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DNA sequencing continues to decrease in cost with the Illumina HiSeq2000 generating up to 600 Gb
of paired-end 100 base reads in a ten-day run. Here we present a protocol for community amplicon
sequencing on the HiSeq2000 and MiSeq Illumina platforms, and apply that protocol to sequence 24
microbial communities from host-associated and free-living environments. A critical question as
more sequencing platforms become available is whether biological conclusions derived on one
platform are consistent with what would be derived on a different platform. We show that the
protocol developed for these instruments successfully recaptures known biological results, and
additionally that biological conclusions are consistent across sequencing platforms (the HiSeq2000
versus the MiSeq) and across the sequenced regions of amplicons.
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DNA sequencing cost continues to decline: a vast
price per sequence decrease on Illumina HiSeq2000
and MiSeq platforms further supports democratiza-
tion of sequencing (Tringe and Hugenholtz, 2008).
Interest in amplicon sequencing on Illumina is
growing (Bartram et al., 2011; Caporaso et al.,
2011; Zhou et al., 2011), largely due to lower cost
per sequence than other platforms, enabling high-
throughput microbial ecology at the greatest cover-
age yet possible. Although some technical issues
exist with community sequencing, such as PCR
primer biases and differential DNA extraction
efficiency from different organisms in complex
communities, these techniques continue to vastly
expand our understanding of the microbial world.

Here we present an amplicon sequencing protocol
for the HiSeq2000 and MiSeq platforms, and apply

this protocol to sequence host-associated and free-
living microbial communities to verify that biologi-
cal conclusions drawn from the data are consistent
across platforms and sequence reads. The HiSeq and
MiSeq platforms differ markedly in scale. The
HiSeq2000 produces 450 Gb per day, and in the
course of a 10.8 day run produces 1.6 billion
100-base paired-end reads. By contrast, the MiSeq
is for single-day experiments, and generates 1.5 Gb
per day from 5 million 150-base paired-end reads.
Our results capture known differences between
microbial communities on each platform; biological
conclusions drawn are consistent across platforms
and sequence reads. This protocol is therefore ready
for widespread use in microbial community analy-
sis, such as by the Earth Microbiome Project (Gilbert
et al., 2010), which has adopted it for amplicon
sequencing. Details on the sequencing protocol are
provided as Supplementary Methods.

Twenty-four samples were sequenced on three
paired-end Illumina HiSeq2000 lanes, and in one
paired-end MiSeq run. The samples represented soil
(source: USA; n¼ 8) and several host-associated
environment types: human feces (source: USA;
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n¼ 2), mouth (source: USA; n¼ 2) and skin (source:
USA; n¼ 6); canine feces (source: USA; n¼ 1)
mouth (source: USA; n¼ 1) and skin (source: USA;
n¼ 4). These four paired-end lanes (three on HiSeq
and one on MiSeq) resulted in eight sets of reads,
corresponding to 50 and 30 reads from each lane.
These sets of reads were treated as independent
replicates to assess the reproducibility of the results.

We were primarily interested in whether known
differences between microbial communities could
be recaptured on these Illumina platforms to
determine their suitability for large-scale surveys
of microbial communities. We observed several
expected results in principal coordinates plots of
weighted UniFrac distances (Figure 1). First, we
observed primary separation of samples based on
whether they were derived from a free-living
environment (soil; cyan) or host-associated environ-
ment (all other colors) (Ley et al., 2008). Next we
observed separation of fecal samples (yellow; red)
from all other host-associated sample types (Costello
et al., 2009).

We were additionally interested in reproducibility
across lanes and reads within and between each
platform. To test this, we ran the 24 samples on
three HiSeq paired-end lanes and 1 MiSeq paired-
end lane, and analyzed each resulting set of
reads independently. As our biological conclusions

are frequently driven by the results of principal
coordinates analyses based on weighted UniFrac
distances, we compared these plots using Procrustes
analysis (Gower, 1975; Figure 1; Table 1) as
implemented in QIIME and found that the observa-
tions were highly reproducible across lanes, read
directions and platforms. All 28 possible lane/
read pair combinations produced highly significant
P-values based on 10 000 Monte Carlo iterations
(Po0.0001; Bonferroni-adjusted a0.01¼ 0.0004).

Taken together, these results suggest that the
protocol previously developed for high-throughput
community sequencing on the Illumina GAIIx has
been successfully adapted for the HiSeq2000 and
MiSeq platforms, again greatly decreasing the cost
per sequence of amplicon sequencing to B15 000
single-end reads per USD$1 on the HiSeq2000. For
example, based on our lowest high-quality sequence
per lane count of 22 928 291 reads (Supplementary
File 2, HiSeq 30 lane 6), if using all 2167 barcodes in
each of 15 lanes on the HiSeq2000, leaving one lane
for a control, then it is possible to sequence 32 505
samples in a week at a depth of 10 580 sequences per
sample for approximately $22 000 in sequencing
costs. Longer barcodes could additionally be devel-
oped to facilitate more sequences per sample at a
lower depth of sequencing. On the basis of the
lowest high-quality sequence count on the MiSeq of
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Figure 1 Procrustes plots comparing: (a) 50 reads from HiSeq lane 6 to 50 reads from HiSeq lane 8; (b) 50 reads from HiSeq lane 6 to 30

reads from HiSeq lane 8; (c) 50 reads from HiSeq lane 6 to 50 MiSeq reads; (d) 50 MiSeq reads to 30 MiSeq reads. Lines connect
paired samples.
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1 603 532 reads (Supplementary File 2, MiSeq 30), if
using all 2167 barcodes, it is possible to sequence
2167 samples in a 12 h run at a depth of 740
sequence per sample for approximately $800 in
sequencing costs.

A relevant question is whether the decreased cost
of sequencing should be applied to obtain deeper
coverage of samples, or to increase the number of
samples that are sequenced. Figure 1c compares the
results of sequencing the same samples on the HiSeq
2000 at a median depth of 1207 709 sequences per
sample and the MiSeq platform at a depth of 43 271
sequences per sample. The highly significant Pro-
crustes result (Po0.0001) implies that we draw the
same beta diversity conclusions from either sequen-
cing run, despite a two order of magnitude increase
in sequencing depth on the HiSeq2000. Similarly,
when sampling to only 10 sequences per sample
Procrustes results are still highly significant
(Po0.0001; Supplementary Figure 1), although the
higher M2 value indicates that the correlation is not
as strong as when sampling to 100 sequences per
sample. These observations, in agreement with
studies that have addressed this question directly
(Kuczynski et al., 2010), suggest that increasing the
sequencing depth is not likely to provide additional
insight into questions of beta diversity, and we
therefore argue that (for questions of beta diversity
in particular) the decreased cost of sequencing
should be applied to study microbial systems using
many more samples, for example, in dense temporal
or spatial analyses, rather than with many more
sequences per sample. Of course, if the objective is
to identify taxa that are very rare in communities,
deeper sequencing will be advantageous. Addition-
ally we note that while as few as 10 sequences per

sample may be useful for differentiating very
different environment types (for example, soil and
feces), as environments become more similar (for
example, two soil samples of different pH) more
sequences will be required to differentiate them.

As sequencing costs continue to decrease our
studies of the microbial world can continue to
increase in scope. The protocol presented here
opens the HiSeq2000 and MiSeq Illumina platforms
to community amplicon sequencing. The data
generated by each is similar, but differs in scale
and therefore support different applications. For
large projects where time is less of an issue but cost
per sequence is a major concern, the HiSeq platform
allows massively parallel sequencing at the lowest
cost. Here we show that comparable data can be
generated on the MiSeq for smaller projects where it
is important to process samples quickly, for exam-
ple, in routine environmental or patient monitoring
or in preliminary investigations for larger projects.
We expect that this is another step toward the era of
ubiquitous DNA sequencing, when sequencers
become standard equipment in research and clinical
laboratories. Finally, we show that technical repli-
cates run on different sequencing platforms and
from sequencing of different regions of amplicons
should yield the same biological conclusions:
critical information as more sequencing platforms
become available.
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Table 1 M2 and Monte Carlo P-values for all Procrustes comparisons

HiSeq
lane 6, 50

HiSeq
lane 6, 30

HiSeq
lane 7, 50

HiSeq
lane 7, 30

HiSeq
lane 8, 50

HiSeq
lane 8, 30

MiSeq, 50 MiSeq, 30

Procrustes M2

HiSeq lane 6, 50

HiSeq lane 6, 30 0.006
HiSeq lane 7, 50 0.000 0.006
HiSeq lane 7, 30 0.005 0.000 0.006
HiSeq lane 8, 50 0.000 0.006 0.000 0.005
HiSeq lane 8, 30 0.005 0.000 0.006 0.006 0.006
MiSeq, 50 0.006 0.009 0.006 0.008 0.007 0.008
MiSeq, 30 0.007 0.007 0.007 0.007 0.007 0.008 0.002

P-value (based on 10 000 Monte Carlo iterations)

HiSeq lane 6, 50

HiSeq lane 6, 30 0.0000
HiSeq lane 7, 50 0.0000 0.0000
HiSeq lane 7, 30 0.0000 0.0000 0.0000
HiSeq lane 8, 50 0.0000 0.0000 0.0000 0.0000
HiSeq lane 8, 30 0.0000 0.0000 0.0000 0.0000 0.0000
MiSeq, 50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MiSeq, 30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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