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Abstract. An improved immunogold labeling proce- 
dure was used to examine the subcellular distribution 
of glucose transporters in Lowricryl HM20-embedded 
skeletal muscle from transgenic mice overexpressing ei- 
ther Glutl or Glut4. In basal muscle, Glut4 was highly 
enriched in membranes of the transverse tubules and 
the terminal cisternae of the triadic junctions. Less than 
10% of total muscle Glut4 was present in the vicinity of 
the sarcolemmal membrane. Insulin treatment in- 
creased the number of gold particles associated with 
the transverse tubules and the sarcolemma by three- 
fold. However, insulin also increased the total Glut4 
immunogold reactivity in muscle ultrathin sections by 
up to 1.8-fold and dramatically increased the amount of 
Glut4 in muscle sections as observed by laser confocal 
immunofluorescence microscopy. The average diame- 
ter of transverse tubules observed in longitudinal sec- 

tions increased by 50% after insulin treatment. Glutl 
was highly enriched in the sarcolemma, both in the 
basal state and after insulin treatment. Disruption of 
transverse tubule morphology by in vitro glycerol shock 
completely abolished insulin-stimulated glucose trans- 
port in isolated rat epitrochlearis muscles. These data 
indicate that: (a) Glutl and Glut4 are targeted to dis- 
tinct plasma membrane domains in skeletal muscle; (b) 
Glut1 contributes to basal transport at the sarcolemma 
and the bulk of insulin-stimulated transport is mediated 
by Glut4 localized in the transverse tubules; (c) insulin 
increases the apparent surface area of transverse tu- 
bules in skeletal muscle; and (d) insulin causes the un- 
masking of a COOH-terminal antigenic epitope in skel- 
etal muscle in much the same fashion as it does in rat 
adipocytes. 

LUCOSE transport in the insulin-sensitive tissues has 
received considerable experimental attention be- 
cause of the importance of this process in the 

maintenance of whole-body glucose homeostasis (38). 
Transport into skeletal muscle is of particular physiologi- 
cal importance because this tissue represents the major 
site of glucose disposal in the postprandial state (17), and 
defects in glucose uptake into muscle contribute to the 
pathogenesis of type II diabetes mellitus (5, 46). The influx 
of glucose into skeletal muscle appears to be mediated by 
two glucose transporter isoforms, Glut1 (4, 39) and Glut4 
(3, 7, 19, 29). Glut4 is at least 10-fold more abundant in 
muscle cells than is Glut1, and it is this isoform that is re- 
sponsible for the acute increase in glucose uptake ob- 
served in response to elevated insulin or contractile activ- 
ity (24, 50). A distinct role for muscle Glut1 has not been 
clearly defined, although transgenic overexpression stud- 
ies suggest that Glutl mediates basal glucose transport 
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into skeletal muscle fibers (21, 36, 44). Insulin rapidly stim- 
ulates glucose uptake into muscle by a mechanism that 
may involve the subcellular redistribution of Glut4 from 
intracellular membrane compartments to plasma mem- 
brane domains (33, 45, 53). 

The current concept that Glut4 translocates from intra- 
cellular compartments to the plasma membrane in re- 
sponse to insulin is strongly supported by observations in 
adipocytes, where translocation has been clearly demon- 
strated using a combination of methodologies, including 
subcellular fractionation (9, 55), photoaffinity labeling 
(26), and quantitative ultrastructural examination using 
immunogold labeling (48). However, the process may be 
more complicated than is currently appreciated. For exam- 
ple, an immunogold labeling study suggests that conforma- 
tional changes involving the unmasking of an antigenic 
epitope may contribute to insulin-stimulated transport ac- 
tivity in primary cultures of rat adipocytes (49). 

The mechanism of glucose transporter regulation in 
skeletal muscle is more obscure than in adipocytes be- 
cause of the technical difficulties involved in performing 
cell biological experiments on this tissue. Skeletal muscle 

© The Rockefeller University Press, 0021-9525/96/10/415/16 $2.00 
The Journal of Cell Biology, Volume 135, Number 2, October 1996 415430 415 



fibers have a distinct architecture compared to adipocytes 
and contain two different plasma membrane domains, the 
sarcolemma and T-tubules. The precise subceUular distri- 
bution of Glutl and Glut4 in skeletal muscle and the loca- 
tion of basal- and insulin-stimulated transport into the 
muscle fiber are fundamental issues that remain unre- 
solved. Depending on the technique used, ultrastructural 
studies have indicated that in unstimulated muscle fibers, 
Glut4 is enriched in subsarcolemmal vesicles (45), triadic 
junctions (12, 18), or both of these structures (6). Translo- 
cation to the sarcolemma has been reported in at least two 
of these studies. However, in none of these studies was 
quantification of the Glut4 distribution attempted. The ul- 
trastructural investigation of the distribution of Glut1 in 
muscle has not yet been explored because of the very low 
abundance of this protein in normal muscle. Subcellular 
fractionation studies have also produced somewhat con- 
tradictory results. Redistribution of Glut4 to subcellular 
fractions enriched in markers for the sarcolemma (11, 25) 
and the T-tubules (32, 40) has been reported, but it is un- 
clear which of these domains is most important in insulin- 
stimulated transport. 

We have addressed these unresolved questions by im- 
plementing an improved immunogold labeling procedure 
for plastic-embedded thin sections and by using a hyper- 
tonic shock technique to examine the effect of T-tubule 
disruption on glucose transport. Additionally, we used 
transgenic mice overexpressing either Glutl or Glut4 in 
skeletal muscle to enhance the immunolabeling density 
and to enable accurate quantification of the ultrastructural 
data. Our data indicate that Glutl  and Glut4 are targeted 
to different plasma membrane domains in skeletal muscle. 
Furthermore, our results suggest that basal transport oc- 
curs via Glutl localized constitutively at the sarcolemma, 
and that insulin-stimulated transport occurs primarily via 
Glut4 located at the T-tubule. Our data also suggest that 
insulin induces conformational changes in skeletal muscle 
Glut4 similar to its effect in the adipocyte. 

Materials and Methods 

Materials 
Insulin (HumulinR) was purchased from Eli Lilly and Co. (Indianapolis, 
IN). 3-O-[3H]Methyl-D-glucose and [~4C]mannitol were purchased from 
Dupont/NEN Research Products (Boston, MA). Lowricryl HM20 and 
Epon 812 embedding media were purchased from Polysciences, Inc. 
(Warrington, PA). The primary antibodies used were: a rabbit polyclonal 
antiserum (F349) raised against a synthetic peptide corresponding to the 
COOH-terminal 16 residues of rat Glut4, a rabbit polyclonal antiserum 
(F350) raised against a synthetic peptide corresponding to the COOH-ter- 
minal 16 residues of human Glutl  (23), and a rabbit polyclonal antiserum 
(WU626) raised against a synthetic peptide corresponding to residues 
245-266 of rat Glut4. The antibodies were purified using corresponding 
immunoaffinity columns (43). The peptides against which these antibodies 
were raised were coupled to Thiopropal Sepharose 6B (Sigma Chemical 
Co., St. Louis, MO). The specificity of the purified F349 and F350 anti- 
bodies has been verified extensively (22, 23, 27, 28, 35). Goat anti-rabbit 
IgG colloidal gold conjugate was purchased from Jackson ImmunoRe- 
search Laboratory, Inc. (West Grove, PA). 

The Transgenic Mice 
The construction of transgenic mice carrying a human Glut4 (hGlut4) glu- 
cose transporter minigene construct (42) or carrying a human Glutl  glu- 
cose transporter minigene construct (36) has been described previously. 

The pattern of tissue-specific expression of the Glut4 construct has been 
shown to follow that of the endogenous mouse Glut4 gene (42). Heterozy- 
gous hGlut4-11.5B transgenic mice (31) and their nontransgenic litter 
mates (8-13-wk old) were used in all experiments. The Glutl  minigene in 
the Glutl  construct contains a 2.47-kb cDNA fragment encoding the hu- 
man Glutl glucose trarisporter under the regulation of the 1.2-kb rat myo- 
sin light chain-2 promoter. Expression of the transgene is restricted to 
skeletal muscle and dose not affect expression of the endogenous Glut4 
isoform (36). Animals were housed in a room maintained at 23°C with a 
fixed 12 h light-dark cycle and given access to Purina Chow and water ad 
libitum. 

Immunoelectron Microscopy 
Muscles were subjected to insulin stimulation using three different proto- 
cols. (1) Mice were given glucose (2 g/kg body weight) and 6 U of insulin 
intraperitoneally 30 min before in situ fixation. Control mice were injected 
with vehicle alone. The injected mice were anesthetized with 80 mg/kg so- 
dium pentobarbital and perfusion fixed via intracardiac puncture with 3% 
paraformaldehyde and 0.5% glutaraldehyde in PBS (0.14 M NaC1, 2.7 mM 
KCI, 1 mM CaCl 2, 1.5 mM KH2PO4, 8.1 mM Na2HPO4, pH 7.4). The 
quadriceps or soleus muscles were dissected and further fixed for 2 h in 
the same solution. (2) Mice were subjected to a euglycemic, hyperinsuline- 
mic clamp as described under "Hyperinsulinemic Clamp." The left soleus 
muscle was removed at the end of the basal clamp period and the right so- 
leus muscle was removed at the end of the insulin infusion period. The 
muscles were then fixed in 3% paraformaldehyde, 0.5% glutaraldehyde as 
described above. (3) Epitrochlearis muscles were removed from anesthe- 
tized mice and incubated in vitro in the presence or absence of insulin as 
described under "In Vitro Muscle Incubation and Selective Disruption of 
T-Tubules." The muscles were then fixed in 3% paraformaldehyde, 0.5% 
glutaraldehyde as described above. 

After fixation, the tissues were rinsed with PBS and distilled water and 
in bloc stained with 0.5% uranyl acetate for 30 rain at 4°C. The tissues 
were dehydrated through graded ethanok 30% for 10 min at 4°C, 50% for 
1 h at -20°C, 70% for 1 h, 95% for 1 h, and 100% for 2 h with three 
changes all at -45°C. The tissues were embedded in Lowricryl HM20 and 
polymerized under 360-nm UV light for 1 d at -45°C, 1 d at -35°C, and I d 
at room temperature under sun light. 

The cut thin sections were picked on nickel grids coated with Polyvinyl 
formal film. The nonspecific binding sites were blocked by incubating sec- 
tions with 5% goat serum for 15 rain and 2% gelatin for 10 rain. The sec- 
tions were washed with PBS and then incubated with primary antibody for 
1 h at 37°C, followed by six washes in PBS and then incubation with goat 
anti-rabbit IgG colloidal gold conjugate for 30 min at room temperature. 
To determine levels of nonspecific labeling, preimmune IgG was substi- 
tuted for the primary antibody, or the primary antibody was saturated 
with a 10-fold molar excess of the peptide used to raise the antibody. The 
grids were then stained with 4% uranyl acetate for 20 min and Reynold's 
lead solution for 50 s and examined in an electron microscope (model 902; 
Carl Zeiss, Inc., Thornwood, NY). 

For quantification of the immunogold labeling, measurements of T-tubule 
dimensions were made from the electron micrographs using a 7x  eyepiece 
magnifier with a graticule divided at 0.l-ram intervals (Ted Pella, Inc., 
Redding, CA). Immunogold labeling density was determined in micro- 
graphs of longitudinal sections, with each sarcomere defined as the basic 
quantification unit. Quantification of labeling in the region of the sarco- 
lemma was based on the number of gold particles observed per 2 izm 
length. All quantification data presented here were repeated at least twice 
in independent experiments. The nonspecific background labeling deter- 
mined using either preimmune IgG or by competition with excess immune 
peptide was extremely low under the optimal conditions described above 
(<1% of the specific labeling for either Glutl  or Glut4 labeling). 

Isolation of Intact Triads 
Total skeletal muscles from seven Glut4 transgenic mice were pooled and 
homogenized in 10% sucrose, 0.5 mM EDTA, pH 7.2. The homogenate 
was centrifuged at 9,000 rpm for 15 min in a rotor (model JA-10; Beckman 
Instrs., Fullerton, CA) and the supernatant was filtered through cheese- 
cloth and recentrifuged at 30,100 g for 30 min to produce the heavy mi- 
crosome fraction. The pellet was homogenized again with a Dounce ho- 
mogenizer and loaded on top of a sucrose gradient composed of a 28-50% 
continuous sucrose gradient and 25, 14, and 10% step gradients. Centrifu- 
gation was carried out using a rotor (model SW 28.1; Beckman Instrs.) at 
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97,000 g at 4°C for 90 min (37). The band enriched in triads was collected, 
fixed, and processed for immunoelectromicroscopy as described above. 

Hyperinsulinemic Clamp 
Clamp experiments were carried out as previously described (34) with the 
following modifications: After placement of the infusion catheter, an infu- 
sion of 3-[3H]glucose at 0.04 ixCi/min was begun for measurement of the 
rate of appearance of glucose, hepatic glucose production, and total body 
glucose utilization. The infusion was continued during a 1-h control pe- 
riod, and 20 I~1 of blood was taken from the tail for determination of glu- 
cose specific activity at 45 and ~0 min. After 60 min, an infusion of insulin 
20 mU/kg/min was begun and continued for at least 90 min. Dextrose infu- 
sion (25%) was begun and the infusion rate was varied to maintain the 
blood glucose at the level it appeared during the last 15 min of the control 
period. The continuous infusion of 3-[3H]glucose tracer was continued 
during the insulin infusion period and, in addition, tracer was added to the 
25% dextrose infusion to approximate the glucose-specific activity in the 
blood at the end of the control period. This approximation was based 
upon measurement of specific activity during identical conditions in the 
same type of mice in previous experiments. Blood samples for determina- 
tion of specific activity were taken 15 min before and at the end of the in- 
sulin infusion period, when the blood glucose was in a steady state. The 
combined gastrocnemius/soleus/plantaris muscles were excised during the 
clamp experiment, the right muscles at the end of the control period and 
the left muscles at the end of the insulin infusion period. One-half of each 
muscle sample was rapidly frozen in liquid nitrogen and used for Western 
blot analysis, and the other half was immersed immediately in fixative and 
used for confocal immunofluorescence microscopy. 

Specific activity was determined by aqueous scintillation counting of 
20 pd of blood deproteinized with 5 ml each of barium hydroxide (0.3 N) 
and zinc sulfate (0.3 N). The supernatant resulting from the deproteinization 
was dried at 70°C to remove tritiated water before resuspension and counting. 

The rate of appearance of glucose (Ra), which equals the rate of total 
body glucose utilization when the blood glucose is in steady state, was cal- 
culated by dividing the infusion rate of 3-[3H]glucose by the specific activ- 
ity of glucose at the same time. Hepatic glucose production (HGP) was 
calculated by subtracting the cold glucose infusion rate from Ra. 

Western Blot Analysis and Confocal 
lmmunofluorescence Microscopy 
Combined soleus/gastrocnemius/plantaris muscles were removed from the 
hind limbs of mice before and after a hyperinsulinemic/euglycemic clamp 
as described above. One-half of each muscle sample was processed for la- 
ser confocal immunofluorescence microscopy, and the other half was sub- 
jected to Western blot analysis as previously described (36) using a rabbit 
polyclonal IgG antibody directed against the COOH terminus of Glut4 
(F349). The Glut4 protein standard was prepared by expression of rat 
Glut4 in Xenopus oocytes as previously described (35). 

The muscle samples were prepared for immunofluorescence micros- 
copy by fixation in 4% paraformaldehyde and 0.4% glutaraldehyde in 0.1 M 
cacodylate buffer, pH 7.4, for 2 h, rinsed three times with the same buffer 
over a 30-min period, incubated in a solution containing 30% sucrose, 
20% polyvinylpyrollidone, 44 mM sodium carbonate, and 20 mM phos- 
phate buffer, pH 7.4, at 4°C overnight, and then frozen. 15-pxm cryosec- 
tions were cut and mounted on glass slides. The sections were rinsed at 
room temperature in PBS and then incubated in 0.1% Triton-X 100 at 
room temperature for 10 min, 2.5% normal goat serum for 15 min, 2% 
gelatin for 15 min, followed by a rinse in PBS before incubation with pri- 
mary antibody at 37°C for 1 h. Slides were then rinsed with PBS and incu- 
bated in fluorescein-conjugated goat F(ab')2 anti-rabbit IgG (Chemicon 
International, Inc., Temecula, CA) at room temperature for 45 min. The 
primary antibody for detection of Glut4 was an IgG fraction of F349 Glut4 
antiserum prepared using protein A-Sepharose (Sigma Chemical Co., St. 
Louis, MO). Nonspecific labeling was assessed using preimmune IgG. Un- 
der the conditions used for the micrographs presented in this paper, all of 
the observed fluorescence represents specific labeling, i.e., fields from 
control slides appeared completely black. 

In Vitro Muscle Incubation and Selective Disruption 
ofT-Tubules 
Male Wistar rats (80-110 g) obtained from SASCO (Omaha, NE) were 
used for the T-tubule disruption experiments. Rats were used rather than 

mice because their muscles are more insulin sensitive. Rats were anaesthe- 
tized by an intraperitoneal injection of pentobarbital sodium (5 rag/100 g 
body weight) and the epitrochlearis or soleus muscles were removed (54). 
Immediately after dissection, muscles were initially incubated at room 
temperature for 60 min in 2 mi of Ringer's buffer (115 mM NaCI, 2.5 mM 
KCI, 1.8 mM CaC12, 3.0 mM phosphate buffer, pH 7.0), in the presence or 
absence of 400 mM glycerol (13), and then transferred to 2 ml glycerol- 
free Ringer's for 30 rain. Muscles were then incubated for 20 min at 35°C 
in 2 ml of oxygenated Krebs-Henseleit  buffer (KHB) supplemented 
with 2 mM sodium pyruvate, 36 mM mannitol, and 0.1% radioimmunoas- 
say grade BSA, in the presence or absence of 10 mU/ml insulin before 
measurement of glucose transport activity. All incubations were per- 
formed in a Dubnoff shaking incubator (Precision Scientific, Chicago, IL). 
Flasks were gassed continuously with 95% 02, 5% CO2 throughout the 
experiment. For T-tubule recovery experiments, the muscle samples were 
returned to glycerol-containing Ringer's solution for 40 min before pro- 
ceeding to the next step. The muscles were then either processed for elec- 
tron microscopy or for glucose transport measurements. 

Measurement of Glucose Transport Activity 
Glucose transport activity was measured using previously described meth- 
ods (54). After the initial incubations, muscles were transferred to 1.0 ml 
KHB containing 8 mM 3-O-[3H] methyl-D-glucose (294 i~Ci/mmol), 32 
mM [U-14C]mannitol (8 p~Ci/mmol), 0.1% BSA, and the same concentra- 
tion of insulin present during the previous incubation. The temperature 
was maintained at 35°C and the flasks were gassed continuously with 95 % 
02, 5% CO2. To terminate the transport assay, muscles were blotted at 
4°C and clamp frozen. Extracellular space and intracellular 3-O-methyl- 
glucose concentration (ixmol.ml intracellular water -1.10 min -1) were de- 
termined as previously described (54). 

Results 
Two technical problems have often been encountered by 
researchers using Lowricryl HM20 as an embedding me- 
dium for immunogold labeling studies. The first is low con- 
trast of membranous structures within the cell, which 
makes accurate quantification of immunogold-labeled 
membrane proteins difficult if not impossible. The second 
is low antibody labeling efficiency compared with that ob- 
tained using standard frozen sections. We made two sim- 
ple but effective modifications to the general procedure 
that eliminated these two problems. The use of a low con- 
centration of uranyl acetate (0.5 %) for a short period of in 
bloc staining before embedding the tissue was used to in- 
crease the contrast of membrane structures and to greatly 
enhance the general morphology of the thin section, with- 
out interfering with tissue polymerization (overly stained 
tissue would inhibit UV light penetration) or antibody la- 
beling. Additionally, the time and temperature of the pri- 
mary antibody incubation was found to be critical for ob- 
taining good labeling efficiency with low background 
staining. Incubating Lowricryl HM20-embedded tissue 
sections at 37°C for 1 h rather than prolonged incubation 
at either room temperature or 4°C greatly increased the 
specific labeling efficiency and dramatically decreased 
nonspecific binding. The signal to noise ratio obtained 
with the optimized labeling procedure was >100:1, i.e., the 
number of gold particles observed in muscle sections when 
preimmune IgG was substituted for immune IgG or when 
an excess of immune peptide was used to compete out spe- 
cific binding sites was < 1% of specific labeling. 

This technique was used to localize glucose transporter 
isoforms in the skeletal muscle of transgenic mice overex- 
pressing either Glutl or Glut4. Glutl was primarily lo- 
cated on the sarcolemma in Glutl transgenic mice (Fig. 1). 
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Table L Subcellular Distribution of Glut4 in Skeletal Muscles of Glut4 Transgenic Mice 

Gold particle count 

Sarcolemma Sarcomere 
(per 2 I~m length) (1 × 2 ~m) 

No. animals 
Group used Condition PM Space under PM Total Triad T-tubules 

Insulin clmrq>- 3 Basal  3 ± 0.3 7 ±_ 1.0 28 + 3.1 19 + 2.8 8 -+ 2.2 

infusion Insulin 8 + 2.1 4 ± 0.2 46 ± 4.3 26  ± 3.7 16 ± 3.7 

In vitro muscle  3 Basal  7 ± 1.2 8 ±- 1.5 19 ±- 2.1 17 +- 1.7 8 ± 0.5 

incubat ion  Insulin 9 +- 1.7 7 ± 0.8 25 ±- 2.7 20  ± 2.1 12 ± 0.9 

In vivo peri toneal  6 Basal  9 ± 0.7 14 +_ 1.1 34 ± 2.4 26 ± 1.7 12 _-_ 1.1 

adminis t ra t ion Insulin 14 --- 0.6 9 ± 0.4 60  ± 3.7 43 ± 3.7 26 _-_ 1.2 

Three experimental procedures were used to examine the effect of insufin on the distribution of Glut4 in skeletal muscles. (1) lnsulinemic clamp-infusion. The right soleus muscle 
was removed from an anesthetized Glut4 transgenic mouse at the end of the basal clamp period and the left soleus muscle was removed at the end of the hyperinsulinemic clamp 
period. The muscle samples were then fixed, embedded in Lowricryl HM20, and processed for immunoelectron microscopy as described in Materials and Methods. (2) In vitro 
muscle incubation. Pairs of epitrochlearis muscles were removed from Glut4 transgenic mice and incubated in either the absence or presence of insufin for 30 min as described in 
Materials and Methods. The muscles were then processed for immunoelectron microscopy. (3) In vivo peritoneal administration. Either insulin and dextrose or buffer alone (for 
basal mice) was injected i.p. into Glut4 transgenic mice 30 min before in sire fixation of muscles. Hindlimb quadriceps muscles were then removed and processed as described in 
Materials and Methods. Each of the protocols was conducted on muscles obtained from the total number of animals indicated, and in each case, 2-3 independent experiments were 
performed. The numbers represent the mean --- SE. The Student's t-test was used to determine the significance of the differences between basal and insulin treatment for each ex- 
periment. For quantification of total intracellular Glut4 (apart from Glut4 beneath the sarcolemma), gold particles were counted in longitudinal sections encompassing 1 × 2 ~m 
(roughly equivalent to the size of a sarcomere) and containing two T-tubule profiles. Between 30-50 total sarcomeric units were quantitated per experiment. For quantification of 
Glut4 on T-tubule membranes, the number of gold particles were counted per 1 p,m length of membrane. Note that gold particles appear on both cytoplasmic faces of each T-tubule 
membrane observed in longitudinal section. For quantification of Glut4 on the sarcolemma, the number of gold particles are expressed per 2 p,m length of membrane. Between 
100-120 ixm of sarcolemma was quantitated per experiment. For quantification of Glut4 in vesicles beneath the sarcolemma, gold particles are expressed per 2 p~m length of sarco- 
lemma and extending in depth down to the first myofibril. Gold particles within ~ 15 nm of a bilayer structure were considered to be in the membrane. PM, plasma membrane. 

It was also detected on T-tubule membranes but at a much 
lower abundance (Fig. 1 A,  Inset). The level of Glutl  in the 
wild-type mouse was so low that it could not be detected 
by this method. Short-term insulin treatment did not change 
the Glut1 labeling density on the sarcolemmal mem- 
brane or the T-tubular membrane. The insulin-treated 
group had an average of 6.6 +__ 0.57 particles per 2.2 p~m on 
the sarcolemma (2.2 p~m is equivalent to the average 
length of a sarcomere) and 1.1 ___ 0.22 on T-tubules, com- 
pared to 6.2 +_ 0.95 particles on the sarcolemma and 1.3 ___ 
0.23 on T-tubules for the basal group. Statistically, there 
was no significant difference between the insulin-treated 
and control groups. Intracellular Glutl  labeling in either 
condition was very low (Fig. 1, A and B). 

Glut4 could be readily detected in muscle ultrathin sec- 
tions from both wild-type and transgenic mice. The quanti- 
tative results presented here are for the Glut4 transgenic 
mice. Very similar results were observed for the wild-type 
mice, although the labeling density was reduced. Three 
different protocols were used to examine the subcellular 
distribution of Glut4 in basal and insulin-treated muscle: 
(1) intraperitoneal injection of mice with insulin followed 
by in situ perfusion fixation; (2) isolation of individual 
muscles from untreated animals followed by in vitro incu- 
bation with or without insulin; and (3) removal of muscles 
from mice before or after a 90-min euglycemic/hyperin- 
sulinemic clamp followed by in vitro fixation. The results 
obtained with the different protocols were quantitatively 
different but were in good qualitative agreement (Table I). 

The great preponderance of Glut4 labeling under basal 

and insulin-treated conditions was located in and around 
the muscle triad (Fig. 2). Heavy labeling was observed 
both in T-tubule membranes and in the closely associated 
terminal cisternae. A lesser amount of labeling was also 
observed in the regions of the sarcoplasmic reticulum 
membranes. The possibility that the latter labeling was in 
some undefined structures closely associated with either 
the terminal cisternae or sarcoplasmic reticulum cannot be 
excluded by these methods. However, the labeling ob- 
served in this region was of a specific nature, because it 
was not observed under control conditions. To examine 
the Glut4 labeling of the triad region further, triad struc- 
tures were isolated from muscle homogenates by subcellu- 
lar fractionation and then subjected to immunogold label- 
ing. Gold particles were again observed in both T-tubular 
membranes and in the closely associated lobules repre- 
senting the terminal cisternae (Fig. 3). 

Glut4 labeling in basal and insulin-treated muscle was 
also observed in the sarcolemma and more frequently in 
vesicles beneath the sarcolemma (Fig. 2, A and B). As was 
reported previously, some Glut4 in this region was present 
in vesicles in close proximity to Golgi stacks (data not 
shown). However, Golgi stacks were only observed in the 
vicinity of nuclei and were relatively sparse. Glut4 in these 
regions represented <1% of the total muscle labeling. We 
estimate that >90% of total muscle Glut4 was located in 
the region of the triadic junctions and that <10% of total 
Glut4 was located in the vicinity of the sarcolemma (see 
Discussion). 

Insulin increased the number of gold particles that were 

Figure 1. Ultrastructural localization of Glut1 in Lowricryl HM20-embedded Glutl transgenic mouse muscles. The thin sections were 
stained with an antibody specific for the COOH terminus of Glutl (F350) and a colloidal gold conjugated secondary antibody. Glutl 
was primarily located on the sarcolemma. Short term insulin treatment (up to 30 min) did not change the distribution pattern of Glutl in 
skeletal muscle (A, basal; B, insulin). Glutl was also detected on T-tubules but with much less abundance (Inset). PM, plasma mem- 
brane; T, T-tubule. Bar, 0.5 Ixm. 
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Figure 2. Ultrastructural localization of Glut4 in Lowricryl HM20-embedded Glut4 transgenic mouse muscles. The thin sections were 
stained with an antibody specific for the COOH terminus of Glut4 (F349) and a colloidal gold-conjugated secondary antibody. Both the 
sarcolemma and T-tubules were labeled with anti-Glut 4 antibody. (,4) In the basal state, most of the gold particles in the vicinity of the 
sarcolemma were actually in vesicles beneath the surface membrane. (B) This micrograph shows the general labeling pattern of Glut4 
transgenic mouse muscles in the insulin stimulated state. More than 90% of the gold particles were located at the A-I junction, mostly 
on T-tubule membranes and around the triad. Notice that the sarcolemmal membrane was also more heavily labeled than in the basal 
state. Insulin increased Glut4 labeling on the sarcolemma by about threefold. (C) High magnification micrograph showing Glut4 label- 
ing along the T-tubular membrane. Insulin increased Glut4 labeling on the T-tubular membrane by ~twofold. PM, Plasma mem- 
brane; SR, Sarcoplasmic reticulum; T, T-tubule; v, Glut4-containing vesicle. Bar, 0.5 ~m. 

associated with T-tubules by up to twofold and increased 
gold particles in the sarcolemma by up to threefold (Table I). 
However, insulin treatment also caused an increase in the 
total number of gold particles observed in the muscle sec- 
tions. This increase in total labeling was observed with all 
three insulin-treatment protocols (Table I). For example, 
the i.p. administration of insulin resulted in an increase in 
total particles per sarcomere from 34 to 60 (P < 0.001). 
The increase in immunoreactive Glut4 in muscle sections 
was verified by laser confocal immunofluorescence mi- 
croscopy using the same Glut4 antibody raised against the 
C O O H  terminus of the protein as was used for the immu- 
nogold labeling (Fig. 4, a and b). 

We next performed immunoblots on total muscle homo- 
genates to determine whether the short-term insulin treat- 
ment resulted in an increase in total muscle Glut4 protein. 
The immunoblot data indicate that insulin did not increase 
the total Glut4 content of the skeletal muscle (Fig. 5 B). 
One possible explanation for these data is that the 
COOH-terminal  epitope of Glut4 recognized by the anti- 
body is partially masked in the basal state, and that insulin 
unmasks the epitope and thereby increases the labeling el- 

ficiency of Glut4. These data are thus reminiscent of the 
epitope unmasking previously reported for Glut4 labeling 
of the adipocyte plasma membrane after insulin treatment 
(49). Although the semiquantitative ultrastructural data 
presented in Table I appear to indicate that there were 
equivalent increases in immunoreactive Glut4 in the T-tubule 
membranes and the surrounding intracellular membrane 
systems, it should be pointed out that it can be extremely 
difficult to determine whether a gold particle is actually in 
the T-tubule membrane or in the very closely associated 
terminal cisternae (or some other undefined membrane 
structures in this region). Thus, it is quite possible that a 
disproportional increase in T-tubule Glut4 labeling oc- 
curred but could not be detected by our methods. 

Smith et al. used an antibody directed against the NH2 
terminus of Glut4 to demonstrate that the insulin-induced 
antigenic unmasking of the C O O H  terminus observed in 
adipocytes is specific in the sense that it does not extend to 
the NH2 terminus. We tested the specificity of the anti- 
genic unmasking in skeletal muscle using a novel antise- 
rum (WU626) directed against residues 245-266 within the 
central cytoplasmic loop of Glut4. The immunoblot data 
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Figure 3. Ultrastructural analysis of isolated muscle triadic junc- 
tions. A subcellular fraction containing intact muscle triads was 
embedded in Lowricryl HM20 and stained with F349 anti-Glut4 
antibody and colloidal gold secondary antibody. Both the T-tubule 
(arrowhead) and flanking terminal cisternae (arrow) were labeled 
with anti-Glut4 antibody. Bar, 0.25 txm. 

shown in Fig. 5 A demonstrates the reactivity and specific- 
ity of the peptide affinity-purified WU626 IgG towards 
Glut4. This IgG was used to detect Glut4 by confocal im- 
munofluorescence microscopy in skeletal muscle sections 
obtained from mice during the basal and hyperinsulinemic 
clamp periods. In contrast to the results obtained with the 
F349 antibody directed against the Glut4 COOH termi- 
nus, WU626 IgG did not provide differential labeling be- 
tween the basal and hyperinsulinemic states (Fig. 4, c and d). 
The overall staining was weaker using the WU626 IgG 
than with the F349 IgG because of the much lower affinity 
of this antibody, which precludes its use for immunogold 
labeling. These data suggest that the epitope masking/un- 
masking is specific to the COOH terminus of Glut4. 

Interestingly, insulin treatment also increased the aver- 
age diameter of T-tubules (Fig. 6). The insulin-treated 
group exhibited an average T-tubule diameter of 60.6 ___ 
5.6 nm, while the basal group had an average T-tubule di- 
ameter of 40.4 _+ 2.8 nm (P < 0.005). It is possible that this 
effect augments glucose transport into muscle fibers by in- 
creasing the accessibility of glucose to the narrow T-tubu- 
lar channels. Additionally, this result implies that the sur- 
face area of the T-tubules has increased by ~50%, and this 
will increase the total Glut4 content of the T-tubules by 
this same percentage. Thus, the actual increase in Glut4 
content of the T-tubule membrane after in vivo adminis- 
tration of insulin was approximately threefold rather than 
approximately twofold (see Table I). 

The quantitative morphological data described above 
strongly imply that insulin-sensitive transport in muscle 
occurs primarily across T-tubules. To determine whether 

T-tubules indeed represent the structures responsible for 
insulin-stimulated transport, we used a glycerol shock pro- 
cedure to reversibly disrupt T-tubules. This procedure has 
previously been used to demonstrate that T-tubules are es- 
sential for excitation-contraction coupling in skeletal mus- 
cle (15, 20, 30). Isolated rat epitrochlearis muscles were 
incubated in horseradish peroxidase for use as an extracel- 
lular space marker. In untreated muscle, the enzyme prod- 
uct was detected in the lumen of T-tubules within 30 min 
(Fig. 7 A), demonstrating the accessibility of T-tubules in 
normal muscle to protein-sized molecules in the extracel- 
lular fluid. After the glycerol shock treatment, enzyme 
product was no longer detected within T-tubules after the 
30 min incubation, in agreement with previous observa- 
tions (13, 41). The typical T-tubule morphology was lost, 
and instead many large vacuoles were observed at the 
spaces between myofibrils where T-tubules are normally 
present (Fig. 7 B). Immunolabeling demonstrated that 
these vacuoles became the predominant site of Glut4 la- 
beling in muscle subjected to glycerol shock, suggesting 
that these vacuoles represent the vesiculation of T-tubule 
membranes (Fig. 7 B, Inset). Restoration of T-tubule mor- 
phology could be demonstrated by returning the muscle 
back to the glycerol-containing Ringer's buffer for 40 min, 
and once again enzyme product could be detected within 
the lumen of the T-tubules after incubation in horseradish 
peroxidase solution (Fig. 7 C). 

The transport of the nonmetabotizable glucose analog, 
3-O-methylglucose, was measured in isolated muscles ei- 
ther left in normal Ringer's buffer, subjected to glycerol 
shock, or subjected to glycerol shock and then returned to 
glycerol-containing Ringer's buffer in order to restore 
T-tubule morphology (Fig. 8). The unshocked muscles ex- 
hibited a threefold increase in transport in response to in- 
sulin. The shocked muscles exhibited a 50% increase in 
basal transport relative to the controls, but insulin-stimu- 
lated transport was completely abolished. Transport in 
muscles subjected to shock and then reversal was nearly 
indistinguishable from that observed in unshocked control 
muscles. These data are consistent with the hypothesis that 
insulin-stimulated transport occurs primarily across T-tubules 
and that most basal transport occurs across the sarcolemma. 

Discussion 

There is some controversy in the literature concerning the 
localization of glucose transporters in skeletal muscle. Fried- 
man et al. (18) published data localizing immunogold-labeled 
Glut4 primarily to triadic junctions in sections of human 
vastus lateralis muscle embedded in LR White resin. These 
investigators observed little or no Glut4 on the sarcolemma 
either in the presence or absence of insulin. Bornemann et 
al. (6) used HRP-conjugated antibodies to localize Glut4 
in Epon-embedded rat soleus muscle. They observed stain- 
ing in vesicles beneath the sarcolemma and in terminal cis- 
ternae. Insulin administration resulted in the appearance 
of reaction products in the sarcolemma. Dudek et al. (12) 
localized surface-exposed Glut4 in rat soleus muscle by 
autoradiography after photolabeling with the impermeant 
glucose analog, 2-N-4-(1-azi-2,22-tfifluoroethyl) benzoyl-l,3- 
bis-(x>mannose-4-yloxy)-2-propylamine (ATB-[2-3H]BMPA). 
Their data indicate that the vast bulk of surface-exposed 
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Figure 4. Laser confocal im- 
munofluorescent staining of 
Glut4 in soleus/gastrocne- 
mius/plantaris muscles of 
Glut4 transgenic mice using 
F349 and WU626 antibodies. 
Sections were cut and stained 
with F349 or WU626 anti- 
Glut4 primary antibody fol- 
lowed by fluorescein-conju- 
gated secondary antibody. 
Representative fields are 
shown, a and c show muscle 
samples taken from the right 
hind leg at the end of the ini- 
tial basal period of the hyper- 
insulinemic clamp study, b, d, 
e, and f show muscle samples 
taken from the left hind leg 
of the same mouse at the end 
of the insulin infusion, a and 
b show sections stained with 
2.8 ixg/ml of affinity-purified 
F349 IgG, c and d show sec- 
tions stained with 40 i~g/ml of 
affinity-purified WU626 IgG, 
e was stained with preimmune 
WU626 IgG, and f was 
stained with WU626 anti- 
body in the presence of a 20- 
fold molar excess of immune 
peptide. The difference in 
staining intensity between 
the basal and insulin-treated 
muscles shown in a and b was 
dramatic and was repro- 
duced in three different mice. 
Control fields stained with 
preimmune F349 IgG were 
black and are not shown. 
There was no apparent dif- 
ference between staining of 
the basal and insulin-stimu- 
lated muscle using the 
WU626 antibody. 

Glut4 is in T-tubules; Insulin t reatment  increased labeling 
of the exoplasmic face of the T-tubules by ~30-75%. Rod- 
nick et al. (45) examined the subcellular distribution of 
Glut4 in frozen sections of rat soleus muscle by immu- 
nogold labeling. In  contrast to most other studies, these in- 
vestigators observed Glut4 primarily in vesicles beneath  
the sarcolemma close to Golgi stacks, with lesser labeling 
near  transverse tubules. Insulin increased Glut4 only in 
the sarcolemma. Subcellular fractionation studies in which 
T-tubules were separated from the sarcolemma confirm 
the relative enr ichment  of Glut4 in T-tubules (32, 40). 

These studies also confirm that insulin increases the Glut4 
content  of both sarcolemmal and T-tubular  fractions. 

Our  semiquantitative morphological data are in agree- 
ment  with the majority of these studies, which indicate 
that the bulk of muscle Glut4 resides in the region of tri- 
adic junc t ions  in the T- tubules  and terminal  cisternae. 
Assuming a muscle fiber is a cylinder with the dimensions 
2 cm x 50 p~m, that a sarcomere is a cylinder with the di- 
mensions 2 p~m x 1 Ixm, and using our measurement  for 
the average diameter of a T-tubule after insulin stimula- 
t ion of 60 nm, it can be estimated that T-tubules occupy 
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Figure 5. (A ) Comparison of 
the specificity and reactivity 
of F349 and WU626 antibod- 
ies; (B) effect of short-term, 
nigh-dose insulin infusion on 
the Glut4 protein content of 
total gastrocnemius/soleus/ 
plantaris muscle homoge- 
nates from Glut4-overex- 
pressing transgenic mice. 
(A) Human erythrocyte 
membrane ghosts containing 
10 ng of Glutl (lane 1), Xe- 
nopus oocyte membranes 
containing 10 ng of Glut4 
(lane 2), and 20 I~g of total 
mouse skeletal muscle pro- 
tein (lane 3) were subjected 
to SDS-PAGE and blotted 
onto nitrocellulose mem- 
branes. The triplicate mem- 
branes were probed with ei- 
ther 0.2 ~g/ml of affinity- 
purified F349 IgG directed 
against the COOH terminus 
of Glut4, 1 ~g/ml of affinity- 
purified WU626 IgG di- 
rected against the central 
loop of Glut4, or a 1:1,500 di- 
lution of preimmune serum 
from the rabbit that pro- 

duced the WU626 antibody. The immunoblots were then processed as described previously (36). (B) The same gastrocnemius/soleus/ 
plantaris muscle samples used for immunofluorescence analysis in Fig. 4 were split and used for Western blot analysis. The lanes la- 
beled "Glut 4 stds" represent the equivalent of 2, 10, and 20 ng of purified Glut4 protein from oocyte membranes. The lanes labeled 
"Basal" represent 10 I~g of total muscle homogenate from two Glut4 transgenic obtained mice at the end of the initial basal period of a 
hyperinsulinemic clamp study. The lanes labeled "Insulin" represent 10 ~g of total muscle homogenate prepared from the contralateral 
limb of the same mice at the end of the insulin infusion period. The protein samples were analyzed by SDS-PAGE followed by blotting 
onto a nitrocellulose membrane and incubation with F349 primary antibody directed against the COOH terminus of Glut4 and 125I-labeled 
secondary antibody. The rate of tracer-determined whole body glucose utilization was 39 mg/kg.min during the basal period and 115 
mg/kg.min during the insulin infusion period. Quantification of the bands using a phosphoimager indicated that the basal and insulin 
muscle samples contained an average of 3.0 and 3.1 ng, respectively, of Glut4 protein per 10 I~g of total muscle protein. 

approximate ly  nine t imes the total  surface area  of  the sar- 
colemma. Since the labeling densi ty in the presence of  in- 
sulin along T-tubules  was twofold greater  than the labeling 
density along the sarcolemma,  we es t imate  that  at least  
94% of  G lu t4 -med ia t ed  up take  should  occur across the  
T-tubule.  This assumes that  Glut4 is equal ly active in the 
sarcolemma and the T- tubule  membrane  and that  glucose 
has equal  access to both membrane  surfaces. The  glycerol 
shock exper iments  confirmed that  most  insulin-st imulated 
uptake occurs across the T- tubule  membranes ,  in that  os- 
motic disrupt ion of the T- tubular  system abol ished insulin- 
s t imulated t ranspor t  in isolated muscles. The anatomical  
advantage of transporting sugar into muscle across T-tubules 
has been  discussed previously (10). The T- tubular  system 
is capable  of carrying sugar deep  into the muscle fiber 
where  glycolytic enzymes are located,  bypassing the diffu- 
sion barr ier  of  the myofibrils.  

W e  observed an insul in-st imulated increase in Glut4 im- 
munogold  reactivi ty in the sarcolemma and a correspond-  
ing decrease  in the subsarcolemmal  region,  suggesting that  
t ranslocat ion may have occurred from one compar tmen t  
to the other. However ,  our  results also suggest that  the 
sarcolemma plays only a minor  role in mediat ing insulin- 
s t imulated glucose t ranspor t  and that  the T- tubule  is the 
major  site of insulin-st imulated transport .  The  threefold  
increase in T- tubular  Glut4 after  in vivo insulin adminis-  
t ra t ion is near ly  sufficient to account for the 3.5-fold in- 
crease in whole-body glucose disposal  observed for the 
Glut4 mice under  clamp conditions,  and is similar to the 
increase that  is rout inely observed for insulin-st imulated 
glucose t ranspor t  in muscles isolated from the Glut4 trans- 
genic mice. However ,  the increase in T- tubular  Glut4 was 
not  accompanied  by a decrease  in the intracel lular  Glut4 
in the region of the triadic junctions. Rather ,  the total  na- 

Figure 6. Insulin administration increases the diameter of T-tubules. Electron micrographs illustrating the relative T-tubule diameter in 
basal (A) and insulin stimulated (B) muscles. The dilatation of the T-tubule by insulin was not uniform, but the average diameter of the 
T-tubules in the insulin-treated group was 50% greater than in the noninsulin-treated group. Bar, 0.5 Ixm. 
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Figure 7. Disruption of T-tubules by hypertonic glycerol shock. Isolated rat epitrochlearis muscles were incubated in 2 ml of Ringer's 
solution in the presence or absence of 400 mM glycerol for 1 h at room temperature and then transferred to 2 ml of glycerol-free 
Ringer's for 30 min. To reverse the glycerol shock effect, one group of shocked muscles was returned to glycerol-containing Ringer's for 
40 min. Muscles were then incubated in Ringer's buffer containing 1 mg/ml of horseradish peroxidase for 30 min. In control muscles, the 
electron-opaque peroxidase reaction product filled most of the T-tubule lumen (A), indicating that the lumen of the T-tubule is readily 
accessible from the extracellular fluid. In contrast, the glycerol-treated muscles developed vacuoles at the sites where T-tubules were 
normally located. The horseradish peroxidase product was absent from these vacuoles (B). The disruption of T-tubules by sequentially 
suspending the muscle in glycerol containing Ringer's buffer and then normal Ringer's buffer was reversible by returning the muscle to 
glycerol-containing Ringer's buffer as shown in (C). Both the typical T-tubule morphology and the accessibility to exterior tracer were 
recovered. The inset in B shows immunogold labeling with F349 anti-Glut4 antibody of the glycerol shock-induced vacuoles. T, T-tubule; 
Mt, mitochondria. Bar, 0.5 txm. 

tive Glut4 immunoreactivity increased in frozen sections 
as determined by laser confocal immunofluorescence mi- 
croscopy and in fixed and embedded tissue sections as as- 
sessed by immunogold electron microscopy. On the other 
hand, short-term insulin treatment had no effect on total 
skeletal muscle Glut4 protein levels as assessed by immu- 
noblotting. Thus, these data support the hypothesis that 
insulin mediates a structural change in Glut4 that may pre- 
cede or accompany its translocation to the T-tubule. Alter- 
natively, it is possible that translocation to T-tubules does 
not occur and that the insulin-induced increase in Glut4 
immunoreactivity in the T-tubule is due completely to un- 
masking of  the COOH-terminal  epitope. This same phe- 
nomenon was observed previously as an insulin-induced 
increase in Glut4 immunofluorescence intensity in trans- 
genic mouse muscle. Our  data indicate that the C O O H -  

terminal epitope recognized by the antibody is more  ac- 
cessible in the native protein after insulin treatment. 

These data are strikingly similar to those reported by 
Smith et al. (49), who demonstrated the unmasking of  the 
same Glut4 COOH-terminal  epitope in the adipocyte 
plasma membrane after insulin treatment. This region of 
Glut4 is of special interest because it lies in close proximity 
to a dileucine motif in the COOH-terminal  cytoplasmic 
tail that confers insulin-sensitive targeting (8, 23, 51, 52). 
Targeting experiments conducted on chimeric glucose 
transporters in L6 myocytes indicate that the extreme 
COOH-terminus  of Glut4 downstream of the dileucine is 
also important  for this targeting behavior (23). Thus, we 
hypothesize that in the basal state, the C O O H  terminus of 
native Glut4 is partially inaccessible to antibody due to its 
specific conformational state or to its interaction with an- 
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Figure 8. Disruption of T-tubules abolishes insulin-stimulated 
glucose transport. Isolated rat epitrochlearis muscles were incu- 
bated in 2 ml of Ringer's solution in the presence or absence of 
400 mM glycerol for 1 h at room temperature and then trans- 
ferred to 2 ml glycerol-free Ringer's for 30 min. To reverse the 
glycerol shock effect, one group of shocked muscles was returned 
to glycerol-containing Ringer's for 40 min. The muscles were 
then incubated for 20 min at 35°C in 2 ml of oxygenated Krebs- 
Henseleit buffer supplemented with 2 mM sodium pyruvate, 36 
mM mannitol, and 0.1% BSA, in the presence or absence of 10 
mU/ml insulin, before measurement of glucose transport activity. 
A control group was also included to demonstrate that direct in- 
cubation in 400 mM glycerol did not affect glucose transport (not 
shown). The results shown are the average of measurements con- 
ducted using eight animals per group. The error bar represents 
the standard error. The insulin-stimulated transport values for 
the control and glycerol-shocked groups are significantly differ- 
ent (P < 0.05). 

other protein. Insulin may act to either alter the conforma- 
tion of the C O O H  terminus or to disrupt the protein-pro- 
tein interaction and thus increase the accessibility of the 
epitope. One obvious possibility is that a specific targeting 
factor interacts with the C O O H  terminus of Glut4 in the 
basal state, and that this interaction is involved in main- 
taining the intracellular distribution of the molecule. 

Most of the skeletal muscle Glut4 was localized at the 
triadic junction in T-tubules and in what appeared to be 
terminal cisternae of the sarcoplasmic reticulum. The sar- 
coplasmic reticulum is generally considered to be the 
equivalent of the endoplasmic reticulum in other types of 
cells. It is thus not obvious why these structures should 
possess high concentrations of glucose transporters, whose 
sole function is to transport glucose from the extracellular 
fluid into the muscle cytoplasm. There are at least three 
possible explanations for this observation: (1) Glut4 in the 
terminal cisternae may represent an intracellular reserve 
pool from which translocation occurs; (2) as some authors 
have suggested (18), the Glut4 in this region may actually 
be present in distinct vesicles from which translocation oc- 

curs and that cannot be distinguished from the terminal 
cisternae b~ the techniques used; or (3) they may repre- 
sent a p a r l a y  by which glucose is able to freely diffuse 
across the T~tubules, into the sarcoplasmic reticulum, and 
then into the cytosol. The T-tubules are surrounded by 
membranes of the terminal cisternae. There is a 10-13-nm 
space between the T-tubule membrane and the terminal 
cisternae, but at intervals, terminal cisternae form periodic 
pillars that connect the two apposed membranes (14). This 
contact has been postulated to be the structural basis for 
the transmission of the depolarization current to the interior 
sarcoplasmic reticulum system. The currently accepted 
view is that T-tubules are permanently open to the extra- 
cellular space but that the sarcoplasmic reticulum is not in 
a permanently open connection with either the T-tubule 
or the extracellular space. Nevertheless, there are observa- 
tions suggesting that the sarcoplasmic reticulum is accessi- 
ble from the extracellular space. For example, the sarco- 
plasmic reticulum may change its volume in relation to 
changes in the osmotic pressure in the bath solution (2), 
and extracellular peroxidase may have access to the sarco- 
plasmic reticulum under certain conditions (47). Glut4 in 
the terminal cisternae and the sarcoplasmic reticulum may 
thus provide a necessary pathway by which glucose dif- 
fuses from the lumen of the T-tubules into the cytosol. 

Glutl  was localized primarily to the sarcolemma in the 
muscle of Glutl  transgenic mice, and, unlike Glut4, its dis- 
tribution and abundance did not change in response to 
insulin. This is consistent with the observation that the 
muscle of Glutl  transgenic mice exhibit up to a sevenfold 
increase in basal glucose transport compared to nontrans- 
genic littermates (44). Although it is possible that some 
mistargeting of Glutl  occurred in the transgenic muscle 
because of the level of overexpression, there is no reason 
to suspect that the general distribution of Glutl  in normal 
muscle is different from that observed in the transgenic 
muscle. Our data are in agreement with the subcellular 
fractionation studies of Marette et al. (33) conducted on the 
muscle of normal rats, as well as Glutl  localization studies 
conducted on cultured L6 myocytes (23) and BC3H-1 myo- 
cytes (t6). Taken together, these data strongly argue that 
Glutl resides constitutively in the sarcolemma and pro- 
vides muscle fibers with the low level of glucose they re- 
quire in the basal, resting state. Glutl is thus targeted dif- 
ferently in skeletal muscle than in adipocytes, where it is 
enriched in intracellular compartments in the basal state 
and translocates to the plasma membrane in response to 
insulin (55). It is of considerable interest that Glutl and 
Glut4 are targeted to distinct plasma membrane domains 
in skeletal muscle, because very little is currently known 
about protein trafficking in skeletal muscle and how the 
distinct composition of the muscle membrane systems 
arises. The glucose transporters provide an excellent 
model system to study the sorting of proteins to distinct 
plasma membrane domains in skeletal muscle. 

Morphological analysis of T-tubules in basal and insulin- 
treated muscle demonstrated that insulin increased the av- 
erage diameter of the tubules in longitudinal sections. The 
observed increase is consistent with an increase in total 
T-tubule surface area from 5.8- to 8.6-fold of the total 
sarcolemmal surface area of a hypothetical muscle fiber 
2 cm × 50 Ixm. This may represent a mechanism by which 
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insulin enhances the ability of glucose to permeate muscle 
tissue by increasing the rate of diffusion of glucose into the 
narrow membranous channels. Insulin is also known to en- 
hance capillary blood flow in skeletal muscle (1). Thus, 
this hormone appears to act at multiple sites to facilitate 
the uptake of glucose into skeletal muscle. 
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