male

breast samples were observed (Figures 4H and S5C). Among

matching integrin ligands, there was decreased expression of

the ECM component and critical cell adhesion and morphology

regulator FN1 in fibroblasts and lymphatic endothelial cells (Fig-

ure 4H).55–57 Overall staining intensity of FN1 was not decreased

in these cell types after androgen therapy, but fewer FN1+ fibro-

blasts were identified near the epithelium (Figures 3F, S8A, and

S8B). Furthermore, DNA binding motifs for the androgen-

responsive gene estrogen-related receptor gamma (ESRRG)

are over-represented in chromatin peaks proximal to focal

adhesion genes in these cells (Figures 4G and 4I).58,59

Androgen therapy decreases capillary vasculature near
the breast epithelium
IHC analysis showed breast acini and ducts have a higher pro-

portion of non-epithelial cells in their proximity after androgen
ensities in the LAMB1+ fibroblast subtype on CODEX microarray data (p value,

minal-HR–, and basal epithelial cells (adjusted p value, MAST in basal <2.22 3

Cell Genomics 3, 100272, March 8, 2023 7
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Figure 4. Epithelial cells without hormone responsiveness lose contractile functions upon androgen therapy

(A) Images from CODEX data showing mammary acini structures from cis-female (top) and trans-male (bottom) tissues marked by expression of ACTA2 (basal

cells, purple), TP63 (basal cell nuclei, blue), and KRT8 (luminal cells, green).

(B) Average area of acinar structures (left panel) and average area of acini border that was filledwith ACTA2 signal (see Figure S7C andSTARMethods) among cis-

female and trans-male tissues (p values, Wilcoxon: area = 0.026, ACTA2 coverage = 0.012).

(C) UMAP of basal cell subclusters in snRNA-seq data (top) and the distribution of trans-male and cis-female cells across them (bottom).

(D) RNA expression of ACTA2, OXTR (lactation markers), and TP63 in basal cells of trans-male and cis-female samples (adjusted p values, MAST: ACTA2 =

8.86 3 10�296, OXTR = 9.59 3 10�262, TP63 = 1.16 3 10�96).

(E) Module scores of enriched pathways overlaid on the basal cell UMAP (REAC, Reactome; KEGG, Kyoto Encyclopedia of Genes and Genomes).

(F) Right panel shows the enrichment of motifs among unique accessible chromatin peaks from trans-male and cis-female basal cells. Left panel shows the

fraction of peaks from the corresponding cells that overlap with the motif.

(G) Kernel density estimation of module scores for selected altered structural pathways in luminal-HR– cells (p values, Wilcoxon: KEGG, adherens junction =

4.13 3 10�285; KEGG, focal adhesion = 1.42 3 10�255; KEGG, regulation of actin cytoskeleton <1.42 3 10�255).

(H) Average RNA expression (top) of integrin receptors from the ‘‘KEGG: regulation of actin cytoskeleton’’ pathway in luminal-HR– cells (adjusted p values, MAST:

ITGA2 = 4.89 3 10�201, ITGB8 = 6.40 3 10�267) and average expression of the ITGA2 and ITGB8 ligand FN1 in fibroblast subclusters and lymphatic endothelial

cells (bottom) from trans-male and cis-female samples (adjusted p values, MAST: matrix 1 = 1.663 10�54, matrix 2 = non-significant [n.s.], lipo-f = 1.323 10�16,

vasc-f = n.s., lymph. EC = 3.13 3 10�99).

(legend continued on next page)
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therapy (Figures 4J and 4K). With fibroblasts being the largest

group found between individual acini, this might explain previ-

ously reported fibrosis in transgender male breast tissue (Fig-

ure S8C).60,61 One other infiltrating population was endothelial

cells (Figures 5A and S8C). In the snRNA-seq data, blood endo-

thelial cells (blood EC) consisting of arterial, capillary, and

venous cells, were called according to established signatures

(Figures 5B and S9A–S9C).62 Lymphatic endothelial cells ex-

pressing PDPN, LYVE1, and FLT4 formed two subclusters

(lymph. EC and lymph. EC2), while pericytes and two subclusters

of vascular smooth muscle cells (vasc. SM1 and vasc. SM2)

formed what we termed vascular accessory cells. IHC found

CD31+ cells separated into an ACTA2+ contractile subgroup

(endo-SMA), a CD45+ immune-associated subgroup (endo-

immu.), and another group expressing LNX1 and CD36, resem-

bling capillaries (endo-LNX1+; Figures S9D and S9E). Lymphatic

ECs, expressing LYVE1 and PDPN, were represented in the

epithelial neighborhood and were increased after androgen ther-

apy based on all data modalities (Figures 5C and S9D–S9H).

RNA and staining data also indicated capillaries were reduced,

particularly near ductal structures (Figures 5C, S9F, and S9H).

RNA-velocity analysis found capillaries have a distinct terminal

state of differentiation that appears driven by PPARG (Figure 5D).

This was corroborated by the specific expression of a PPARG

gene regulatory network (GRN) in capillaries, which contained

PPARG-associated lipid-metabolism markers FABP4 and

CD36andwasenriched for angiogenesis andblood vessel devel-

opment pathways also likely to be downstream of PPARG

(Figures 5E, 5F, and S9I; Table S4).63,64 This implies androgen-

driven PPARG and PPARG GRN loss drives reduced capillary

proportions (Figures 5Eand5G). Additionally, we found that, after

androgen therapy, AR+ adipocytes and matrix 2-type fibroblasts

upregulate the anti-angiogenic CD36 ligand Thrombospondin 1

(THBS1) also found higher in adipose and fibroblast enriched

cis-male breast samples (Figures 5H and S5E).65,66 The vascular

growth factor VEGFA is also upregulated in adipocytes after

androgen therapy, and lymphatic endothelial cells are the only

cell type that increases expression of both the corresponding re-

ceptor KDR (VEGFR2) and FLT4, which dimerize to promote

angiogenesis (Figure 5H).67,68 This may underlie increased

lymphatic endothelial cell numbers after androgen therapy, and

pathway analyses find VEGFR2-mediated cell proliferation is

also higher at this time (Figure S9J).

Androgen therapy reshapes the breast immune
microenvironment
Sub-clustering of immune populations, which are also well rep-

resented near the breast epithelium, revealed CD8+ and CD4+

T cells, T effector cells, natural killer (NK) cells, and two classes
(I) Fisher exact test odds ratio (x axis) and –log10 p value (y axis) corresponding to e

of the "WikiPathways: focal adhesion pathway.’’ Colors indicate log2 fold change

motifs represent transcription factors without differential gene expression amon

annotated within the focal adhesion pathway (right) that contain a chromatin pea

(J) Spatial distribution of epithelial, stromal, immune, and endothelial cells in an

samples.

(K) Ratios of stromal to epithelial cells in the epithelial neighborhood (see Figur

microarray data (p value, Wilcoxon: 0.0052).
of B cells, while the myeloid compartment consisted of mono-

cytes, macrophages, monocyte-derived dendritic cells (labeled

mono.DC), and dendritic cells (labeled DC) (Figures 6A, S8C,

and S10A). A small cluster of hematopoietic stem cells (HSCs)

was also detected.

There were fewer macrophages after androgen therapy, spe-

cifically near the epithelium, and differential pathway analysis re-

vealed these cells had reduced expression of endocytosis and

antigen presentation pathways (Figures 6B–6D, S10B, and

S10C).69,70 When examining relevant ligand-receptor pairs, we

found PROS1 was reduced in basal cells, which stimulates

efferocytosis in macrophages (Figure 6E).71 The PROS1 recep-

torsMERTK and AXLwere also downregulated in macrophages,

alongside other scavenger receptors, and PROS1 was downre-

gulated in cis-male breast samples (Figures 6F and S5E).72–74

In the staining data, CD45+ cells formed distinct subsets

based on their adjacency to other cell types (Figure 6G). An

epithelium-associated immune population was increased after

androgen therapy, which further analysis revealed was consti-

tuted by T cells (Figures 6G–6J and S10D–S10F). Based on

RNA data, CD4+ T cell proportions also increased after androgen

therapy, potentially driven by the T cell differentiation factor

TCF7 (Figures 6B and S10G).75–77 When searching for chemoat-

tractants, we found matrix-type fibroblasts upregulate IL16,

which triggers CD4+ T cell migration (Figure S10G).78,79 Pathway

enrichment further indicated androgen-treated CD4+ T cells are

activated and proliferative after androgen therapy (Figure S10H;

Table S4).

Androgen therapy elicits AZGP1 secretion and targets
adipogenesis pathways in adipocytes
The human breast contains significant adipose tissue (7%–56%)

in large, distinctly organized, homogeneous structures (Fig-

ure S11A).80 Adipose tissue was broadly removed during sample

collection and hydrophobicity resulted in further exclusion during

nuclei preparations, but adipocytes are of interest considering

they are AR+ and the impact androgens have on fat distribution

and metabolism (Figures S3F and S11B).15,81–84 Indeed, ligand-

receptor analyses found activating ligands and receptors up-

stream of the phosphoinositide 3-kinase (PI3K) pathway were

the most altered signaling components in the snRNA-seq

dataset (Figure S11C; Table S4). Across PI3K pathway activating

receptors, the insulin receptor (INSR) showed the broadest upre-

gulation after androgen therapy, with adipocytes showing the

strongest change and the highest baseline expression, consis-

tent with previous reports (Figures 7A, S11D, and S11E).15,83,85

Multiple PI3K-related transcription factors showed increased

expression in multiple cell types (Figure 7B). In particular, the nu-

clear receptor NR4A1 and its binding partner RXRA showed
nrichment of eachmotif among the chromatin accessibility peaks for the genes

in gene expression of transcription factors corresponding to each motif. Gray

g luminal-HR– cells. Right panel shows the fraction of genes (left) and genes

k with an ESRRG sequence motif (cisBP ESRRG_697).

example breast tissue region from cis-female (top) and trans-male (bottom)

e S8C) among regions of cis-female and transgender male tissue in CODEX
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Figure 5. Androgen therapy reduces epithelial vascularization through PPARG activity

(A) Microscopic images show vascularization of two ductal structures in a cis-female (left) and a trans-male (right) breast tissue in CODEX microarray data. KRT8

(green)marks luminal cells, ACTA2 (purple) marks green cells, and CD31 (red) marks endothelial cells. Arrows point out (1) larger vessels with smoothmuscle layer

and (2) smaller vessels without smooth muscle layer.

(B) UMAP shows vasculature subclusters detected in the snRNA-seq dataset. (left, blood endothelial cells; right, lymphatic endothelial cells; upper-mid, vascular

accessory cells).

(C) Boxplots show the proportions of vascular subclusters in each sample of the snRNA-seq data, split by gender ID (general linearized model [GLM] fitting a

Poisson, p values: vein = 6.72 3 10�45, capillary = 5.31 3 10�77, artery = 3.58 3 10�5, lymph. EC = 1.33 3 10�22, and lymph. EC 2 = 0.0071).

(D) UMAP (left) shows blood endothelial cells overlaid with scVelo stream plots. The scatterplot shows the ratio of spliced (horizontal axis) and unspliced RNA

molecules (vertical axis) of PPARG among vein (blue), capillary (orange), and artery (green) blood endothelial cells. Dashed diagonal indicates the steady-state

ratio. Top and bottom arcs indicate the estimated kinetic parameters of PPARG induction and repression, respectively.

(E) PPARG GRN module score overlaid on UMAP plot among cis-female (left) and trans-male (right) blood endothelial cells. Barplot shows GRN importance

scores of the top five genes coexpressed with PPARG.

(F) Volcano plot shows the average log2 fold change and –log10 adjusted p value for differential expression of genes within the PPARGmodule among the trans-

male and cis-female blood endothelial cells. Purple data points indicate genes with a chromatin accessibility peak overlapping the PPARG transcription factor

(legend continued on next page)
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consistent upregulation, while the homeostatic regulator and

target for inactivation by AKT, FOXO3 and its nuclear chaperone

YWHAZwere downregulated.86–90 FOXO3 also showed lowered

expression in cis-male breast samples (Figure S5E). Adipocytes

showed the highest baseline insulin signaling score and were the

only cell type to increase insulin signaling, as illustrated by upre-

gulation of PTEN, PIK3R1, and AKT3 (Figures 7C and S11F).

NR4A1 showed a strong increase in adipocytes based on RNA

and protein levels and was also upregulated in adipose-enriched

cis-male breast samples (Figures 7B, S5E, and S11G). NR4A1 is

a target in multiple metabolic and cardiovascular processes, and

corresponding binding motifs were enriched at genes associ-

ated with insulin signaling, supporting its status as an effector

of glucose and lipid metabolism (Figure 7D).91–93

Androgen therapy led to smaller lipid vacuoles, indicating

metabolic dysfunction and insulin resistance (Figure 7E).94–96

Considering this, lipolysis and lipogenesis genes were analyzed,

but were not found differentially expressed (not shown). Howev-

er, the lipolysis regulator zinc-alpha glycoprotein 1 (AZGP1) was

upregulated (Figures 7F and 7G). AZGP1 is an androgen-respon-

sive secreted factor that is higher in the cis-male breast and is

known for potently inducing lipid degradation and fat loss in

smokers and cancer patients.97–100 Androgen therapy particu-

larly increased AZGP1 expression in luminal cells, where the

HR+ subset showed strong cytoplasmic staining (Figures 7G,

S5E, and S11H).

Androgen therapy also reduced expression of a GRN module

linked to the metabolic marker GPAM, which pathway analysis

indicated was associated with adipogenesis and adipocyte dif-

ferentiation (Figures 7H and S11I; Table S4). In searching for

GPAM module regulators, we found accessible binding ele-

ments of the upregulated Wnt/b-catenin effector TCF7L2 were

enriched at associated gene loci (Figures 7I and S11J). Besides

being a repressor of adipogenesis, TCF7L2 is crucial for glucose

tolerance and insulin sensitivity.101–103 In trans-male adipocytes,

TCF7L2 appears to be a direct AR target and is one of the most

upregulated transcription factors alongside NR4A1 (Figures 7J

and 7K).

DISCUSSION

Our multi-modal single-cell resolution analyses showed that

gender-affirming androgen therapy induces both broad and

cell-type-specific changes in the human breast that can bemap-

ped directly and indirectly to AR activation. In line with previous

reports, the ER target gene PGR was downregulated in luminal-

HR+ cells, and evidence for ARE accessibility was prominent at

the PGR locus, along with AR co-regulators FOXA1 and

NFIC.9,29,30 Another consequence of AR action in luminal-HR+

cells was altered production of ligands and an upregulation of

the calcium channel member RYR2, which may facilitate secre-

tion of these factors to communicate hormonal changes to HR�
sequence motif (CisBP PPARG_676) match. Barplots show the fraction of all

accessibility peak overlapping the PPARG transcription factor sequence motif (p

(G) Boxplot shows average expression of PPARG in blood endothelial cells of ci

(H) Heatmap shows the log2 fold change in expression of ligand (left)-receptor (rig

female samples. Colors indicate log2 fold change in expression, and diameter of
cell types. Related to this, myoepithelial cells lost expression of

OXTR and ACTA2, which are essential for ductal contraction

during lactation, corresponding to lowered breastfeeding rates

in women with polycystic ovary syndrome, where androgen is

in excess.52,104–106 Many of the gene-expression changes

induced by androgen therapy were also consistent with male-

specific sex biases uncovered when comparing breast tissues

and other organs from cis-gender males and females.

Although androgen therapy caused reduced estrogen

signaling, ESR1 expression and overall motif accessibility were

not altered, consistent with high doses of selective androgen

modulators reducing the mammary epithelium but increasing

ER expression in murine mammary fat pad luminal cells.6 AR in-

hibits ER signaling in ER+ breast cancer cells by sequestering

essential co-activators.9 Herein, we inferred that androgen-

induced estrogen signaling changes were specific to genes

co-regulated by ER and AP-1 factors, indicating AR may

sequester these transcription factors as well. Indeed, AP-1 fac-

tor blockade appears to overcome endocrine therapy resistance

in ER+ breast cancers.107

Since breast cancer rates are lower in transgendermen,wealso

examined how androgen affects cancer-related pathways.9,108

Coincident with BRCA1 being a co-activator of AR, we found

androgen suppresses genes that are upregulated in luminal-HR+

cells of BRCA-mutant breast samples (Figures S12A and

S12B).109,110 We also found normal luminal cell expression pat-

terns correlated most strongly with PAM50 classifications of

breast cancer, while basal cells were not associated with any mo-

lecular subtype (Figure S12C). Luminal-HR� cells believed to give

rise to basal-like breast tumors were correlated with the corre-

sponding signature, but this was reduced after androgen therapy

(Figures S12C and S12D).111,112 However, correlations between

luminal-HR+ cells and luminal A- or B-type breast cancers were

most decreased, corroborating previous findings.9 In the latter

study, androgen inhibited proliferation of estrogen-dependent

breast cancer cells, and genes used to make this inference,

including PGR, the oncogene BCL2, and the tumor suppressor

SEC14L2, were also altered by androgen in normal luminal-HR+

cells (Figure S12E).113–115 Androgen also downregulates the

epithelial growth factors AREG and EREG in luminal-HR+ cells

and their receptor EGFR, which are overexpressed and function-

ally relevant in ER+ breast cancers.39–43 We hypothesize that the

observed reduction of angiogenic activity by capillary cells and

increased surveillance by CD4+ T cells could also contribute to

breast cancer protection. Overall, this indicates AR activation

may be a valid preventive or therapeutic strategy for ER+ breast

cancer, and, in accordance, clinical trials testing AR activation in

this subtype have been implemented.116,117

Global transcriptional, translational, and chromatin silencing

by androgen therapy may also have an oncoprotective effect.

However, this observation seems to misalign with increased nu-

cleus sizes observed in luminal epithelial cells after androgen
genes (left) or genes within PPARG module (right) that contain a chromatin

urple).

s-female (purple) and trans-male (orange) samples in snRNA-seq data.

ht) pairs among cell types and vascular subclusters in the trans-male and cis-

the circle shows the percent of cis-female cells expressing the gene.
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Figure 6. Androgen therapy dominates helper T lymphocytes and reduces the presence of innate immunity

(A) UMAP showing subclusters of all myeloid (left) and lymphoid (right) cells detected in the snRNA-seq data (CD8. CD8+ T cells; CD4, CD4+ T cells; T-effector,

effector T cells; NK, natural killer cells; mono.DC, monocyte-derived dendritic cells; DC, dendritic cells).

(B) Boxplots show the fraction of main immune cell subtypes within entire immune compartment in each sample (GLM p values, generalized linear model fitting a

Poisson: CD4 = 0.00035, CD8 = 4.035 3 10�13, T effector = 0.045, NK = 0.00035, mono.DC = 0.017, macrophage = 0.52, monocyte = 0.055, DC = 0.0001).

(C) Boxplot shows the proportion of macrophages within the periphery of epithelial cells in cis-female (purple) and trans-male (orange) tissue regions of the

CODEX microarray data (p value, Wilcoxon: 0.003).

(D) Kernel density estimates and boxplots show the module scores of immune-relevant Reactome pathways in macrophages of trans-male (orange) and cis-

female (purple) samples (p values, Wilcoxon, class I major histocompatibility complex [MHC]-mediated antigen processing/presentation = 8.323 10�17, clathrin-

mediated endocytosis = 3.64 3 10�21, toll-like receptor TLR1 TLR2 cascade = 3.89 3 10�16).

(legend continued on next page)
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therapy. While chromatin condensation and nuclear size are

correlated during development and cell differentiation, a causal

relationship is, to our knowledge, not known. Nonetheless,

various laminins, which were altered in multiple cell types after

androgen therapy, are critical regulators of nuclear morphology

and may have contributed to these differences (Table S6).118

We found breast metabolic activity is affected by androgen, in

line with other studies describing metabolic changes induced by

sex hormones.81,119,120 Adipocytes showed an upregulation of

the insulin receptor and altered downstream effectors of the

PI3K pathway.120 NR4A1, an orphan nuclear receptor and key

regulator of glucose and lipid metabolism, was also broadly up-

regulated, supporting research on NR4A1, indicating it aids in in-

sulin signaling and is a target for diabetes and metabolic disor-

ders, particularly in transgender patients.90–93,121 Androgen

also caused AZGP1 upregulation, and activation of the anti-adi-

pogenic transcription factor TCF7L2, potentially representing an

unrecognized mechanism through which transgender men shed

weight.100–102
Limitations of the study
Bentz et al. previously assessed pre- and post-treatment tissues

from transgender men using gene-expression microarray tech-

nology.122 Some of our key results, including the global downre-

gulation of genes, decreased translation, and increased activity

of NR4A1, were also found there. However, the single-cell reso-

lution and the multi-modal nature of our approach allowed us to

study cell-type-specific chromatin and expression changes, and

our spatial analyses elucidated howbreastmorphology and local

microenvironment are altered by androgen therapy.

Other important limitations of this study include low patient

numbers and a lack of relevant information for some samples.

This study also lacked corresponding AR, ER, and JUN ChIP-

seq data that would have allowed better examination of estrogen

signaling regulation in luminal-HR+ cells following androgen ther-

apy. Despite these limitations, this study represents a rich

resource to study hormonal control of human breast tissue

homeostasis.
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Figure 7. Testosterone induces PI3K pathway alterations with adipocytes showing distinct metabolic adaptations

(A) Heatmap showing the log2 fold change in RNA expression of PI3K activating receptors (taken from "KEGG: PI3K-Akt signaling pathway") among 10 breast cell

types identified. The circle diameter indicates the fraction of cis-female cells of the cell type expressing the receptor. INS, circulating insulin secreted in the

pancreas.

(legend continued on next page)
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64. Maréchal, L., Laviolette, M., Rodrigue-Way, A., Sow, B., Brochu, M.,

Caron, V., and Tremblay, A. (2018). The CD36-PPARg pathway in meta-

bolic disorders. Int. J. Mol. Sci. 19, 1529. https://doi.org/10.3390/

ijms19051529.

65. Dawson, D.W., Pearce, S.F., Zhong, R., Silverstein, R.L., Frazier, W.A.,

and Bouck, N.P. (1997). CD36 mediates the in vitro inhibitory effects of

thrombospondin-1 on endothelial cells. J. Cell Biol. 138, 707–717.

https://doi.org/10.1083/jcb.138.3.707.

66. Lawler, J. (2000). The functions of thrombospondin-1 and -2. Curr. Opin.

Cell Biol. 12, 634–640. https://doi.org/10.1016/S0955-0674(00)00143-5.
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Rat anti-KRT8 (clone TROMA-1) Sigma-Aldrich Cat#MABT329; RRID:AB_2891089

Rabbit anti-PLIN1 (polyclonal) Thermo-Fisher Scientific Cat#PA5-81240; RRID:AB_2788467

Mouse anti-TCF4 (clone 6H5-3) Sigma-Aldrich Cat#05-511; RRID:AB_309772

Mouse anti-Nur77 AF488 (clone 12.14) Thermo-Fisher Scientific Cat#53-5965-82; RRID:AB_2574429

Mouse anti-INSR (clone MM0414-2A12) Abcam Cat#ab90940; RRID:AB_2127106

Rabbit anti-CD45 (clone EP322Y) Abcam Cat#ab40763; RRID:AB_726545

Mouse anti-CD68 (clone KP1) Thermo-Fisher Scientific Cat#MA5-13324; RRID:AB_10987212
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Goat anti-rabbit IgG AF488 Thermo-Fisher Scientific Cat#A11008; RRID:AB_143165

Goat anti-rabbit IgG AF568 Thermo-Fisher Scientific Cat#A11011; RRID:AB_143157

Donkey anti-mouse IgG AF568 Thermo-Fisher Scientific Cat#A10037; RRID:AB_2534013

Goat anti-rat IgG Cy5 Thermo-Fisher Scientific Cat#A10525; RRID:AB_2534034

See Table S3 for details on antibodies

used for CODEX

N/A N/A

Biological samples

Healthy breast tissue from female-to-male

gender-affirmation surgeries and cis-

gender cosmetic mammary surgeries

Cedars-Sinai Biobank and

Research Pathology Resource

www.cedars-sinai.edu/research/cores/

biobank-research-pathology.html

Chemicals, peptides, and recombinant proteins

Nuclei EZ Lysis Buffer Sigma-Aldrich Cat#NUC101-1KT

RiboLock RNase Inhibitor (40 U/mL) Thermo-Fisher Scientific Cat#EO0381

Nonidet P40 Substitute Sigma-Aldrich Cat#11754599001

Digitonin (5%) Thermo-Fisher Scientific Cat#BN2006

BSA, Molecular Biology Grade New England Biolabs Cat#B9200

Critical commercial assays

Chromium Single Cell 3ʹ GEM,

Library & Gel Bead Kit v3

10X Genomics PN-1000075

Chromium Single Cell B Chip Kit 10X Genomics PN-1000073

Chromium i7 Multiplex Kit 10X Genomics PN-120262

Chromium Next GEM Single Cell ATAC

Library & Gel Bead Kit v1.1

10X Genomics PN-1000175

Chromium Next GEM Chip H Single Cell Kit 10X Genomics PN-1000161

Single Index Kit N, Set A 10X Genomics PN-1000212

10X Buffer for CODEX Akoya Cat#7000001

Assay Reagent for CODEX Akoya Cat#7000002

Staining Kit for CODEX Akoya Cat#7000008

Antibody Conjugation Kit Akoya Cat#7000009

Nuclear Stain for CODEX Akoya Cat#7000003

Deposited data

Raw and analyzed scRNA-seq

and scATAC-seq data

This paper GSE168838

Processed imaging (CODEX) data This paper zenodo.6569916

MSigDB; v7.2 Subramanian & Tamayo et al.,123

Liberzon et al.,124 Liberzon et al.125
www.gsea-msigdb.org/gsea/msigdb
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Geno-type-Tissue Expression

Project (GTEx); v8

GTEx Consortium126 gtexportal.org/home

Cis-BP: Catalog of Inferred

Sequence Binding Preferences

Weirauch et al.127 cisbp.ccbr.utoronto.ca

Software and algorithms

Cell Ranger; v6.0.1 10x Genomics support.10xgenomics.com/

single-cell-gene-expression/software

CellRanger ATAC; v1.2.0 10X Genomics support.10xgenomics.com/

single-cell-atac/software

Seurat; v4.1.0 Hao & Hao et al.128 satijalab.org/seurat

scVelo; v0.2.3 Bergen et al.129 scvelo.readthedocs.io

CellRank; v1.3 Lange et al.130 cellrank.readthedocs.io/en/stable

scDblFinder; v1.6.0 Germain et al.131 github.com/plger/scDblFinder

Harmony; v0.1.0 Korsunsky et al.132 github.com/immunogenomics/harmony

UMAP; v0.5 McInnes et at.133 github.com/lmcinnes/umap

Augur; v1.0.3 Skinnider & Squair et al.134 github.com/neurorestore/Augur

MAST; 1.21.3 Finak et al.135 rglab.github.io/MAST

SCANPY; v1.4.5.1 Wolf et al.136 scanpy.readthedocs.io/en/stable

g:Profiler; v0.2.1 Raudvere et al.137 biit.cs.ut.ee/gprofiler/gost

GRNboost2 Moerman et al.138 github.com/aertslab/GRNBoost

pySCENIC; v0.11.2 Aibar et al.139 scenic.aertslab.org

DESeq2; v1.32.0 Love et al.140 github.com/mikelove/DESeq2

velocyto; v0.17.17 La Manno et al.16 http://velocyto.org

destiny; v3.0.1 Angerer et al.141 github.com/theislab/destiny

AICSImageIO; v3.3.7 AICSImageIO Contributors142 github.com/AllenCellModeling/

aicsimageio

StarDist; v0.8.1 Schmidt et al.143 and Weigert et al.144 github.com/stardist/stardist

Rdist; v0.0.5 The Comprehensive R Archive

Network (CRAN)

github.com/blasern/rdist

APCluster; v1.4.9 Frey & Dueck145 github.com/UBod/apcluster

scikit-image; v0.19.1 Van der Walt et al.146 github.com/scikit-image/scikit-image

ArchR; v1.0.0 Granja et al.147 archrproject.com

chromVAR; v1.16.0 Schep et al.148 github.com/GreenleafLab/chromVAR

MACS2; v2.2.7.1 Zhang et al.149 github.com/macs3-project/MACS

randomForest; v4.6-14 The Comprehensive R Archive

Network (CRAN)

stat.berkeley.edu/�breiman/

RandomForests

Other

KIMBLE Dounce tissue grinder set Sigma-Aldrich Cat#D9063

MACS SmartStrainers (70 mm) Miltenyi Cat#130-110-916

Pre-Separation Filters (20 mm) Miltenyi Cat#130-101-812
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RESOURCE AVAILABILITY

Lead contact
The lead contact for this paper is Simon R. V. Knott (simon.knott@cshs.org).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
d We deposited all raw snRNA-seq and snATAC-seq data to Gene Expression Omnibus repository under GSE168838. We

deposited all processed snRNA-seq, snATAC-seq, and CODEX datasets to Zenodo data repository under https://doi.org/

10.5281/zenodo.6569916.

d This paper does not report original code. We provided scripts describing preprocessing of our data under https://doi.org/10.

5281/zenodo.6569916.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fresh human breast tissue specimens from cosmeticmammary surgeries in nine cisgender women and subcutaneousmastectomies

in nine transgender men receiving intramuscular testosterone-cypionate were collected at the time of surgery. The age of the trans-

gender men ranged from 18 to 36 (Mean = 27.67 and SD = 8.26), while the age of the control cisgender women ranged from 28 to 62

(Mean = 45.44 and SD = 13.78). Five of the cisgender women were pre-menopausal and four were post-menopausal. Seven of the

cisgender women received breast reduction surgery, while two received implant exchange capsulectomy. Transgender men

received from 6 to 36 months of hormone-replacement therapy before their surgery (Mean = 17.1 and SD = 10.38). We investigated

the impact of menopause state and age on our results (Figure S2A). Table S1 contains all recorded clinical information of our cohort.

This study was approved by the Institutional Review Board (IRB) of Cedars-Sinai Medical Center and informed consent was obtained

from all participants.

METHOD DETAILS

Sample collection
Fresh human breast tissue specimens from cosmetic mammary surgeries in cisgender women and subcutaneous mastectomies in

transgender men receiving intramuscular testosterone-cypionate were collected at time of surgery (Table S1). For mammary reduc-

tions, samples were taken from the central breast, deep to the nipple-areola complex and slightly inferior (1-2 cm at most), in order to

not interfere with nipple perfusion, and ensure that the second and third intercostal artery branches, are not damaged. In this same

area, transgender patients on androgen therapy also have glandular tissue. While different operations may be performed through

different incisions or involve different ways of modifying the breast envelope and contents, tissue was always extracted from this

same location for these subjects. Tissue from cis-gender patients (CF-318-813 and CF-428-112) was collected during breast implant

exchanges (capsulectomies). During these procedures, healthy breast tissue from the same area, superficial to the implant site was

collected. An analysis of surgery type as a factor driving phenotypic differences found that this was not a discriminating variable for

any cell type (Figure S2A). All collected samples were placed in Dulbecco’s Modified Eagle’s Medium (DMEM, Corning) at surgery

and processed shortly after. Tissues were washed 3x with DMEM, and any large pieces of fat were grossly removed. Tissue was then

cut into 2-3 mm3 pieces before being directly stored at�80�C. Where available, the Cedars-Sinai Biobank collected pieces of tissue

from the left and right breast and fixed them with 10% formalin for subsequent paraffin embedding (FFPE). This study was approved

by the Institutional Review Board (IRB) of Cedars-Sinai Medical Center and informed consent was obtained from all participants.

Preparation of RNA expression libraries
All RNA-expression libraries were prepared with Chromium Single Cell 3’ (v3) Reagent Kits by 10X Genomics. To assure minimal

handling time while reducing batch effects, samples were processed in batches of 3-4 (with each batch containing trans-male

and cis-female samples). All steps until library generation were carried out on ice and in pre-cooled instruments. Lysis was done

with Nuclei EZ lysis buffer (Sigma) and subsequent steps were carried out in a custom wash buffer (10 mM Tris, 146 mM NaCl,

1 mM CaCl2, 21 mM MgCl2) that was freshly supplemented with 40 U/mL of RNAse inhibitor (Thermo Fisher) and 2% of Molecular

Biology Grade BSA (New England Biolabs). About 250 mg of cryopreserved tissue was placed on wet ice and cut with a scalpel into

rice grain sized pieces while still frozen. The tissue was then transferred into a chilled 7 mL dounce tissue grinder (Sigma) containing

3 mL of 20% Nuclei EZ lysis buffer (diluted 1:5 with wash buffer). Tissue was soaked on ice for 3 min with occasional pipetting with a

wide bore tip. Lysate was homogenized, first with pestle marked ‘‘A’’ (coarse) and then ‘‘B’’ (fine), for 10 complete strokes and for no

longer than 5 min. Nuclei suspension was then filtered through a 70 mmfilter (Miltenyi) and the lysis buffer was quenched with 9 mL of

wash buffer. Filtrate was then spun down in a swing bucket rotor for 8 min at 850 g, and pellet was resuspended in 1.2 mL of wash

buffer. Suspension was filtered through a 20 mm filter (Miltenyi), spun down again and final pellet was resuspended in 400 mL of wash

buffer supplemented with 2.5 mg/mL DAPI. Solution was immediately loaded onto a FACSAria III Cell Sorter (BD Biosciences) equip-

ped with a 70 mmnozzle (liquid output for this setup was previously measured to be 1.9 nL per event), and a gate around single nuclei

was determined using DAPI and side-scatter signals. 22,000 events (�41.8 mL) were sorted directly into a 96-well round bottom plate

harboring RT-buffer (10X Genomics), which was prepared without adding RT-Enzyme (total of 25.1 mL). After sorting was completed,

RT-Enzyme (8.3 mL) was added, and nuclei suspension was immediately loaded onto a 10X Chromium controller. Following library

preparation was performed according to the Chromium Single Cell 30 Reagent Kits User Guide (v3 Chemistry) with an assumed input
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of 10,000 cells. The cDNA amplification was carried out with two extra PCR cycles (13 total); all other steps were kept unaltered.

Quality, amount, and size distribution of the final libraries was assessed on a BioAnalyzer (Agilent).

Preparation of single nuclei ATAC libraries
All snATAC libraries were prepared with Chromium Single Cell ATAC Reagent Kits (v1.1) by 10X Genomics. Nuclei extraction method

was identical to RNA-expression workflow (see above) with the following buffers (prepared according to 10X Genomics

demonstrated protocol: CG000212, Rev.B). Lysis Buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.01% Tween 20,

0.01% Nonidet P40 Substitute, 0.001% Digitonin, 1% BSA), Wash Buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2,

0.1% Tween 20, 1% BSA). After washing and 20 mm filtration (see RNA-expression workflow above), nuclei were spun down

and the final pellet was resuspended in 400 mL of wash buffer, supplemented with 0.5 mg/mL 7-AAD (BioLegend). Solution was imme-

diately loaded onto a FACSAria III Cell Sorter (BD Biosciences) equipped with a 70 mm nozzle and a gate around single nuclei was

determined using 7-AAD and side-scatter signals. All available nuclei (on average�350.000 events) were sorted directly into a 1.5mL

protein lo-bind tube (Eppendorf) containing 100 mL diluted nuclei buffer (10X Genomics Single Cell ATAC Reagent Kit). The sort vol-

ume was calculated, and the sorted nuclei were supplemented with 20x diluted nuclei buffer to a final concentration of 1x. Nuclei

were spun down at 850 g for 8 min, supernatant was carefully removed as much as possible and the final pellet was resuspended

in 10 mL diluted nuclei buffer. 5 mL of nuclei suspension was mixed with 5 mL of 5 mg/mL DAPI and counted on a hemocytometer to

determine loading concentration. If necessary, the remaining nuclei solution was diluted to 3000 nuclei/mL and used immediately in

the transposition reaction. Following library preparation was performed according to the Chromium Single Cell ATAC Reagent Kits

User Guide (v1.1 Chemistry). Quality, amount, and size distribution of the final libraries was assessed on a BioAnalyzer (Agilent).

Sequencing
Single nuclei RNA expression libraries were sequenced according to 10X Genomics recommended read lengths (read1 = 28bp,

read2 = 91bp) on a NovaSeq6000 (Illumina) to an average of �40.000 reads per nucleus, resulting in an average sequencing satu-

ration of �75% (as reported by 10X Genomics CellRanger v6.0.1). Single nuclei ATAC libraries were sequenced according to 10X

Genomics recommended read lengths (read1 = 50bp, read2 = 50bp) on a NovaSeq6000 (Illumina), to an average of �32.000 reads

per nucleus, resulting in an average of �7000 fragments per cell (as reported by 10X Genomics CellRanger ATAC v1.2.0).

Preprocessing of single nuclei RNA expression data
Fastq files were processed using 10X Genomics CellRanger v6.0.1 and aligned to the human reference genome ‘‘refdata-gex-

GRCh38-2020-A00 provided by 10X Genomics. In order to account for increased amounts of pre-mRNA captured in single nuclei

RNA sequencing, CellRanger was run using the option—include-introns. Resulting count matrices were further processed in Seurat

(v4.1.0).128 Thresholds for maximum fraction of mitochondrial genes and number of UMIs for each nucleus were set to 2.5% and

20.000 respectively. Barcodes that likely contained doublets were detected and removed with scDblFinder (v1.6.0).131 Further

doublet-enriched and low UMI (median UMI count <1000) clusters that emerged while sub-clustering each individual cell type

were also removed.

Immunohistochemistry
Immunohistochemistry was performed on sections taken from FFPE blocks that were collected by the Cedars Sinai Biobank at time

of surgery. Briefly, fixed sections were incubated in 60�C for 25 min to remove excess paraffin and then immediately deparaffinized

and rehydrated. Antigen retrieval was performed using an "Instant Pot Duo" pressure cooker and 1x Universal HIER buffer (Abcam,

cat: ab208572). Background fluorescence was quenched by photobleaching for 1.5h in bleaching solution according to Du et al.

2019.150 Sections were then blocked in protein blocking buffer (Abcam, cat: ab64226) for 1 h at room temperature, washed and

then incubated with primary antibodies at 4 �C overnight. The primary antibodies used were as follows (all dilutions were performed

with protein blocking buffer): KRT8 (Sigma-Aldrich, cat: MABT329, clone TROMA-1, 1:100), PLIN1 (Thermo-Fisher Scientific, cat:

PA5-81240, rabbit polyclonal, 1:500), TCF4 (Sigma-Aldrich, cat: 05-511, clone 6H5-3, 1:100), Nur77-AF488 preconjugated

(Thermo-Fisher Scientific, cat: 53-5965-82, clone 12.14, 1:500), INSR (Abcam, cat: ab90940, clone MM0414-2A12, 1:100), CD45

(Abcam, cat: 40,763, clone EP322Y, 1:200), CD68 (Thermo-Fisher Scientific, cat: MA5-13324, clone KP1, 1:100), and CD3e-

AF488 custom conjugated (Abcam, cat: 271,850, clone EP449E, 1:200).

Sections were then washed and incubated with the appropriate fluorophore-conjugated secondary antibodies at room tempera-

ture for 1 h. Secondary antibodies used were as follows (all dilutions were performed with protein blocking buffer): Goat anti-rabbit

IgG AF488 (Thermo-Fisher Scientific, cat: A11008, 1:500), Goat anti-rabbit IgG AF568 (Thermo-Fisher Scientific, cat: A11011, 1:500),

Donkey anti-mouse IgG AF568 (Thermo-Fisher Scientific, cat: A10037, 1:500), and Goat anti-rat IgG Cy5 (Thermo-Fisher Scientific,

cat: A10525, 1:500).

Sections were finally Washed 3 times with 1X PBST (1X PBS with 0.1% Tween 20) for 3-5 min at room temperature, mounted with

Vectashield containing DAPI (Vector Laboratories, cat: H-1200), and imaged using a Zeiss Axio Scan.Z1. Automated imaging was set

up in Zeiss ZEN pro v3.1. Due to large tissue sizes, the slides were scanned without z stack and divided into �12-25 regions with

individual focus maps. CZI format images were read with the AICSImageIO package (v3.3.7).142 Nuclei from the DAPI channel of

each image were segmented with StarDist, then the average staining intensity per nucleus was tabulated.143,144
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Co-detection by indexing (CODEX) of tissue microarrays
Tissue microarrays (TMA) were prepared from 2 mm punches taken from left and right breast representative FFPE blocks where

available. To ensure the capture of diverse tissue sections that include epithelial structures, H&E stains were used to pre-annotate

regions of interest, which were then transferred onto TMA paraffin blocks. Each (4x4) block contained four regions from four pa-

tients (see Figure S1C) and each patient was represented with eight regions across two separate TMA-blocks, resulting in eight

TMAs total.

Sections from each of these eight TMAswere then collected onto poly-L-lysine-coated coverslips, whichwere prepared according

to the Akoya Biosciences CODEX protocol. Similar to the IHC protocol (see above), sections were incubated in 60�C for 25 min, then

deparaffinized and rehydrated. Following antigen retrieval, sections were then quenched for autofluorescence using a protocol

adapted from.150 Subsequently, sections were stained and imaged according to the Akoya Biosciences CODEX protocol. Details

regarding primary antibodies and imaging conditions can be found in Table S3. Imaging was performed using a Leica DMi8 equipped

with a 203 objective, Lumencor SOLA SE U-nIR LED, and Hamamatsu Orca Flash 4.0 v3.

Primary antibodies were initially screened by performing standard IHC (as above) on FFPE tissue sections to verify positive stain-

ing. Primary antibodies were then conjugated to their corresponding barcodes according to the Akoya Biosciences CODEX antibody

conjugation protocol. Conjugated antibodies were then titrated by performing CODEX staining on a TMA section using the full panel

diluted at either 50x, 100x, or 200x. The dilution that resulted in the optimal signal-to-noise ratio was determined for each antibody

individually. The final dilutions obtained from this titration can be found in Table S3.

QUANTIFICATION AND STATISTICAL ANALYSIS

Dimension reduction, cell type and subcluster identification, and variable discriminatory analysis in snRNA-seq data
All samples were integrated into a single dataset using the standard Seurat workflow (variable features = 5000, principal compo-

nents = 50, louvain resolution = 0.05), batch-corrected with Harmony v0.1.0, and projected into two dimensional space using

uniform manifold approximation and projection (UMAP).133,132 Identification of the main cell types was done by using canonical

marker genes (Figure S1D) and further confirmed through existing gene modules in case of the epithelial cells.151 Each individual

cell type was then extracted into a separate dataset for further classification of subclusters. Lymphoid and myeloid subtypes

were determined by using canonical immune markers (Figure S10A). Blood endothelial subclusters were determined via conserved

marker modules from Table S7 (Figure S9B) and pericytes were distinguished from vascular smooth muscle cells through expression

of ACTA2 and PDGFRB (Figure S9C).62 Fibroblast subclusters were labeled to reflect the function of their top marker genes. AUC

scoresmeasuring phenotypic similarities between pre- and post-menopausal cis-female and trans-male samples as well as between

cells from different surgery types were calculated using the Auger algorithm using 100 cell subsamples and a 3-fold cross

validation.134

Differential gene expression, pathway enrichment, co-expression module generation, gene module scoring, and
receptor ligand interactions in snRNA-seq data
Differential gene expression analysis on snRNA-seq data was done on log-transformed counts using MAST, and filtered for

FDR < 0.05.135 Curated gene sets were obtained from MSigDB (v7.2) from the "h:hallmark" and "c2:curated" gene set collections

and filtered for Reactome, PID, WikiPathways, Biocarta, KEGG and Hallmark as providers, as well as a minimum set size of 10

genes.125 Nuclei were scored for gene modules according to scanpy’s score_genes tool, using default settings (v1.4.5.1) and full re-

sults of these analyses can be found in Table S7.136 Pathway enrichment of genemoduleswas carried out via the R client for g:Profiler

(v0.2.1) and full results for the relevant plots can be found in Table S4.137 Gene regulatory networks were generated usingGRNboost2

with a list of 1839 transcription factors and pathway anchors (hs_hgnc_tfs) provided in the resources of pySCENIC.138,139 From the

resulting TF-target association table, highly correlated target genes (>95th percentile of importance) of a transcription factor were

selected to form a co-expression module. A curated list of ligand-receptor interaction pairs was taken from Cabello-Aguilar et al.,

2020, and filtered for pairs with a PMID ref.152.

GTEx breast tissue and sex bias analysis
Gene RNA-expression data in other tissues was acquired through the Geno-type-Tissue Expression Project (version 8) (GTEx) which

was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI,

NIDA, NIMH, and NINDS.126 Clustering and dimensionality reduction of GTEx breast samples was done with selected tools of the

Seurat preprocessing workflow (variable features = 2000, principal components = 50, louvain resolution = 0.2) (Figures S5C and

S5D). The resulting dataset was scored for the top 100 marker genes of the epithelial and vasculature groups, as well as the top

100 marker genes of the adipocyte and fibroblast cell types taken from our snRNA-seq data. The resulting module scores were

used to classify the breast samples into epithelial, vasculature and adipose enriched subsets. Since the fibroblast score did not high-

light a distinctive cluster, we chose the 50th percentile of the fibroblast score for this subset. We used the GTEx table of gene counts

(GTEx Analysis 2017-06-05 v8 RNASeQC v1.1.9) to identify the differentially expressed genes among cis-male and cis-female breast

samples using DESeq2 (v1.32.0).140 We then compared these genes to the corresponding significant differentially expressed genes

in snRNA-seq data.
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For the CUX2 and sex bias analysis, median transcript TPM values were calculated using the aggregated tissue classifier ‘‘SMTS’’

of the GTEx "Sample Attributes" metadata and sex bias effect sizes were used as provided by GTEx ‘‘GTEx_Analysis_v8_

sbgenes.tar.gz’’. In summary: sex-biased gene expression statistics for GTEx v8 tissues present in both sexes are derived from

across-tissue meta-analysis with MASH, based on per-tissue sex effect size and corresponding SE values calculated with voom-

limma.153,154

Inferring trajectory and diffusion maps from snRNA-seq data
To prepare input for RNA-velocity analysis, the BAM files generated by the CellRanger snRNA-seq workflow were processed into

loom files containing spliced and unspliced abundances using velocyto (v0.17.17).16 Here, the same 10X Genomics genome anno-

tation file used in CellRanger ‘‘refdata-gex-GRCh38-2020-A’’ was utilized alongside the GRCh38 repeat mask file from UCSC

genome browser.155 The loom files were combined and cells that passed QC in previous gene expression analysis were extracted

from the output. RNA-velocity analysis was done on each cell type separately using the standard workflow of the scVelo package

(v0.2.3) and CellRank (v1.3).129,130 Moments were calculated using the batch-corrected first 30 harmony principal components,

and velocity was estimated using the top 2,000 most variant genes and the dynamical model. For CellRank analysis, we determined

the terminal states using the prior information of having two terminal states within each cell type (corresponding to cis-female and

trans-male populations), weight connectivity of 0.2, and the Monte Carlo average of randomly sampled velocity vectors. We used

the default parameters to identify the initial state.

To extract the diffusion maps, we used the Bioconductor package destiny (v3.0.1).141 We used snRNA-seq data of each cell type

with the default parameters of the DiffusionMap function.

Preprocessing and integration of single nuclei ATAC data
We used 10X Genomics CellRanger ATAC (v1.2.0) to align the fastq files to the reference genome ‘‘refdata-cellranger-atac-GRCh38-

1.2.0’’ and obtained the fragment and barcode annotation file for each sample. The resulting 500 bp resolution data was further pro-

cessed using ArchR (v1.0.0) to remove doublets and correct for batch effects using Harmony.147 Reduced representation of the

batch-effect–corrected tile matrix was calculated with iterative latent semantic indexing and visualized with UMAP. We then used

ArchR to integrate snATAC-seq data with snRNA-seq data by correlating gene activity scores of each snATAC-seq cluster with

the transcriptome of each snRNA-seq cluster (Figure S1D).

Footprint analysis, enhancer mapping, and differentially accessible peak identification
All transcription factor binding motifs were provided by the Catalog of Inferred Sequence Binding Preferences (CisBP).127 We used

the motif footprint feature of ArchR to investigate the enrichment of each motif among the peaks of each cell type or gender identity

while adjusting for the Tn5 bias by dividing the signal to Tn5 bias. ArchR investigates the correlation of each peak with the expression

levels of a gene, where we used a Pearson correlation cutoff of 0.2 to identify peak-gene relationships. We used ArchR’s imple-

mented Wilcoxon test to identify differentially accessible peaks adjusting for transcription start site enrichment (TSS) and number

of fragments in log10.

Motif enrichment in cell types and single nuclei
To calculate motif enrichment for each cell type on basis of gender identity, we compared the enrichment of each motif in the fore-

ground (trans-male nuclei) versus the background (cis-female nuclei). We performed a motif enrichment analysis through ArchR and

using the CisBP motif database. The motif enrichment analysis investigates the peaks accessible within the group that contains the

sequence motif of interest. It compares the fraction of peaks containing the motif in the foreground versus the background and cal-

culates a one-sided Fisher exact test. For the topmotifs passing the cutoff adjusted p value < 0.05, we visualized the odds ratio of the

enrichment for each cell type. Motif enrichment on a single nuclei basis was done using ChromVAR, which calculates z-scores that

indicate the enrichment of each sequence motif in each nucleus relative to other nuclei.148

HiC data analysis
We downloaded two publicly available HiC datasets for MCF-10A (Accession: GSE98552) and PANC-1 (ENCODE Accession:

ENCLB951HSJ).156,157 MCF-10A data had already been processed using HiC-Pro (v2.8.1), GRCh38 genome assembly, and

40,000 bp genomic bins.158 We used the same software and pipeline to process PANC-1 datasets. We divided the ICE-normalized

genomic bin contact values to the maximum value of the chromosome to adjust for the potential variations introduced by library size

and experimental protocol. We visualized contact of genomic bins overlapping the RYR2 gene or its enhancers that passed the 75th

percentile after pooling data of MCF-10A and PANC-1 around RYR2.

High-resolution peak calling and motif filtering
In addition to the peak set generated through ArchR, we also generated pseudo-bulk BAM files by extracting the reads correspond-

ing to each cell type and sample type (total of 20 BAM files). For each pseudo-bulk BAM file, we used MACS2 peak calling with pa-

rameters -f BAMPE -g 2.73 109 –nomodel –SPMR –bdg.149 We then used the generated NarrowPeak files for identifying motifs that

are within an absolute distance of 200 bp from the summit of the peaks.
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Predicting dysregulation direction of AR-regulated genes with random forest
We identified 603 genes upregulated in trans-male luminal-HR+ cells (adjusted p value < 0.01 and log2 FC > 0.25) and 652 genes

downregulated (adjusted p value < 0.01 and logFC < �0.25). To consider a gene an AR-regulated gene, we required an ARE

containing peak whose accessibility correlates with the gene’s expression (Pearson r > 0.2) as identified by ArchR (see above).

AR upregulated 309/603 genes and downregulated 244/652 genes. ArchR identified 1,080,500 bp peaks which correlate with the

expression of these 553 genes. Using pseudo-bulk BAM files, we identified 1,427 narrow peaks corresponding to these 500 bp

genomic regions. These narrow peaks ranged from 141 bp to 3,011 bp with a median of 792 bp. We annotated each peak according

to the chromatin accessibility signal at the exact motif position in the peak in luminal-HR+ trans-male cells for motifs of 189 expressed

transcription factors. We labeled these peaks according to their mapping to downregulated genes or upregulated genes. We

randomly selected 80% of these peaks as the training set and the remaining 20% as our validation set. We trained a random forest

with 500 trees with each tree sampling 100 of the 189 motifs to predict if the gene was downregulated or upregulated. We used the R

package ‘randomForest’ (v4.6-14). We allowed each classification tree to reach maximum purity. The model was able to predict

downregulated genes with an area under the receiver-operating characteristic curve (auROC) of 0.825 and area under the preci-

sion-recall curve (auPR) of 0.741. We used mean decrease in Gini index as the measure of variable importance.

Enrichment of transcription factors in pathways
To investigate if a transcription factor regulates a particular pathway, we identified the number of genes of that pathway which have a

chromatin accessibility peak containing the motif of that transcription factor. We also required the chromatin accessibility peak to

correlate positively with the expression of the gene (Pearson r > 0.2). We compared the fraction of pathway’s genes containing

the motif in their peaks to a background of all the genes using a one-sided Fisher exact test.

Identifying active transcription factors
Sequence motifs corresponding to the same family of transcription factors often show similar binding sites. To identify the active

transcription factors, we used ArchR’s correlation of a motif’s Z score versus the expression of its corresponding transcription factor.

For the specific case of nuclear receptors in luminal-HR+ cells, we built all of the possible simple linear models which predict a nuclear

receptor’s motif’s Z score given the expression of all other nuclear receptors (one at a time) or a background transcription factor (i.e.

PPARG). To be able to compare the effect sizes, we standardized both themotif’s Z score as well as the transcription factor’s expres-

sion. We compared the linear model effect size, p value, and R2.

CODEX data preprocessing
Raw images of TMA-regions from CODEX experiments were pre-processed with a custom workflow where five preprocessing op-

erations were applied in this order: extended depth of field (EDOF), shading correction, cycle alignment, background subtraction and

tile stitching, described briefly here.

1: An EDOF image was produced from the z stack for each tile where each position is taken from the z-plane most in focus. 2: The

BaSiC method of optical shading correction was applied to each channel of each imaging cycle.159 3: An image registration trans-

formation was estimated between the first cycle DAPI channel and the DAPI of each subsequent cycle. For each cycle, the registra-

tion parameters were saved and applied to all other channels from the same cycle. 4: Blank cycles were used to subtract background

from each channel. 5: Finally, neighboring tiles were stitched by applying a registration between the overlapping areas between two

tiles. First, the two tiles with the best naive overlap were stitched by applying the appropriate registration shift to one of the tiles.

Stitching then proceeded with the next two most nearly aligned tiles, until all tiles were merged. Since each cycle was previously

aligned to the first cycle’s DAPI channel, the registrations used for tile stitching were estimated once on the first DAPI and reused

for subsequent channels and cycles.

The assembled DAPI images for each TMA region were then visually inspected and any remaining grossly out-of-focus areas due

to low tissue adherence were removed from further analysis.

To obtain nuclear segmentations, we applied a pre-trained StarDist model to the first cycle DAPI image.143,144 The model weights

of the 2D 2018 Data Science Bowl model released by the original StarDist authors were fine-tuned using a training set of nuclei

imaged on our CODEX platform. A whole-cell or "cytoplasmic" segmentation was obtained by expanding the nuclear segmentation

area bymorphological dilation, without introducing overlaps in adjacent nuclei. The average intensities under each nuclear mask and

cytoplasmic mask were extracted for each cell to be used for cell type assignment.

CODEX data analysis
Nuclei and cytoplasmic staining intensities of all data points passing segmentation were merged into a single unfiltered dataset, fol-

lowed by batch correction, dimensional reduction and clustering with harmony and Seurat. The dataset was then cleaned from over-

segmentation (i.e. blood clots, very dim regions, damaged tissue) by visually inspecting sub clusters and removing data points that

were not represented by a clearly visible nuclear DAPI signal. Cell classes were defined according to their marker staining and the

resulting filtered dataset was then scaled according to the first and third quartiles using RobustScaler across each region, producing
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the intensity values shown in log scale.160 When calculating nuclear vs. cytoplasmic staining, raw signal values were used. Where

region averages of these values are shown, only regions with a minimum of 10 cells of the discussed cell type are shown, unless

otherwise stated.

Epithelial neighborhood and cell-cell distance analysis
For all analyses including cell-cell adjacencies (CODEX and IHC), we calculated pairwise Euclidean distances based on the nuclei

centroids using the package rdist (v0.0.5). To assess the composition of cell types that are closely associated with the epithelium

we first detected spatial clusters of epithelial cells (cells in cluster >35) using affinity propagation from the APCluster (v1.4.9) pack-

age.145 To define the epithelial neighborhood populations, we retained all cells within 100px (�32.5mm) distance from these epithelial

cells.

Segmentation of acini and assessment of epithelial smooth muscle layer
To study the staining patterns around epithelial cells in detail, we applied morphological operations to specifically isolate individual

acini structures within the CODEX tissue microarray images (Figure S7C). First, masks of the KRT8 and KRT23 stains per TMA region

were obtained by multi otsu thresholding (scikit-image) and imposing a minimum intensity of 100 in order to avoid false-positive

epithelial segmentations.146 An ACTA2 mask was obtained similarly by multi otsu thresholding, but without the minimum intensity

requirement. Morphological dilation was applied to each mask. Then, the KRT8 and KRT23 masks were added together to form a

pan-luminal mask, and the ACTA2 mask was subtracted from this pan-luminal mask to divide acini into individual instances. Individ-

ual putative acini were labeled by connected components, dilated to fill extraneous holes, filtered for a minimum area of 200, then

individually analyzed. Segmented nuclei underneath each acini mask were gathered to tally the cell type composition, and the

15-pixel wide border surrounding the acini was considered the border area. The percentage of the acini border that was positive

for ACTA2 above the predetermined threshold was tallied.

Image analysis of adipocyte vacuole area
To study themorphology of adipocytes we used IHC staining of PLIN1 to segment individual adipocyte vacuoles and profile their size.

To avoid abundant small-scale staining artifacts, PLIN1 IHC images were analyzed at 1/5th the original resolution. First, the PLIN1

signal was capped at the 90th percentile intensity value and thresholded using Ostu’s method (scikit-image v0.19.1). To join small

gaps in the PLIN1 mask we applied morphological dilation (disk structuring element radius 2) and closing (disk structuring element

radius 5). A label image was created from the inverse of the PLIN1 mask, where segmented regions represented regions of PLIN1-

area that were completely enclosed by PLIN1+ staining. We next filtered these putative vacuoles to exclude artifacts including small

regions, and regions corresponding to multiple vacuoles erroneously connected because of e.g. broken membrane. To filter putative

vacuoles, we calculated the area, and convex area (area of a convex hull fit around the actual label) and took their ratio. We reasoned

that true positive vacuole segmentations would have an area-to-convex-area ratio (Rac) near one and applied a threshold of Rac

>0.85. Similarly, we reasoned that erroneously connected vacuoles, or over-segmentations, would be outliers on the distribution

of area, and applied a lower threshold determined by Otsu’s method of all vacuole areas exceeding a predetermined absolute min-

imum of 101.25 pixels, and a fixed upper threshold of �103.7 pixels. Following these filters, we noted that the PLIN1-INSR exper-

iment had consistently more coverage of adipose vacuoles than others, and restricted further analysis to these images. Each image

scene containingmore than 1,000 adipocyte nuclei (determined by DAPI segmentation and PLIN1 threshold) was summarized by the

median area of observed vacuoles.
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