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Abstract

Background

Research from our laboratory, and that of other investigators, has demonstrated augmented

levels of diacylglycerols (DAG) in the frontal cortex and plasma of subjects with Alzheimer’s

disease (AD) and Mild Cognitive Impairment (MCI). We have extended these observations

to investigate the frontal cortex of subjects with Parkinson’s disease (PD) and Lewy Body

Disease (LBD), with and without coexisting pathologic features of AD.

Methods/Principal findings

Utilizing a high-resolution mass spectrometry analytical platform, we clearly demonstrate

that DAG levels are significantly increased in the frontal cortex of subjects with PD, LBD

with intermediate neocortical AD neuropathology, and in LBD with established neocortical

AD neuropathology. In the case of the PD cohort, increases in cortical DAG levels were

detected in cases with no neocortical pathology but were greater in subjects with neocortical

pathology. These data suggest that DAG changes occur early in the disease processes and

are amplified as cortical dysfunction becomes more established.

Conclusions

These findings suggest that altered DAG synthesis/metabolism is a common feature of

neurodegenerative diseases, characterized by proteinopathy, that ultimately result in cogni-

tive deficits. With regard to the mechanism responsible for these biochemical alterations,

selective decrements in cortical levels of phosphatidylcholines in LBD and PD suggest that

augmented degradation and/or decreased synthesis of these structural glycerophospholi-

pids may contribute to increases in the pool size of free DAGs. The observed augmentation

of DAG levels may be phospholipase-driven since neuroinflammation is a consistent feature

of all disease cohorts. If this conclusion can be validated it would support utilizing DAG lev-

els as a biomarker of the early disease process and the investigation of early intervention

with anti-inflammatory agents.
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Introduction

Extensive lipidomics evaluations of subjects with Alzheimer’s disease (AD) have demonstrated

alterations in the levels of glycerophospholipids, sphingolipids, and diacylglycerols (DAG) in

plasma and brain [1–3]. The most unique and consistent observation of these lipidomics stud-

ies is the elevation of DAG levels in AD frontal cortex [4–7] and mixed dementia temporal cor-

tex [8]. Similarly DAG levels are augmented in the plasma of AD [9–11] and MCI [11]

subjects, and appear to occur in a subset of patients encompassing 25 to 30% of MCI subjects

and 40 to 45% of AD subjects [11].

Elevated DAG levels have also been reported from a lipidomics analysis of the visual cortex

from 10 sporadic PD cases [12]. As is the case with MCI and AD, PD is characterized by a pro-

teinopathy and usually proceeds to cognitive dysfunction [13]. While AD pathology involves

amyloid plaques and neurofibrillary tangles, PD and Lewy body disease (LBD) are character-

ized by alpha-synuclein protein aggregates that form Lewy bodies [14–15]. As has been

observed in AD, there are dramatic decrements in cortical cholinergic pathways [16–18] and

cortical thinning [19–20], which presumably reflect processes of cognitive dysfunction in PD

and LBD. However, post-mortem studies have demonstrated that many subjects have multiple

proteinopathies [21] and that in the case of synucleinopathies, as in AD, there is a great deal of

phenotypic heterogeneity [22–23] including various coexisting pathologic features of AD.

Therefore, we extended our lipidomics evaluations of altered DAG metabolism in proteinopa-

thies to PD and LBD subjects. Specifically, the cases were classified into 4 groups based on

extensive neuropathological evaluations. These included a control group, a LBD group with

early to intermediate-stage AD pathology (LBD-I-AD), a LBD group with established neocor-

tical AD pathology (LBD-AD), and a PD group in which our investigation did not detect neo-

cortical Lewy bodies or neurofibrillary tangles of AD.

Materials and methods

Study samples

Frontal cortex samples, bio banked at the Oregon Brain Bank, were from volunteer subjects who

were evaluated at Oregon Health and Science University. IRB approval was from the OHSU

Research Integrity Office (approval IRB1623). Postmortem samples were fully anonymized at the

time of accession and informed consent was obtained before autopsy from the next of kin for all

areas of research. Patients themselves were expired and did not provide consent. Frontal lobe tis-

sue was flash frozen and stored at -80˚ C for biochemical studies. Tissue for morphologic evalua-

tion was taken from all cortical lobes bilaterally, the anterior cingulate gyrus, hippocampus,

amygdala, bilateral striatum and thalamus, midbrain, pons, medulla, and cerebellum as previously

described [24]. In brief, sections from these regions were stained with hematoxalin and eosin with

Luxol fast blue myelin stain. A modified Bielschowski silver impregnation method [25] as well as

immunohistochemical staining for β-amyloid (Biolegend, San Diego, 4G8 antibody to β-amyloid

amino acids 17–24) was used to identify diffuse and neuritic plaques in frontal and parietal corti-

ces, hippocampus, basal ganglia, and cerebellum. Tau immunohistochemistry was performed on

the hippocampus, frontal cortex, and occipital cortex using PHF1 antibody (a gift from Dr. Peter

Davies, Albert Einstein College of Medicine, Manhasset, NY). The presence of Lewy bodies was

determined by anti-alpha-synuclein immunohistochemistry using LB509 antibody (Covance,

Princeton, NJ) performed on sections of midbrain, amygdala, hippocampus, and frontal cortex.

Brain tissue was evaluated by a neuropathologist for features of neurodegenerative disease, which

were identified and staged as previously reported and according to the NACC’s uniform data col-

lection. Table 1 summarizes the patient demographics and neuropathologic features.
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Lipid extraction and analysis

Lipids were extracted from 20 to 40 mg of brain tissue with methyl-tert-butyl ether and metha-

nol (1 mL methanol, 1 mL distilled water, and 2 mL methyl-tert-butyl ether) containing stabled

isotope standards as described previously [5–7, 9, 11, 25–26]. Extracts were dried by centrifugal

vacuum evaporation and dissolved in isopropanol: methanol: chloroform (4:2:1) containing 15

mM ammonium acetate. Constant infusion lipidomics (10 μL per min) were performed utiliz-

ing high-resolution (140,000; 0.3 to 3 ppm mass error) data acquisition on an orbitrap mass

spectrometer (Thermo Q Exactive). Washes (500 μL) with methanol followed by hexane/ethyl

acetate: chloroform (3:2:2), between samples, were used to minimize ghost effects.

In positive ion ESI, the cations of choline plasmalogens, phosphatidylcholines, sphingomye-

lins, ceramides, galactosylceramides, lactosylceramides, and the ammonium adducts of diacyl-

glycerols (DAG) were quantitated. The cation of bromocriptine was used to monitor for

potential mass axis drift. In negative ion ESI, the anions of ethanolamine plasmalogens, sulfa-

tides, phosphatidylserines, phosphatidylethanolamines, phosphatidylglycerols, phosphatidyli-

nositols, and lysophosphatidylglycerols were monitored. The anion of bromocriptine was used

to monitor for potential mass axis drift.

The masses and the MS2 validation data for critical lipids are summarized in Table 2.

Statistical analysis

R values (ratio of endogenous lipid peak area to the peak area of an appropriate internal stan-

dard) were calculated. R values were corrected for the wet weight of the tissue analyzed. Indi-

vidual R values are presented in S1 Table. Data are presented as mean ± SEM. Data were

analyzed with ANOVA, followed by the Dunnett’s test to compare groups.

Results

Diacylglycerols (DAG)

DAGs with both monounsaturated and polyunsaturated fatty acid side chains were signifi-

cantly increased in the frontal cortex of the LBD-I-AD, LBD-AD, and PD groups (Fig 1).

These data are similar to observations with AD frontal cortex [4–5]. Analysis of subgroups in

the PD cohort revealed that DAGs were elevated (Fig 1) in subjects with no neocortical pathol-

ogy (PD-1), subjects with sparse neocortical neuritic plaques (PD-2), and subjects with

Table 1. Patient demographic and neuropathologic features of control, Lewy body disease with intermediate Alzheimer’s pathology (LBD-I-AD), Lewy body disease

with Alzheimer’s pathology (LBD-AD), and Parkinson’s disease (PD) subjects. PMI (post-mortem interval).

Parameter Controls LBD-I-AD LBD-AD PD

N 43 20 29 15

Age (Yrs ± SD)

[Range]

67.1 ± 8.4

[55–83]

80.9 ± 10.5

[67–90]

74.3 ± 8.8

[61–93]

82.8 ± 9.5

[70–100]

Gender (% Males) 60.5 65.0 62.1 73.3

PMI (Hrs ± SD)

[Range]

25.3 ± 16.9

[3–72]

14.0 ± 15.1

[3–41]

20.9 ± 27.18

[2–120]

22.2 ± 25.4

[2–96]

Neocortical Plaques Absent Present Present Variable

Neocortical Neurofibrillary Tangles Absent III-IV V-VI Absent

Midbrain Lewy bodies Absent Present Present Present

Neocortical Lewy bodies Absent Present Present Absent

https://doi.org/10.1371/journal.pone.0191815.t001
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Table 2. Exact masses and MS2 data for reported lipids.

Lipid Exact Calc. Cation ppm Product Energy Calc. Cation ppm

Cer d18:1/18:0 565.5434 566.5507 1.7 d18:1 base 25 264.26913 3.1

Gal-Cer d18:1/24:1 809.6744 810.6817 2.5 d18:1 base 20 264.26913 3.1

[MH-Gal] 15 630.61832 0.36

Lac-Cer d18:1/18:1 887.6334 888.6407 2.1 d18:1 base 20 264.26913 3.4

[MH-Lac] 15 546.5245 1.8

Lipid Exact Calc. Anion ppm Product Energy Calc. Anion ppm

Sulfatide d18:1/24:0 891.6469 890.6397 0.5 HSO4 50 96.9595 1.1

Sulfatide d18:1/24:1 889.6313 888.6240 1.7 HSO4 50 96.9595 0.9

Sulfatide d18:1/25:0 905.6626 904.6583 1.8 HSO4 50 96.9595 1.2

Sulfatide d18:1/26:1 917.6625 916.6553 1.8 HSO4 50 96.9595 1.0

Lipid Exact Calc. Cation ppm Product Energy Calc. Cation ppm

DAG 34:1 (16:0/18:1) 594.5223 612.5567 2.6 [M-sn1] 25 339.2894 0.88

[M-sn2] 25 313.2737 1.2

DAG 36:1 (18:0/18:1) 622.5536 640.5880 2.1 [M-sn1] 25 339.2894 0.87

[M-sn2] 25 341.3050 0.58

DAG 36:2 (18:1/18:1) 620.5379 638.5724 2.1 [M-sn1] 25 339.2894 0.92

[M-sn2] 25 339.2894 0.92

DAG 36:4 (16:0/20:4) 616.5067 634.5411 3.0 [M-sn1] 25 361.2738 1.3

[M-sn2] 25 313.2738 1.5

DAG 38:6 (16:0/22:6) 640.5066 658.5410 2.7 [M-sn1] 25 385.2737 0.77

[M-sn2] 25 313.2737 1.5

PlsC 32:0 717.5672 718.5745 2.1 Phosphocholine 25 184.0474 1.2

PlsC 34:0 745.5981 746.6088 1.8 Phosphocholine 25 184.0474 1.1

PtdC 34:5 751.5152 752.5225 2.7 Phosphocholine 25 184.0474 1.0

PtdC 36:5 779.5465 780.5538 2.6 Phosphocholine 25 184.0474 0.8

PtdC 38:5 807.5778 808.5851 3.4 Phosphocholine 25 184.0474 0.9

PtdC 38:6 805.5621 806.5694 2.8 Phosphocholine 25 184.0474 1.1

SM 22:1 784.6458 785.6531 2.6 Phosphocholine 25 184.0474 1.1

SM 24:0 814.6928 815.7001 2.8 Phosphocholine 25 184.0474 1.2

SM 24:2 810.6615 811.6688 2.5 Phosphocholine 25 184.0474 0.7

SM 26:1 840.7085 841.7157 2.7 Phosphocholine 25 184.0474 1.1

Lipid Exact Calc. Anion ppm Product Energy Calc. Antion Ppm

PlsE 38:3 753.5672 752.5599 1.6 sn1 18:1 25 281.2486 2.2

sn2 20:2 25 307.2642 0.58

PlsE 38:6 747.5203 746.5165 1.8 sn1 16:0 25 255.2329 0.96

sn2 22:6 25 327.2329 0.53

PlsE 40:6 775.5516 774.5473 1.5 sn1 18:0 25 283.2642 2.0

sn2 20:6 25 327.2329 0.52

LPA 16:0 410.2433 409.2360 0.67 P-Glycerol 25 152.9953 2.1

PtdG 32:0 722.5098 721.5025 1.7 sn1 16:0 25 255.2329 0.65

P-Glycerol 25 152.9953 2.2

LPG 16:0 484.2801 483.2728 0.18 16:0 25 255.2329 0.72

P-Glycerol 25 152.9953 2.1

PtdS 36:1 789.5520 788.5447 1.3 sn1 18:0 25 283.2642 2.2

sn2 18:1 25 281.2486 2.0

PtdS 36:2 787.5364 786.5291 1.4 sn1 18:1 25 281.2486 2.0

sn2 18:1 25 281.2486 2.0

(Continued)
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moderate to frequent neocortical neuritic plaques (PD-3). In addition there were greater DAG

elevations in the cohort with the most severe cortical neuropathology (Fig 1).

In contrast, the levels of lysophosphatidic acid 16:0, a precursor of DAGs, were significantly

decreased in all 3 pathological groups (Fig 1). PD subgroup analysis did not reveal any signifi-

cant differences in LPA levels between the PD-1, PD-2, or PD-3 subgroups.

Plasmalogens

Both choline and ethanolamine plasmalogens were found to be increased in the frontal cortex

of the LBD-I-AD and LBD-AD groups (Fig 2). Ethanolamine plasmalogens also tended to be

augmented in PD frontal cortex (Fig 2). These data contrast with AD where plasmalogens tend

to be decreased in the frontal cortex [4–5]. PD subgroup analysis did not reveal any significant

differences in plasmalogen levels between the PD-1, PD-2, or PD-3 subgroups.

Sphingolipids

Several sphingomyelins were elevated in the frontal cortex but exclusively in the LBD-AD

group while sulfatides were augmented in the frontal cortex of the LBD-I-AD and LBD-AD

cohorts and not in the PD cohort (Fig 3). These data contrast with sulfatide decrements and

unaltered sphingomyelin levels in AD cortex [4–5]. Ceramide metabolism also was altered,

with decrements in ceramide d18:1 and lactosylceramide in all 3 disease groups while galacto-

syl/glucosyl-ceramide 24:1 was selectively decreased in the cortex of the PD cohort (Fig 3).

Phosphatidyl (diacyl) glycerophospholipids

Phosphatidylcholines with 20:5 substitutions were decreased in all 3 neuropathological groups

(Fig 4). This included phosphatidylcholines (PC) PC 34:5, PC 36:5, and PC 38:5 (Fig 4). In con-

trast, phosphatidylserines and phosphatylylglycerols were augmented in the frontal cortex of

all 3 neuropathological groups (Fig 5). In concert with augmented phosphatidylglycerol levels,

decrements in the levels of lysophosphatidylglycerols were measured (Fig 5). PD subgroup

analysis did not reveal any significant differences in diacyl glycerophospholipid levels between

the PD-1, PD-2, or PD-3 subgroups.

Discussion

With the emergence of cognitive dysfunction in elderly patients, the practice of medicine is

complicated in that mixed pathologies are present in many individuals. In addition, there is a

variable penetrance of these pathologies resulting in a large phenotypic variation [27–28]. This

heterogeneity limits the ability of physicians to provide a clinical diagnosis that would allow

for earlier therapeutic intervention. In addition the co-morbidities of multiple ongoing pathol-

ogies complicates our ability to define potential points of intervention for new therapeutic

strategies.

Disruption of lipid homeostasis appears to be a common biochemical feature of the investi-

gated proteinopathies and may contribute to the neuronal dysfunction responsible for cognitive

decline. The observed increases in DAG levels in the frontal cortex of AD, PD, and LBD subjects

are of key interest since DAGs are essential for the synthesis of structural glycerophospholipids,

Table 2. (Continued)

PtdS 38:3 813.5520 812.5447 2.7 sn1 18:0 25 283.2642 2.1

sn2 20:2 25 307.2642 0.61

https://doi.org/10.1371/journal.pone.0191815.t002
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for energy metabolism, and act as mediators of signal transduction, including nuclear signaling.

DAGs are essential second messengers in the nuclear lipid signaling pathway with levels being

tightly controlled by DAG kinase (Fig 6) which terminates DAG signaling via conversion of

DAGs to phosphatidic acids [29–30]. Our observations of elevated DAGs and lower levels of

lysophosphatidic acid suggest that there may be a dysfunction in the DAG kinase regulation of

DAG steady–state levels in proteinopathies. This conjecture may be of import since disruption

of DAG kinase function has be speculated to contribute to both neuroinflammation [31] and

amyloid deposition [32]. The microRNA, miR-34a, a negative regulator of DAG kinase [33], is

up-regulated in frontal cortex in AD [34] suggesting that metabolism of DAGs by DAG kinase

may be decreased in AD brain. Unfortunately DAG kinase (10 isoforms) has not been charac-

terized in synucleinopathies.

The other major metabolic route, to regulate DAG levels, is their utilization in the synthesis

of diacylglycerophospholipids (Fig 6). In this case, both choline (EC 2.7.8.2) and ethanolamine

(EC 2.7.8.1) phosphotransferase have been measured in human brain [35] and in isolated syn-

aptosomes [36], supporting the essential roles of these enzymes in neuronal function. Metabo-

lism of glycerophospholipids to DAGs involves phospholipase C and phospholipase D (PLD)

[6, 37]. However, the augmented levels of phosphatidylserines, phosphatidylglycerols and plas-

malogens, along with unaltered phosphatidylethanolamine and phosphatidylinositol levels

observed in our study, does not suggest that global alterations in these metabolic pathways

contribute to the elevated DAG pools. The specific decreases in phosphatidylcholine levels sug-

gests that this glycerophospholipid pool is selectively metabolized to DAGs or that there is a

selective decrease in choline phosphotransferase activity in synucleinopathies that results in

decreased phosphatidylcholine synthesis.

Fig 1. Frontal cortex levels of diacylglycerols (DAG) and lysophosphatidic acid 16:0 (LPA) in control, Lewy body disease with

intermediate Alzheimer’s disease (LBD-I-AD), Lewy body disease with Alzheimer’s disease (LBD-AD), and Parkinson’s

disease (PD) tissues. R = ratio of the peak area of the endogenous lipid to the peak area of the internal standard (mean ±SEM).

Analysis of PD subgroups demonstrated that DAGs were augmented in the cortex of PD subjects with no neocortical pathology

(PD-1, N = 5), subjects with sparse neocortical neuritic plaques (PD-2, N = 5), and subjects with moderate to frequent neocortical

neuritic plaques (PD-3, N = 5). �, p< 0.01 vs. controls; #, p< 0.05 for PD-2 vs. PD3.

https://doi.org/10.1371/journal.pone.0191815.g001

Fig 2. Frontal cortex levels of plasmalogens in control, Lewy body disease with intermediate Alzheimer’s disease

(LBD-I-AD), Lewy body disease with Alzheimer’s disease (LBD-AD), and Parkinson’s disease (PD) tissues. PlsC,

choline plasmalogens; PlsE, ethanolamine plasmalogen. R = ratio of the peak area of the endogenous plasmalogen to

the peak area of the internal standard (mean ±SEM). �, p< 0.05 vs controls.

https://doi.org/10.1371/journal.pone.0191815.g002
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Other metabolic sources of DAG include de novo synthesis from the glycolytic pathway and

from sphingolipid metabolism (Fig 6). Since glucose hypometabolism appears to predominate

in most neurodegenerative disorders [38] and plasma glucose levels are generally unaltered in

AD [6], this is less likely to contribute to the reported increases in plasma and brain DAG lev-

els. With regard to sphingolipid metabolism, the synthesis of sphingomyelins which involves

the transfer of a phosphocholine head group to a ceramide (EC 2.7.8.27; sphingomyelin

synthase) results in the generation of DAGs [36]. The augmented sphingomyelin levels

observed in the LDB-AD group in our study and the prior study of PD [12] suggest that this

metabolic pathway also may be a contributing factor to augmented DAG levels in the frontal

cortex in late-stage synucleinopathies. This contrasts with studies of AD where sphingomyelin

levels were found to be unaltered in the frontal cortex [4–5]. While altered sphingolipid metab-

olism has been hypothesized to be involved in the induction of PD [39], the inconsistent find-

ings of altered sphingolipid metabolites between laboratories remain to be resolved before

firm conclusions can be drawn [12, 40–41].

A role of inflammation in the augmentation of augmented plasma DAGs in MCI and AD,

and of neuroinflammation in the augmentation of brain levels of DAGs may be important

since inflammation is known to result in induction of PLD [42–44]. In dementias brain micro-

glia presumably are involved in the induction PLD and other neuroinflammatory pathways

[45–51]. Similarly, peripheral inflammation may be responsible for elevated levels of DAGs in

AD [7, 9, 10, 52] and MCI [7, 9] plasma. In contrast individuals possessing normal cognition

until death at greater than 85 years of age did not demonstrate elevations in DAGs [5, 6]. How-

ever, at autopsy these subjects demonstrated significant AD neuropathology and have been

coined non-demented AD neuropathology (NDAN). These data suggest that neuritic plaques

and tangles or Lewy bodies do not initiate the observed alterations in DAG levels but may

exacerbate the ongoing biochemical changes. The early detection of neuroinflammation and

Fig 3. Frontal cortex levels of sphingolipids (SM, sphingomyelin; Sul, sulfatide, Cer, ceramide; G-Cer,

galactosyceramide; L-Cer, lactosylceramide) in control, Lewy body disease with intermediate Alzheimer’s disease

(LBD-I-AD), Lewy body disease with Alzheimer’s disease (LBD-AD), and Parkinson’s disease (PD) tissues.

R = ratio of the peak area of the endogenous sphingolipid to the peak area of the internal standard (mean ±SEM). �,

p< 0.05. vs controls.

https://doi.org/10.1371/journal.pone.0191815.g003

Fig 4. Decreased frontal cortex levels of 20:5-containing phosphatidylcholines (PtdC) in Lewy body disease with

intermediate Alzheimer’s disease (LBD-I-AD), Lewy body disease with Alzheimer’s disease (LBD-AD), and

Parkinson’s disease (PD) tissues. R = ratio of the peak area of the endogenous PtdC to the peak area of the internal

standard (mean ±SEM). �, p< 0.01; #, p< 0.05 vs controls.

https://doi.org/10.1371/journal.pone.0191815.g004
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elevated DAG levels in MCI, AD, PD, and LBD suggest that early anti-inflammatory interven-

tions may ultimately be neuroprotective and block cognitive decline. This conclusion is sup-

ported by the observations that individuals utilizing repeated NSAID use have a reduced

incidence of AD while established AD patients do not benefit for NSAID therapy [52, 53].

Recently, heterozygous mutations in glucocerebrosidase GBA1, which catalyzes the hydro-

lysis of glucosyl ceramides, have been shown to be the most common genetic risk factor for

PD and LBD [54–57]. The underlying mechanism that produces this risk is unknown and

both gain-of-function mechanisms involving abnormal GBA1 accumulation and loss-of-

function mechanisms that purport decreased GBA1 activity have been hypothesized as mecha-

nisms [58]. The lack of a consistent phenotype of PD or LBD in patients with GBA1 mutations,

viewed as one argument against a loss-of-function mechanism, may simply indicate the

Fig 5. Frontal cortex levels of phosphatidylserines (PtdS), phosphatidylglycerol 32:0 (PtdG), and lysophosphati-

dylglycerol 16:0 (LPG) in control, Lewy body disease with intermediate Alzheimer’s disease (LBD-I-AD), Lewy

body disease with Alzheimer’s disease (LBD-AD), and Parkinson’s disease (PD) tissues. R = ratio of the peak area

of the endogenous lipid to the peak area of the internal standard (mean ±SEM). �, p< 0.01 vs controls.

https://doi.org/10.1371/journal.pone.0191815.g005

Fig 6. Abbreviated schematic presentation of DAG metabolism. LPA, lysophosphatidic acid; PC, phosphatidylcholine; PG,

phosphatidylglycerol; PS, phosphatidylserine; PLC, phospholipase C; PLD, phospholipase D; SMS, sphingomyelin synthase; DGK,

diacylglycerol kinase. Red indicates lowered levels and blue indicates increased levels observed in our study.

https://doi.org/10.1371/journal.pone.0191815.g006
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complexity of multifactorial disease in which other factors interact with both GBA1 and alpha-

synuclein to produce the pathologic findings and clinical symptoms of disease. Similarly,

mutations in LRRK2, the chief cause of hereditary PD, have been modeled in mice and shown

to increase ceramide levels in brain [59]. Glucocerebrosidase deficiency in PD and LBD would

be expected to increase glucocerebroside content of brain tissue. Secondary effects of this

might include increases in ceramide and its constituent sphingolipids, of which our current

work demonstrates increases in both sphingomyelins and sulfatides that are not present in

AD alone but are seen specifically when neocortical Lewy bodies are present. In addition, our

non-biased analytical platform revealed decrements in cortical ceramide levels as previously

reported [60]. We also detected decrements in galactosylceramide 24:1 and/or gluclosylcera-

mide 24:1 in PD cortex, which cannot be differentiated by direct infusion lipidomics. How-

ever, previous studies have not detected alterations in cortical glucosylceramides in PD [61],

therefore we assume the monitored decreases were in galactosylceramide (Fig 7). Large decre-

ments in lactosylceramides were monitored in all 3 neuropathological groups further support-

ing complex alterations in sphingolipid metabolism in these disorders (Fig 7).

Previously, we determined plasmalogens, ether phospholipids that are abundant in brain

tissue and hypothesized to protect against reactive oxygen species [61], to be decreased in AD

[62–63]; our current study demonstrates this not to be the case, however, in cerebral cortex

affected by PD and LBD. As LBD and PD feature less global cerebral cortical damage and atro-

phy than AD, this might be anticipated. However, surprisingly, we found plasmalogens and

especially those containing ethanolamine are increased in PD and LBD cortex compared to

even controls.

Conclusions

Accumulation of DAGs in AD cortex appears to be a consistent finding among a number of

lipidomics laboratories. We have extended these findings to include PD, LBD with

Fig 7. Abbreviated schematic presentation of sphingolipid metabolism. Gal, galactosyl; Glu, glucosyl; Lac, lactosyl; S-1-P,

sphingosine-1-phosphate. Red indicates lowered levels and blue indicates increased levels observed in our study.

https://doi.org/10.1371/journal.pone.0191815.g007
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intermediate AD pathology, and LBD with AD pathology. Considering the tight control of the

homeostatic regulation of DAG levels and the multiple roles of these neutral lipids, continued

research into their potential role of DAG dysfunction in neurodegenerative changes resulting

in cognitive decline is imperative. In addition, it is imperative to determine if plasma DAG lev-

els are elevated in PD and LBD subjects, as they are in MCI and AD patients. If this is the case

plasma DAG levels may represent a useful biomarker for future neurodegeneration and

thereby provide a rationale for early NSAID intervention to block or slow the disease processes

invoked by neuroinflammation. Early intervention is critical to the success of any anti-inflam-

matory approach [52].

Supporting information

S1 Table. Individual R values for all presented data (R = ratio of endogenous lipid peak
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