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Objective: Obstructive sleep apnea (OSA) is a sleep-related breathing disorder

with high prevalence and is associated with cognitive impairment. Previous

neuroimaging studies have reported abnormal brain functional connectivity

(FC) in patients with OSA that might contribute to their neurocognitive

impairments. However, it is unclear whether patients with OSA have a

characteristic pattern of FC changes that can serve as a neuroimaging

biomarker for identifying OSA.

Methods: A total of 21 patients with OSA and 21 healthy controls (HCs) were

included in this study and scanned using resting-state functional magnetic

resonance imaging (fMRI). The automated anatomical labeling (AAL) atlas was

used to divide the cerebrum into 90 regions, and FC between each pair of

regions was calculated. Univariate analyses were then performed to detect

abnormal FCs in patients with OSA compared with controls, and multivariate

pattern analyses (MVPAs) were applied to classify between patients with

OSA and controls.

Results: The univariate comparisons did not detect any significantly altered

FC. However, the MVPA showed a successful classification between patients

with OSA and controls with an accuracy of 83.33% (p = 0.0001). Furthermore,

the selected FCs were associated with nearly all brain regions and widely

distributed in the whole brain, both within and between, many resting-

state functional networks. Among these selected FCs, 3 were significantly

correlated with the apnea-hypopnea index (AHI) and 2 were significantly

correlated with the percentage of time with the saturation of oxygen (SaO2)

below 90% of the total sleep time (%TST < 90%).

Conclusion: There existed widespread abnormal FCs in the whole brain in

patients with OSA. This aberrant FC pattern has the potential to serve as a
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neurological biomarker of OSA, highlighting its importance for understanding

the complex neural mechanism underlying OSA and its cognitive impairment.

KEYWORDS

resting-state functional magnetic resonance imaging, functional connectivity,
multivariate pattern analyses, obstructive sleep apnea, machine learning

Introduction

Obstructive sleep apnea (OSA) is a common sleep-
related breathing disorder resulting from obstruction of the
upper airway, and the symptoms include snoring at night,
frequent stop in breathing, and daytime sleepiness (Park
et al., 2011). The major consequences of OSA contain
intermittent nocturnal hypoxia and fragmented sleep
(Verstraeten, 2007). About 936 million people worldwide
between the ages of 30 and 69 years suffered from OSA,
when the apnea-hypopnea index (AHI) ≥ 5/h criterion was
used (Benjafield et al., 2019). OSA not only increases the
risk of hypertension, cardiovascular disease and diabetes,
as well as traffic accidents, but also shows an impairment
of cognitive functions, such as attention, working memory,
episodic memory, and executive function (Gagnon et al.,
2014). Moreover, OSA has also been reported to be associated
with psychological and neurological problems, such as
depression, anxiety, post-traumatic stress disorder, and
Alzheimer’s disease (Gupta and Simpson, 2015; Vanek et al.,
2020). Sleep fragmentation and intermittent nocturnal
hypoxia are considered the main contributing factors to
neuropsychological impairments in patients with OSA (Lim
and Pack, 2014). However, the neural mechanisms are still
largely unclear.

Resting-state functional magnetic resonance imaging
(fMRI) provided a non-invasive and effective tool to explore the
human brain. Functional connectivity (FC) was a commonly
used technique for studying the neural mechanisms underlying
cognitive impairment in patients with OSA. In the resting-
state FC studies of OSA, researchers found abnormal FCs in
patients with OSA associated with several brain regions such
as insula (Zhang et al., 2015; Park et al., 2016a), hippocampus
(HIP) (Song et al., 2018; Zhou et al., 2020a), amygdala
(Yu et al., 2019), caudate nuclei (Song et al., 2018), and
posterior cingulate cortex (PCC) (Qin et al., 2020). Besides,
a fair amount of studies on OSA reported abnormal within-
network and between-network FCs of resting-state brain
functional networks (Khazaie et al., 2017), such as default
mode network (DMN) (Zhang et al., 2013; Peng et al., 2014;
Li et al., 2015, 2016b; Chen et al., 2018a), central executive
network (CEN) (Zhang et al., 2013), and salience network
(SN) (Yu et al., 2019). However, all these studies on the

alterations of resting-state FCs in OSA were based on univariate
analysis, i.e., comparing a single FC between patients and
controls at a time and repeating this univariate comparison
for every FC (i.e., a mass univariate analysis). Therefore, it
is unclear whether OSA has a characteristic pattern of FC
alterations which can serve as a neuroimaging biomarker for
identifying OSA.

Multivariate pattern analysis (MVPA) is a machine learning
technique that uses a pattern classifier to identify the specific
spatial pattern of brain activities or connectivities in a
particular experimental condition or a group of patients
(Mur et al., 2009; Pereira et al., 2009). Unlike the mass
univariate analysis employed in the above previous studies
which only focused on one FC at a time, MVPA performs
a joint analysis of all FCs in the whole brain at once and
examines their spatial pattern and, thus, has greater power
for detecting the differences in FCs between patients with
OSA and controls. The higher sensitivity of MVPA also comes
from the fact that it naturally avoids multiple comparisons
problem and thus corrections for multiple comparisons are
usually not needed (Liang et al., 2019). MVPA has been used
successfully in detecting abnormal FC patterns and identifying
neuroimaging biomarkers in other diseases, such as major
depressive disorder (Zhu et al., 2020), schizophrenia (Hua
et al., 2020), and social anxiety disorder (Liu et al., 2015).
Zhou et al. (2020b) also used this technique based on the
spatial pattern of regional homogeneity (ReHo) of resting-
state neural activities to distinguish between patients with OSA
and HCs. These studies have shown a promising potential of
MVPA to identify the characteristic patterns of FC alterations
in patients with OSA.

Therefore, in this study, we aimed to characterize the
spatial patterns of resting-state FCs in OSA using MVPA
and test its potential to serve as a neuroimaging biomarker
to aid the diagnosis of OSA. We first performed univariate
analyses to compare every FC between patients with OSA
and controls, and then performed MVPA, combined with a
feature selection procedure, to distinguish patients with OSA
from healthy controls (HCs) using the spatial pattern of FCs.
To characterize the model-selected FCs that contributed to
the successful classification between patients and controls, we
further examined the spatial distribution of these selected
FCs and their relationship with the known resting-state
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functional networks. Furthermore, the relationship between
MVPA-selected FCs and disease severity of OSA was explored.

Materials and methods

Participants

This study included twenty-one male patients with
moderate-to-severe OSA and twenty-one male HCs matched
for handedness, education, and age. All subjects were recruited
from the Sleep Laboratory of the Respiratory Department of
Tianjin Medical University General Hospital. The inclusion
criteria for patients with OSA included that the AHI was more
than 15 times/h. The inclusion criteria for HCs included (1) the
AHI < 5 times/h, (2) no history of sleep breathing disorders, (3)
no symptoms of nocturnal snoring confirmed by a physician,
and (4) male. The exclusion criteria for both patients with
OSA and HCs were as follows: (1) Other sleep disorders except
OSA, (2) left-handedness, (3) history of severe hypertension,
diabetes, respiratory disease, and cardiovascular disease, (4)
mental diseases and other neurological conditions, (5) the score
of Mini-Mental State Examination (MMSE) less than 24, (6)
alcohol or illicit drug abuse or current intake of psychoactive
medications, (7) body weight more than 125 kg, and (8)
MRI contraindications such as claustrophobia and metallic
implants or devices in the body. This study was approved
by the local ethics committee and all subjects signed written
informed consent.

The clinical manifestations of all patients included nocturnal
snoring, irregular breathing, choking in sleep, and daytime
sleepiness. None of them received drug therapy, surgery, or
continuous positive pressure (CPAP) treatment. All patients
underwent nocturnal polysomnography (PSG), and relevant
clinical indicators were calculated based on the PSG results.
According to the American Academy of Sleep Medicine (AASM)
guidelines, apnea was defined as a reduction ≥ 90% in airflow
lasting for at least 10 s during sleep and associated with
persistent respiratory effort, and hypopnea was defined as a
reduction ≥ 30% in airflow lasting for at least 10 s and
accompanied by 4% or more oxygen saturation (Redline et al.,
2007). The AHI was the average number of apnea and hypopnea
that occurred per hour during sleep. The percentage of time with
the saturation of oxygen (SaO2) less than 90% of the total sleep
time (i.e., %TST < 90%) was recorded. The Epworth Sleepiness
Scale (ESS) (Johns, 1991), a self-reported questionnaire assessing
the severity of daytime sleepiness, was also recorded. The total
score in ESS was 24. An ESS score of more than 6, 11, and 16 was
defined as sleepiness, excessive sleepiness, and risky sleepiness,
respectively (Kapur et al., 2017; Yu et al., 2019). Furthermore,
all subjects were also assessed on MMSE, the most commonly
used screening scale for cognitive impairment (Folstein et al.,
1975). The maximal score of MMSE was 30. A score between

27 and 30 is considered normal, and a score < 27 is considered
cognitively impaired.

Data acquisition

The MR images were acquired using a 3.0 Tesla MRI scanner
(Signa HDx, General Electric, Milwaukee, WI, United States)
in Tianjin Medical University General Hospital. To reduce
head movements and scanner noise, foam pads and earplugs
were used, respectively. The resting-state fMRI data were
acquired using an echo-planar imaging (EPI). Its sequence
parameters were as follows: repetition times (TR) = 2,000 ms,
echo time (TE) = 30 ms, flip angle (FA) = 90◦, field of
view (FOV) = 240 × 240 mm2, matrix = 64 × 64, slice
thickness = 3 mm, slice gap = 1 mm, and 38 axial slices.
Each functional run included 180 volumes. In a single session,
subjects were asked to relax without thinking about anything in
particular, keep their eyes closed, and stay awake.

Functional magnetic resonance
imaging data preprocessing

The fMRI data preprocessing was performed using Data
Processing and Analysis of Brain Imaging (DPABI; Chinese
Academy of Sciences, Beijing, China)1 (Yan et al., 2016), which
is a convenient plug-in software based on Statistical Parametric
Mapping (SPM12)2 in MATLAB platform. The first 10 volumes
were discarded to eliminate the effects of the instability of the
machine and the subjects’ inadaptability to the environment in
the very beginning of the scan. After slice-timing correction
and six-dimensional head motion correction, the remaining
170 images were spatially normalized to the standard Montreal
Neurological Institute (MNI) EPI template with a resampling
voxel size of 3 × 3 × 3 mm3. The effect of linear drift or
trends in signal was removed. Then, several sources of spurious
variance were regressed out by linear regression, such as 12 head
motion parameters, global mean signal, white matter signal,
cerebrospinal fluid, and the spike volumes if the frame-wise
displacement (FD) exceeded 0.5 mm. A temporal band-pass
filtering (0.01 ≤ f ≤ 0.08 Hz) was also performed. The head
motion (the maximum displacements and maximum spin) of all
participants was less than 2 mm and 2◦, respectively.

Anatomical parcellation and
construction of brain network

The cerebrum was segmented into 90 regions by the
automated anatomical labeling (AAL) template (Tzourio-
Mazoyer et al., 2002). The Pearson’s correlation coefficient of the

1 http://rfmri.org/DPABI

2 http://www.fil.ion.ucl.ac.uk/spm
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averaged time series between each pair of regions was calculated
to define FC, and then a 90 × 90 symmetric correlation
matrix was obtained for every participant. A Fisher’s r-to-z
transformation of the correlation coefficients was applied to
improve the normality of FC values (Liu et al., 2017).

Univariate analysis

A two-sample t-test was used to compare every FC
between OSA and HC groups, and the statistical significance
for multiple comparisons was determined by three methods,
namely, Bonferroni correction (corrected p < 0.05), a false
discovery rate (FDR, q < 0.05), and the network-based statistic
(NBS) approach (corrected p < 0.05 determined by 10,000
permutations, with a cluster-defining threshold of p < 0.001 by
two-sample t-tests) (Zalesky et al., 2010). Besides, this univariate
analysis was performed using the graph theoretical network
analysis toolbox (GRETNA)3 (Wang et al., 2015).

Multivariate pattern analysis

The MVPA was performed using the MVPANI toolbox4

(Peng et al., 2020) to classify patients with OSA from HCs.
Linear support vector machine (SVM) was used to find a
hyperplane between patients with OSA and HCs which had a
maximal distance to the support vectors on each side. The SVM
model was trained and tested using a leave-one-participant-
out cross-validation procedure. In each cross-validation, 41
participants were used to train the classifier and the remaining
one participant was used to test the trained classifier. In this
way, every participant was used once as a test sample, and the
classification accuracy was calculated as the percentage of the
correctly classified participants over all participants.

Feature selection
As the number of features (i.e., the FCs) was far more than

the number of subjects, to avoid over-fitting, a feature selection
based on the features’ F scores was performed during the
model training in each cross-validation step using the following
procedure as implemented in the MVPANI toolbox: first, in
each cross-validation step, an F score was calculated for each FC
using an F-test comparing the two groups of participants (i.e.,
patients and controls) in the training dataset, and then all FCs
were ranked according to their F scores; second, only the top N
percentage of FCs were selected for building the SVM model that
was trained using the training samples and then tested using the
test sample; third, this feature selection procedure was repeated
for all cross-validation steps for a particular percentage N. In

3 http://www.nitrc.org/projects/gretna/

4 http://funi.tmu.edu.cn

this study, a series of N (from 10% to 100% in steps of 10%; i.e.,
ten percentages in total) was tested and a classification accuracy
was obtained for each N. The final classification accuracy was
determined by the highest one among the ten accuracies.

Permutation test
The statistical significance of the final classification accuracy

(against the chance-level accuracy) was determined and
corrected for multiple comparisons using a permutation test
(n = 10,000) as follows. First, in each permutation step, exactly
the same MVPA procedure as described earlier was performed,
i.e., a linear SVM combined with the same feature selection
procedure (i.e., feature selection based on F scores with 10
percentages of selected FCs from 10% to 100% in steps of
10%), except that in every cross-validation step, the class
labels of the training samples were randomly shuffled; this
procedure yielded 10 chance-level classification accuracies and
the highest accuracy was taken as the final accuracy of this
permutation step. Second, the first step was repeated 10,000
times, yielding 10,000 highest chance-level accuracies of all
permutation steps with which a null distribution of chance-
level accuracies was formed. Third, the 10 true classification
accuracies obtained from the true labels (each corresponding
to a feature selection percentage) were compared with this null
distribution, resulting in a p-value for each true classification
accuracy that was calculated as the percentage of chance-
level accuracies greater than or equal to the true classification
accuracy. The resultant 10 p-values corresponded to the family-
wise-error (FWE) corrected p-values, and the true accuracies
were considered statistically significant if p < 0.05.

Characterization of the multivariate pattern
analysis-selected functional connectivities

To characterize the FCs contributing to the “patients vs.
controls” classification, we further examined the FCs selected
by the above MVPA procedure in two aspects, i.e., the spatial
distribution of the selected FCs and the relationships of
the selected FCs with the predefined resting-state functional
networks. Here, the MVPA-selected FCs included the FCs
selected in at least one cross-validation step during the feature
selection that led to the highest classification accuracy.

To examine the spatial distribution of the selected FCs, we
visually inspected which parts of the brain were involved in
these FCs. Furthermore, we also evaluated the importance of
the brain regions associated with these FCs by calculating the
weighted degrees of each region. This was done for positive
weights and negative weights separately by calculating the sum
of all positive weights of the FCs associated with a given region
and the sum of all negative weights of the FCs associated with a
given region, respectively.

As the resting-state functional networks have been
reported to play an important role in many sensory and
cognitive functions related to OSA (Zhang et al., 2013, 2015;
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TABLE 1 Regions belonging to each functional network.

Network Regions with abbreviation

VN CAL, CUN, LING, SOG, MOG, IOG, FFG

SMN PreCG, ROL, PoCG, PCL, HES, STG

AN SPG, ITG.R, SMA, INS, MCG, SMG, PUT, PAL

FPN MFG, MFGorb, IFGoper, IFGtri, IPL

LS SFGorb, OLF, REC, AMYG, CAU, THA, TPOsup, TPOmid

DMN SFG, SFGmed, SFGmorb, IFGorb, ACG, PCG, HIP, PHG,
ANG, PCUN, MTG, ITG.L

Khazaie et al., 2017; Chen et al., 2018b; Chang et al., 2020) and
their disruptions have been indicated in patients with OSA
(Zhang et al., 2015; Park et al., 2016b; Wu et al., 2020), we
further examined the relationship of the selected FCs with the
predefined resting-state functional networks. Specifically, we
categorized the 90 brain regions into 7 functional networks,
namely, visual network (VN), somatomotor network (SMN),
dorsal attention network (DAN), ventral attention network
(VAN), limbic system (LS), frontoparietal network (FPN),
and DMN, according to Yeo’s parcellation of the cerebral
cortex (Yeo et al., 2011). In our results, we merged DAN and
VAN into AN (Table 1). The full name of all brain regions is
summarized in Supplementary Table 1. According to such
categorization of all brain regions, the MVPA-selected FCs
were divided into two sets, namely, intra-network FCs (if an
FC connects two regions that belong to the same functional
network) and inter-network FCs (if an FC connects two regions
that belong to different functional networks). The number
of intra-network FCs was standardized by the total number
of all possible intra-network FCs (i.e., dividing the number
of intra-network FCs by the total number of all possible
intra-network FCs), and similarly, the number of inter-network
FCs was standardized by the total number of all possible
inter-network FCs.

Correlations between the selected functional
connectivities and clinical variables

To investigate the correlation between selected the
FCs and the clinical variables, Pearson correlation
analyses were performed, and p < 0.005 was considered
statistically significant.

Results

Demographic and clinical indices

There were no significant differences (two-sample t-tests, all
p > 0.05) between patients with OSA and HCs in age, years of
education, or MMSE (Table 2). As expected, patients with OSA
had a significantly higher score for the body mass index (BMI)

TABLE 2 The demographic and clinical characteristics of patients
with OSA and healthy controls.

OSA patients Healthy controls p-value

Mean SD Mean SD

Age (years) 44.05 7.277 40.62 11.404 0.252

Education (years) 13.48 3.092 14.76 2.914 0.173

BMI (kg/m2) 29.52 4.231 24.95 3.173 <0.001*

MMSE 29.48 0.814 29.86 0.359 0.057

AHI 54.35 19.97 2.52 1.401 <0.001*

%TST < 90% 18.66 21.10 0.979 2.654 0.001*

ESS 14.67 7.262 1.10 1.136 <0.001*

*Significant difference between OSA and HC, p < 0.05. BMI, body mass index; MMSE,
Mini Mental State Examination; AHI, apnea-hypopnea index;%TST < 90%, percentage of
total sleep time spent at oxygen saturations less than 90%; ESS, Epworth sleepiness scale.
The full name of all brain regions were summarized in Supplementary Table 1.

(t = 3.893, p < 0.001), AHI (t = 11.762, p < 0.001), %TST < 90%
(t = 3.792, p = 0.001), and ESS (t = 8.461, p < 0.001).

Univariate comparisons of functional
connectivities between patients with
obstructive sleep apnea and healthy
controls

The univariate analyses showed that there were no
significant changes in FC between patients with OSA and HCs
regardless of the method for multiple comparisons’ correction
(p < 0.05, Bonferroni corrected; p < 0.05, NBS corrected;
q < 0.05, FDR corrected).

Classification between patients with
obstructive sleep apnea and healthy
controls

The MVPA showed successful classifications for 4
out of 10 feature selection percentages (Figure 1A): The
classification accuracies were 83.33% when the top 10% FCs
were selected (p = 0.0001; the corresponding specificity and
sensitivity were 85.71% and 80.95%, respectively), 71.43%
when the top 30%, 80%, and 100% FCs were selected
(p = 0.0076; the corresponding specificity and sensitivity
were 66.67% and 76.19%, respectively), and 69.05% for the
other percentages (p = 0.067; the corresponding specificity
and sensitivity were 71.43% and 66.67%, respectively)
(Figure 1B). The highest classification accuracy of 83.33%
was considered the final accuracy and the selected top 10%
FCs (400 FCs) were further characterized. The receiver
operating characteristic (ROC) curve corresponding
to this highest classification accuracy (83.33%) and the
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FIGURE 1

The classification accuracies of 10 feature selection percentages, the corresponding null distribution, and the receiver operating characteristic
(ROC) curve for the highest classification accuracies. (A) The highest classification accuracy (83.33%) was obtained when the top 10% FCs were
selected and two lower accuracies (71.43% and 69.05%) were obtained when different numbers of FCs were selected; (B) the corresponding null
distribution of the highest chance-level accuracies (the blue histogram), along with the three true classification accuracies (red: 83.33%; orange:
71.43%; yellow: 69.05%); (C) the receiver operating characteristic (ROC) curve and the area under the curve (AUC) (0.87) corresponding to this
highest classification accuracy (83.33%).

corresponding area under the curve (AUC = 0.87) are shown in
Figure 1C.

Characterization of the multivariate
pattern analysis-selected functional
connectivities

The spatial distribution of the selected top 10% FCs (i.e.,
400 FCs) in the brain is shown in Figure 2. Among the 400
selected FCs, 195 FCs showed higher weight value in patients
with OSA (Figure 2A), and 205 FCs showed lower weight value
in patients with OSA (Figure 2B). Moreover, the FCs with
absolute weight values greater than the mean plus twice the
standard deviation (i.e., absolute mean + 2SD) are shown in
Figures 2C,D. To evaluate the importance of the brain regions
for the classification, we also calculated the positive and negative
weighted degrees of each region. A total of 16 brain regions
showed significantly higher positive weighted degrees in patients
with OSA than in HC (> mean + SD), including the left
MFGorb, left CUN, left SMG, right PCUN, right REC, right ITG,
right IOG, left REC, left IOG, left IFGorb, left FFG, right FFG,
right PHG, left INS, left STG, and left CAU (Figures 3A,C), and
14 brain regions showed significantly lower negative weighted
degrees in patients with OSA than in HC, including left TPOsup,
right HIP, left MCG, left TPOmid, right MCG, right PHG, right
REC, left PHG, right ITG, left SFGmed, left SMG, left IFGoper,
right PCG, and left HEC (Figures 3B,D).

Among the 400 selected FCs, 65 FCs were intra-network FCs
and 335 were inter-network FCs. The numbers of intra-network
FCs were 9 in VN, 4 in SMN, 8 in AN, 4 in FPN, 30 in DMN, and
10 in LS, respectively (Figure 4, the diagonal entries; Figure 5),
accounting for 9.89%, 6.06%, 7.62%, 8.89%, 11.86%, and 8.33%
of intra-network FCs in these functional networks, respectively
(the mean percentage of intra-network FC was 9.56% across

these functional networks). The percentages of inter-network
FCs between each pair of functional networks are shown in
Figure 4 (the off-diagonal entries), and the mean percentage was
10.08%. To specifically look at the inter-network FCs associated
with the DMN, we also showed all inter-network FCs between
DMN and the other five networks in Figure 6.

Correlations between the selected
functional connectivities and clinical
variables

We further examined the correlations between the 400
selected FCs and the clinical variables in patients with OSA.
We found that the clinical variable AHI showed negative
correlations with the FC between the left CUN and the left
TPOsup (r = −0.607, p = 0.0035) and with the FC between the
left PHG and the left IFGoper (r = −0.6.26, p = 0.0024) and
showed positive correlations with the FC between left INS and
left MFGorb (r = 0.608, p = 0.0035) (Figure 7A). Moreover, the
clinical variable %TST < 90% showed a positive correlation with
the FCs between the right MCG and the left TPOmid (r = 0.705,
p = 0.00036) and with the FC between the right PUT and ITG
(r = 0.602, p = 0.00386) (Figure 7B).

Discussion

Weak alterations of resting-state
functional connectivities in obstructive
sleep apnea can be detected by
multivariate pattern analysis

We performed both a univariate analysis and an MVPA to
identify the differences in resting-state FCs between patients
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FIGURE 2

The spatial distribution of the selected functional connectivity. (A) The spatial distribution of the selected FCs with higher classification weights
in patients with OSA compared with controls. (B) The spatial distribution of the selected FCs with lower classification weights in patients with
OSA compared with controls. (C) The FCs with higher positive weight values were greater than mean + 2SD in patients with OSA. (D) The FCs
with more negative weight values, which means the absolute weight values were more than mean + 2SD in patients with OSA. The thickness of
lines represents the absolute weight values and the black lines indicated functional connectivity within one functional network.SD, standard
deviation; VN, visual network; SMN, somatomotor network; AN, attention network; FPN, frontoparietal network; DMN, default mode network;
LS, limbic system.

with OSA and HCs. The fact that no significant differences
were identified using univariate two-sample t-tests, even for
relatively liberal thresholds (q < 0.05 corrected by FDR, or
p < 0.05 corrected by NBS), suggests that the alterations of
the resting-state FCs might not be very large. However, such
weak alterations of FCs in OSA can be detected as a pattern
change by MVPA, confirming that the resting-state FCs were
indeed altered in patients with OSA. A classification accuracy
of 83.33% also suggests that the spatial pattern of resting-state
FCs can successfully distinguish patients with OSA from HCs,
demonstrating its potential as a neuroimaging biomarker for
aiding the diagnosis of OSA.

The whole-brain resting-state
functional connectivities were altered
in a dispersed way in obstructive sleep
apnea

Using an SVM classification algorithm combined with a
feature selection procedure, we identified 400 FCs contributing
to the successful classification between patients with OSA and
HCs that yielded the highest classification accuracy (83.33%).
Further examination of the spatial distribution of these 400
MVPA-selected FCs showed that almost all brain regions (88
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FIGURE 3

The weighted degree maps of brain regions. (A,C) The brain regions with positive weighted degrees greater than mean + SD. (B,D) The brain
regions with negative weighted degrees less than mean-SD. The black line, yellow line, and orange line indicate the mean value, mean ± – SD,
and mean ± – 2SD, respectively. SD, standard deviation.

out of 90) were involved in these FCs. This result suggests that
OSA is likely to affect the FCs among widely distributed regions
in the whole brain, rather than some local networks involving
only a few particular brain regions. This is in line with previous
studies investigating the FC changes in OSA. For example,
Park et al. found 27 decreased FCs and 46 increased FCs in
patients with OSA associated with 62 out of 90 brain regions
(Park et al., 2016b). Such widely distributed FC alterations
also support the previous findings that the global topological
properties of the whole-brain resting-state functional network
were disrupted as well in patients with OSA. For example,
although a small-world topology was still preserved, the small-
world property was significantly decreased (Chen et al., 2017),

along with some other global topological properties such as
clustering coefficient, characteristic path length, and global
efficiency (Huang et al., 2019).

The relationship of the multivariate
pattern analysis-selected functional
connectivities with the predefined
resting-state functional networks

We also characterized the relationship of the MVPA-selected
FCs with the predefined resting-state functional networks and
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FIGURE 4

The percentages of intra-network FCs in each functional
network (the diagonal entries) and the percentages of
inter-network FCs (the off-diagonal entries). The values that
exceeded the average percentages were marked with red
rectangular boxes. VN, visual network; SMN, somatomotor
network; AN, attention network; FPN, frontoparietal network;
DMN, default mode network; LS, limbic system.

found that these FCs were associated with all 7 predefined
resting-state functional networks, further corroborating the
finding that OSA involves widely distributed FC alterations
in the whole brain. Furthermore, the quantification of these
MVPA-selected FCs in terms of intra- and inter-network FCs
showed that the DMN had the highest percentage of intra-
network FCs among the 400 MVPA-selected FCs and also had
relatively high percentages of inter-network FCs with the SMN,
the AN, and the LS, suggesting the important role of the DMN-
associated FC changes in OSA. This is consistent with some
previous studies that have reported abnormal intra-network FCs
as well as the global and local topological properties of DMN
in patients with OSA compared with HCs (Zhang et al., 2013;
Peng et al., 2014; Li et al., 2015, 2016a,b; Chen et al., 2018a). It
is known that the DMN, including the posterior cingulate gyrus
(PCG), the medial prefrontal cortex, HIP, medial temporal lobe
(MTG), angular gyrus (ANG), and precuneus (PCUN) as the
core regions (Li et al., 2016b), is more active during resting state
but its activity is inhibited during many cognitive tasks, and the
degree of inhibition even increases with the task load (Buckner
et al., 2008). Our results showed positive classification weights
for the FCs between the bilateral PCUN, the bilateral PCG, the
right SFG, and the medial part of the right superior frontal gyrus
(SFGmed), indicating that these FCs were lower in patients
with OSA compared with HCs. The connectivity between the
right HIP and ipsilateral parahippocampal gyrus (PHG) was
an important member of the classified pattern, while Song’s
study found reduced FC between the right HIP and the bilateral
thalamus and PHG in patients with OSA (Song et al., 2018).
We also found that the intra-network FC in DMN associated
with bilateral PCG was useful in OSA-HC classification. PCG,

PCUN, and HIP were considered the key regions of posterior
DMN (pDMN); the medial prefrontal cortex, anterior cingulate
(ACG), and superior frontal gyrus belong to anterior DMN
(aDMN) (Zhang et al., 2013; Chen et al., 2018a). In a previous
study, Zhang et al. (2013) found that FCs of patients with OSA
in aDMN were significantly decreased than HC’s, while FCs in
OSA were increased in pDMN. We also found that the intra-
network FCs in aDMN showed negative classification weights,
such as the FCs between the bilateral ACG and the bilateral
medial orbital part of the superior frontal gyrus (SFGmorb),
Therefore, the abnormal intra-network FC in DMN explained
the functional heterogeneity of aDMN and pDMN. Chen et al.
(2018a) reported abnormal FCs within the DMN and decreased
network topological properties such as the clustering coefficient
and the local efficiency of the DMN.

Moreover, some previous studies have reported abnormal
FC between DMN and other brain regions. Zhang et al.
(2015) found that the FCs between key nodes of the DMN
(the bilateral ACG, right PCG, bilateral SFG, and bilateral
medial prefrontal cortex) and the AN (the right INS) were
significantly decreased in patients with OSA. Song et al.
(2018) reported that the FCs between the nodes in DMN
(HIP and ANG) and the nodes in LS (THA and CAU) were
significantly abnormal in patients with OSA. As the DMN has
been suggested to play an important role in many cognitive
functions such as regulating emotion, consciousness, memory,
and introspection, our present findings, together with the
previous results, suggest that the disrupted FCs associated with
the DMN in OSA may underlie the cognitive impairments
observed in patients with OSA.

Some papers have also found visual dysfunction in patients
with OSA. Giora et al. (2017) found that the reaction time in
a visual task for patients with OSA was significantly longer
than HCs. Moghimi et al. (2013) detected that the nerve fiber
indicator was significantly reduced in patients with OSA, and
patients with OSA had a higher prevalence rate of glaucoma
and ocular hypertension. The calcarine cortex (CAL) is a core
region of the visual recognition network (Tao et al., 2013) and
was reported to be associated with the shifting of attention
to the intended visual target and the modulation of visual
input through attention. Liu et al. (2017) found the voxel
mirrored homotopic connectivity (VMHC) in bilateral CAL,
and VMHC value in CAL was positively correlated with AHI
(Yamagishi et al., 2005). Zhang et al. (2013) found that the
right cuneus (CUN) exhibited reduced gray matter volume
(GMV) in patients with OSA that imply the visual attention
deficit of OSA. However, there are few studies on functional
disconnection associated with VN in patients with OSA. In
the current OSA-HC classification FC pattern, the percentage
of intra-network FC in VN was higher than the percentage
of intra-network FC in the whole brain, but the percentage
of inter-network FC between VN and the other network was
lower than the percentage of inter-network in the whole brain.
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FIGURE 5

The distributions of intra-network FCs. (A) The spatial distribution of the selected intra-network FCs with higher classification weights in patients
with OSA compared with controls. (B) The spatial distribution of the selected intra-network FCs with lower classification weights in patients with
OSA compared with controls. The thickness of lines represents the absolute weight values and the black lines indicate functional connectivity
within one functional network. VN, visual network; SMN, somatomotor network; AN, attention network; FPN, frontoparietal network; DMN,
default mode network; LS, limbic system.

FIGURE 6

The distribution of inter-network FCs between the DMN and the other five functional networks. (A) The spatial distribution of the selected
inter-network FCs between DMN and the other networks with higher classification weights in patients with OSA compared with controls.
(B) The spatial distribution of the selected inter-network FCs between DMN and the other networks with lower classification weights in patients
with OSA compared with controls. The thickness of lines represents the absolute weight values. VN, visual network; SMN, somatomotor
network; AN, attention network; FPN, frontoparietal network; DMN, default mode network; LS, limbic system.

Furthermore, the FC between left CAL and left IOG, FC
between right CAL and bilateral IOG, and left MOG play
an important role in differentiating patients with OSA and
HCs, and the classification weight of these connectivities was
negative (HC-OSA).

Correlations between the functional
connectivities and the disease severity

We found that some MVPA-selected FCs were significantly
correlated with the AHI and the%TST < 90%. AHI is the main
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FIGURE 7

Scatter plots showing significant correlations between the FCs and the clinical variables in patients with OSA. (A) The correlations between the
FCs and AHI. (B) The correlations between the FCs and % TST < 90%. AHI, apnea-hypopnea index; %TST < 90%, percentage of total sleep time
spent at oxygen saturations less than 90%; CUN.L, left Cuneus; TPOsup.L, left Temporal pole: superior temporal gyrus; PHG.L, left
Parahippocampal gyrus; IFGoper.L, left Inferior frontal gyrus, opercular part; INS.L, left Insula; MFGorb.L, left Middle frontal gyrus, orbital part;
MOG.R, right Middle occipital gyrus; TPOmid.L, left Temporal pole: middle temporal gyrus; PUT.R, right Lenticular nucleus, putamen; ITG.R, right
Inferior temporal gyrus.

indicator of the severity of OSA. In this study, the FCs between
the left PHG (DMN) and left IFGoper (FPN) and between
the left CUN (VN) and left TOPsup (LS) showed negative
correlations with AHI, while the FC between the left INS (AN)
and left MFGorb (FPN) showed a positive correlation of AHI.
Although this has not been reported in previous studies, our
result suggests these FCs might be indicative of the AHI in OSA.

The FCs between the right MCG (AN) and the left TPOmid
(LS), and between the right PUT (AN) and the right ITG (AN)
showed a positive correlation with % TST < 90%. It is noticeable
that both FCs were associated with the functional network
AN (attention network). Attention is a primary cognitive
function, involving selective attention, sustained attention, and
attention distribution, which will further affect other cognitive
functions (Olaithe et al., 2018), and some previous studies
have reported attentional impairments in all three aspects of
attention in patients with OSA (Verstraeten et al., 2004; Vanek
et al., 2020). Even though the treatment of continuous positive
airway pressure (CPAP) could improve alertness and attention
(Verstraeten and Cluydts, 2004), it did not seem to be able to
restore the quality of attention to normal levels in patients with
OSA (Lau et al., 2010). Our results provide evidence for the
neural mechanisms of attention impairment in patients with
OSA, which may be related to the disrupted FCs in the AN

due to hypoxemia during sleep, and such attention deficits in
patients with OSA may be more resistant to treatment.

Limitations

There are several limitations in this study. First, the sample
size in this study was relatively small and only recruited male
subjects. The statistical significance of the correlations between
the FCs and the clinical variables was not corrected for multiple
comparisons also due to the small sample size. Therefore, large
sample dataset and female patients with OSA should be included
in future studies to confirm our results. Second, we only used FC
to distinguish patients with OSA from HCs. Whether merging
different imaging measures could improve the classification
accuracy in distinguishing patients with OSA from HCs needs
to be further studied.

Conclusion

The findings in this study revealed that the resting-state
FCs were altered in OSA and the disrupted FCs were widely
distributed and involved almost all resting-state functional
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networks in the whole brain of patients with OSA. The
successful classification between patients with OSA and HCs
obtained using machine learning techniques also indicates that
the altered resting-state FCs are indicative of the severity of
the disease and have the potential to serve as a neuroimaging
biomarker of OSA.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed
and approved by the Medical Research Ethics Committee
of Tianjin Medical University General Hospital. The
patients/participants provided their written informed consent
to participate in this study.

Author contributions

AH and ML: study design and article writing. QZ:
acquisition of data. AH, XP, and HW: analysis and interpretation
of data. XZ, YP, and DL: technical guidance. ML, QZ, and
FG: manuscript review and editing. ML and FG: supervision.
All authors contributed to the article and approved the
submitted version.

Funding

This study was supported by the National Natural Science
Foundation of China (Grant Nos. 81871393, 62075156,
81971694, and 81401401) and the Natural Science Foundation
of Tianjin (Grant No. 16JCQNJC10900).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer YL declared a past co-authorship with the
author ML to the handling editor.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fnins.2022.920765/full#supplementary-material

References

Benjafield, A. V., Ayas, N. T., Eastwood, P. R., Heinzer, R., Ip, M. S. M., Morrell,
M. J., et al. (2019). Estimation of the global prevalence and burden of obstructive
sleep apnoea: a literature-based analysis. Lancet. Respir. Med. 7, 687–698. doi:
10.1016/S2213-2600(19)30198-5

Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L. (2008). The brain’s
default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci.
1124, 1–38. doi: 10.1196/annals.1440.011

Chang, Y. T., Chen, Y. C., Chen, Y. L., Hsu, S. W., Yang, F. Y., Lee, C. C.,
et al. (2020). Functional connectivity in default mode network correlates with
severity of hypoxemia in obstructive sleep apnea. Brain Behav. 10:e01889. doi:
10.1002/brb3.1889

Chen, L., Fan, X., Li, H., Ye, C., Yu, H., Gong, H., et al. (2018a).
Topological Reorganization of the Default Mode Network in Severe Male
Obstructive Sleep Apnea. Front. Neurol. 9:363. doi: 10.3389/fneur.2018.
00363

Chen, L. T., Fan, X. L., Li, H. J., Ye, C. L., Yu, H. H., Xin, H. Z., et al. (2018b).
Aberrant brain functional connectome in patients with obstructive sleep apnea.
Neuropsychiatr. Dis. Treat. 14, 1059–1070. doi: 10.2147/NDT.S161085

Chen, L. T., Fan, X. L., Li, H. J., Nie, S., Gong, H. H., Zhang, W., et al. (2017).
Disrupted small-world brain functional network topology in male patients with

severe obstructive sleep apnea revealed by resting-state fMRI. Neuropsychiatr. Dis.
Treat. 13, 1471–1482. doi: 10.2147/NDT.S135426

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). "Mini-mental state".
A practical method for grading the cognitive state of patients for the clinician.
J. Psychiatr. Res. 12, 189–198. doi: 10.1016/0022-3956(75)90026-6

Gagnon, K., Baril, A. A., Gagnon, J. F., Fortin, M., Decary, A., Lafond, C., et al.
(2014). Cognitive impairment in obstructive sleep apnea. Pathol. Biol. 62, 233–240.
doi: 10.1016/j.patbio.2014.05.015

Giora, E., Galbiati, A., Marelli, S., Zucconi, M., and Ferini-Strambi, L. (2017).
Evidence of perceptive impairment in OSA patients investigated by means of a
visual search task. Cortex 95, 136–142. doi: 10.1016/j.cortex.2017.08.004

Gupta, M. A., and Simpson, F. C. (2015). Obstructive sleep apnea and
psychiatric disorders: a systematic review. J. Clin. Sleep Med. 11, 165–175. doi:
10.5664/jcsm.4466

Hua, M., Peng, Y., Zhou, Y., Qin, W., Yu, C., and Liang, M. (2020). Disrupted
pathways from limbic areas to thalamus in schizophrenia highlighted by whole-
brain resting-state effective connectivity analysis. Prog. Neuropsychopharmacol.
Biol. Psychiat. 99:109837. doi: 10.1016/j.pnpbp.2019.109837

Huang, Y., Liu, Y., Zhao, D., Liu, B., Zhang, H., Huang, Z., et al. (2019).
Small-world properties of the whole-brain functional networks in patients with

Frontiers in Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2022.920765
https://www.frontiersin.org/articles/10.3389/fnins.2022.920765/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2022.920765/full#supplementary-material
https://doi.org/10.1016/S2213-2600(19)30198-5
https://doi.org/10.1016/S2213-2600(19)30198-5
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1002/brb3.1889
https://doi.org/10.1002/brb3.1889
https://doi.org/10.3389/fneur.2018.00363
https://doi.org/10.3389/fneur.2018.00363
https://doi.org/10.2147/NDT.S161085
https://doi.org/10.2147/NDT.S135426
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1016/j.patbio.2014.05.015
https://doi.org/10.1016/j.cortex.2017.08.004
https://doi.org/10.5664/jcsm.4466
https://doi.org/10.5664/jcsm.4466
https://doi.org/10.1016/j.pnpbp.2019.109837
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-920765 July 26, 2022 Time: 13:52 # 13

Hou et al. 10.3389/fnins.2022.920765

obstructive sleep apnea-hypopnea syndrome. Sleep Med. 62, 53–58. doi: 10.1016/j.
sleep.2018.08.037

Johns, M. W. (1991). A new method for measuring daytime sleepiness: the
Epworth sleepiness scale. Sleep 14, 540–545. doi: 10.1093/sleep/14.6.540

Kapur, V. K., Auckley, D. H., Chowdhuri, S., Kuhlmann, D. C., Mehra, R.,
Ramar, K., et al. (2017). Clinical practice guideline for diagnostic testing for adult
obstructive sleep apnea: an American Academy of sleep medicine clinical practice
guideline. J. Clin. Sleep Med. 13, 479–504. doi: 10.5664/jcsm.6506

Khazaie, H., Veronese, M., Noori, K., Emamian, F., Zarei, M., Ashkan, K., et al.
(2017). Functional reorganization in obstructive sleep apnoea and insomnia: a
systematic review of the resting-state fMRI. Neurosci. Biobehav. Rev. 77, 219–231.
doi: 10.1016/j.neubiorev.2017.03.013

Lau, E. Y., Eskes, G. A., Morrison, D. L., Rajda, M., and Spurr, K. F.
(2010). Executive function in patients with obstructive sleep apnea treated with
continuous positive airway pressure. J. Int. Neuropsychol. Soc. 16, 1077–1088.

Li, H., Li, L., Shao, Y., Gong, H., Zhang, W., Zeng, X., et al. (2016a). Abnormal
Intrinsic Functional Hubs in Severe Male Obstructive Sleep Apnea: evidence from
a Voxel-Wise Degree Centrality Analysis. PLoS One 11:e0164031. doi: 10.1371/
journal.pone.0164031

Li, H. J., Nie, X., Gong, H. H., Zhang, W., Nie, S., and Peng, D. C. (2016b).
Abnormal resting-state functional connectivity within the default mode network
subregions in male patients with obstructive sleep apnea. Neuropsychiatr. Dis.
Treat. 12, 203–212. doi: 10.2147/NDT.S97449

Li, H. J., Dai, X. J., Gong, H. H., Nie, X., Zhang, W., and Peng, D. C. (2015).
Aberrant spontaneous low-frequency brain activity in male patients with severe
obstructive sleep apnea revealed by resting-state functional MRI. Neuropsychiatr.
Dis. Treat. 11, 207–214. doi: 10.2147/NDT.S73730

Liang, M., Su, Q., Mouraux, A., and Iannetti, G. D. (2019). Spatial patterns of
brain activity preferentially reflecting transient pain and stimulus intensity. Cereb.
Cortex 29, 2211–2227. doi: 10.1093/cercor/bhz026

Lim, D. C., and Pack, A. I. (2014). Obstructive sleep apnea and cognitive
impairment: addressing the blood-brain barrier. Sleep Med. Rev. 18, 35–48. doi:
10.1016/j.smrv.2012.12.003

Liu, F., Guo, W., Fouche, J. P., Wang, Y., Wang, W., Ding, J., et al. (2015).
Multivariate classification of social anxiety disorder using whole brain functional
connectivity. Brain Struct. Funct. 220, 101–115. doi: 10.1007/s00429-013-0641-4

Liu, F., Wang, Y. F., Li, M. L., Wang, W. Q., Li, R., Zhang, Z. Q., et al. (2017).
Dynamic functional network connectivity in idiopathic generalized epilepsy with
generalized tonic-clonic seizure. Hum. Brain Mapp. 38, 957–973. doi: 10.1002/
hbm.23430

Moghimi, S., Ahmadraji, A., Sotoodeh, H., Sadeghniat, K., Maghsoudipour, M.,
Fakhraie, G., et al. (2013). Retinal nerve fiber thickness is reduced in sleep apnea
syndrome. Sleep Med. 14, 53–57. doi: 10.1016/j.sleep.2012.07.004

Mur, M., Bandettini, P. A., and Kriegeskorte, N. (2009). Revealing
representational content with pattern-information fMRIan introductory guide.
Soc. Cogn. Affect. Neurosci. 4, 101–109. doi: 10.1093/scan/nsn044

Olaithe, M., Bucks, R. S., Hillman, D. R., and Eastwood, P. R. (2018). Cognitive
deficits in obstructive sleep apnea: insights from a meta-review and comparison
with deficits observed in COPD, insomnia, and sleep deprivation. Sleep Med. Rev.
38, 39–49. doi: 10.1016/j.smrv.2017.03.005

Park, B., Palomares, J. A., Woo, M. A., Kang, D. W., Macey, P. M., Yan-Go,
F. L., et al. (2016a). Aberrant insular functional network integrity in patients with
obstructive sleep apnea. Sleep 39, 989–1000. doi: 10.5665/sleep.5738

Park, B., Palomares, J. A., Woo, M. A., Kang, D. W., Macey, P. M., Yan-Go, F. L.,
et al. (2016b). Disrupted functional brain network organization in patients with
obstructive sleep apnea. Brain Behav. 6:e00441. doi: 10.1002/brb3.441

Park, J. G., Ramar, K., and Olson, E. J. (2011). Updates on definition,
consequences, and management of obstructive sleep apnea. Mayo. Clin. Proc. 86,
549–554. doi: 10.4065/mcp.2010.0810

Peng, D. C., Dai, X. J., Gong, H. H., Li, H. J., Nie, X., and Zhang, W.
(2014). Altered intrinsic regional brain activity in male patients with severe
obstructive sleep apnea: a resting-state functional magnetic resonance imaging
study. Neuropsychiatr. Dis. Treat. 10, 1819–1826. doi: 10.2147/NDT.S67805

Peng, Y., Zhang, X., Li, Y., Su, Q., Wang, S., Liu, F., et al. (2020). MVPANI: a
toolkit with friendly graphical user interface for multivariate pattern analysis of
neuroimaging data. Front. Neurosci. 14:545. doi: 10.3389/fnins.2020.00545

Pereira, F., Mitchell, T., and Botvinick, M. (2009). Machine learning classifiers
and fMRI: a tutorial overview. Neuroimage 45, S199–S209. doi: 10.1016/j.
neuroimage.2008.11.007

Qin, Z., Kang, D., Feng, X., Kong, D., Wang, F., and Bao, H. (2020). Resting-state
functional magnetic resonance imaging of high altitude patients with obstructive

sleep apnoea hypopnoea syndrome. Sci. Rep. 10:15546. doi: 10.1038/s41598-020-
72339-2

Redline, S., Budhiraja, R., Kapur, V., Marcus, C. L., Mateika, J. H., Mehra, R.,
et al. (2007). The scoring of respiratory events in sleep: reliability and validity.
J. Clin. Sleep Med. 3, 169–200.

Song, X., Roy, B., Kang, D. W., Aysola, R. S., Macey, P. M., Woo, M. A., et al.
(2018). Altered resting-state hippocampal and caudate functional networks in
patients with obstructive sleep apnea. Brain Behav. 8:e00994. doi: 10.1002/brb3.
994

Tao, H., Guo, S., Ge, T., Kendrick, K. M., Xue, Z., Liu, Z., et al. (2013).
Depression uncouples brain hate circuit. Mol. Psychiat. 18, 101–111. doi: 10.1038/
mp.2011.127

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,
Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage 15, 273–289. doi: 10.1006/nimg.2001.0978

Vanek, J., Prasko, J., Genzor, S., Ociskova, M., Kantor, K., Holubova, M., et al.
(2020). Obstructive sleep apnea, depression and cognitive impairment. Sleep Med.
72, 50–58. doi: 10.1016/j.sleep.2020.03.017

Verstraeten, E. (2007). Neurocognitive effects of obstructive sleep apnea
syndrome. Curr. Neurol. Neurosci. Rep. 7, 161–166.

Verstraeten, E., and Cluydts, R. (2004). Executive control of attention in sleep
apnea patients: theoretical concepts and methodological considerations. Sleep
Med. Rev. 8, 257–267. doi: 10.1016/j.smrv.2004.01.001

Verstraeten, E., Cluydts, R., Pevernagie, D., and Hoffmann, G. (2004). Executive
function in sleep apnea: controlling for attentional capacity in assessing executive
attention. Sleep 27, 685–693.

Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., and He, Y. (2015).
Corrigendum: GRETNA: a graph theoretical network analysis toolbox for
imaging connectomics. Front. Hum. Neurosci. 9:458. doi: 10.3389/fnhum.2015.
00458

Wu, Y., Zhao, W., Chen, X., Wan, X., and Lei, X. (2020). Aberrant awake
spontaneous brain activity in obstructive sleep apnea: a review focused on resting-
state EEG and resting-state fMRI. Front. Neurol. 11:768. doi: 10.3389/fneur.2020.
00768

Yamagishi, N., Goda, N., Callan, D. E., Anderson, S. J., and Kawato, M. (2005).
Attentional shifts towards an expected visual target alter the level of alpha-band
oscillatory activity in the human calcarine cortex. Brain Res. Cogn. Brain Res. 25,
799–809. doi: 10.1016/j.cogbrainres.2005.09.006

Yan, C. G., Wang, X. D., Zuo, X. N., and Zang, Y. F. (2016). DPABI: data
processing & analysis for (resting-state) brain imaging. Neuroinformatics 14,
339–351. doi: 10.1007/s12021-016-9299-4

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,
Hollinshead, M., et al. (2011). The organization of the human cerebral cortex
estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165.
doi: 10.1152/jn.00338.2011

Yu, H., Chen, L., Li, H., Xin, H., Zhang, J., Wei, Z., et al. (2019). Abnormal
resting-state functional connectivity of amygdala subregions in patients with
obstructive sleep apnea. Neuropsychiatr. Dis. Treat. 15, 977–987. doi: 10.2147/
NDT.S191441

Zalesky, A., Fornito, A., and Bullmore, E. T. (2010). Network-based statistic:
identifying differences in brain networks. Neuroimage 53, 1197–1207. doi: 10.
1016/j.neuroimage.2010.06.041

Zhang, Q., Qin, W., He, X., Li, Q., Chen, B., Zhang, Y., et al. (2015). Functional
disconnection of the right anterior insula in obstructive sleep apnea. Sleep Med.
16, 1062–1070. doi: 10.1016/j.sleep.2015.04.018

Zhang, Q., Wang, D., Qin, W., Li, Q., Chen, B., Zhang, Y., et al. (2013). Altered
resting-state brain activity in obstructive sleep apnea. Sleep 36, 651–659B. doi:
10.5665/sleep.2620

Zhou, L., Liu, G., Luo, H., Li, H., Peng, Y., Zong, D., et al. (2020a).
Aberrant Hippocampal Network Connectivity Is Associated With Neurocognitive
Dysfunction in Patients With Moderate and Severe Obstructive Sleep Apnea.
Front. Neurol. 11:580408. doi: 10.3389/fneur.2020.580408

Zhou, L., Shan, X., Peng, Y., Liu, G., Guo, W., Luo, H., et al. (2020b). Reduced
regional homogeneity and neurocognitive impairment in patients with moderate-
to-severe obstructive sleep apnea. Sleep Med. 75, 418–427. doi: 10.1016/j.sleep.
2020.09.009

Zhu, X., Yuan, F., Zhou, G., Nie, J., Wang, D., Hu, P., et al. (2020). Cross-
network interaction for diagnosis of major depressive disorder based on resting
state functional connectivity. Brain Imag. Behav. 15, 1279–1289. doi: 10.1007/
s11682-020-00326-2

Frontiers in Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2022.920765
https://doi.org/10.1016/j.sleep.2018.08.037
https://doi.org/10.1016/j.sleep.2018.08.037
https://doi.org/10.1093/sleep/14.6.540
https://doi.org/10.5664/jcsm.6506
https://doi.org/10.1016/j.neubiorev.2017.03.013
https://doi.org/10.1371/journal.pone.0164031
https://doi.org/10.1371/journal.pone.0164031
https://doi.org/10.2147/NDT.S97449
https://doi.org/10.2147/NDT.S73730
https://doi.org/10.1093/cercor/bhz026
https://doi.org/10.1016/j.smrv.2012.12.003
https://doi.org/10.1016/j.smrv.2012.12.003
https://doi.org/10.1007/s00429-013-0641-4
https://doi.org/10.1002/hbm.23430
https://doi.org/10.1002/hbm.23430
https://doi.org/10.1016/j.sleep.2012.07.004
https://doi.org/10.1093/scan/nsn044
https://doi.org/10.1016/j.smrv.2017.03.005
https://doi.org/10.5665/sleep.5738
https://doi.org/10.1002/brb3.441
https://doi.org/10.4065/mcp.2010.0810
https://doi.org/10.2147/NDT.S67805
https://doi.org/10.3389/fnins.2020.00545
https://doi.org/10.1016/j.neuroimage.2008.11.007
https://doi.org/10.1016/j.neuroimage.2008.11.007
https://doi.org/10.1038/s41598-020-72339-2
https://doi.org/10.1038/s41598-020-72339-2
https://doi.org/10.1002/brb3.994
https://doi.org/10.1002/brb3.994
https://doi.org/10.1038/mp.2011.127
https://doi.org/10.1038/mp.2011.127
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.sleep.2020.03.017
https://doi.org/10.1016/j.smrv.2004.01.001
https://doi.org/10.3389/fnhum.2015.00458
https://doi.org/10.3389/fnhum.2015.00458
https://doi.org/10.3389/fneur.2020.00768
https://doi.org/10.3389/fneur.2020.00768
https://doi.org/10.1016/j.cogbrainres.2005.09.006
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.2147/NDT.S191441
https://doi.org/10.2147/NDT.S191441
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://doi.org/10.1016/j.sleep.2015.04.018
https://doi.org/10.5665/sleep.2620
https://doi.org/10.5665/sleep.2620
https://doi.org/10.3389/fneur.2020.580408
https://doi.org/10.1016/j.sleep.2020.09.009
https://doi.org/10.1016/j.sleep.2020.09.009
https://doi.org/10.1007/s11682-020-00326-2
https://doi.org/10.1007/s11682-020-00326-2
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

	Widespread aberrant functional connectivity throughout the whole brain in obstructive sleep apnea
	Introduction
	Materials and methods
	Participants
	Data acquisition
	Functional magnetic resonance imaging data preprocessing
	Anatomical parcellation and construction of brain network
	Univariate analysis
	Multivariate pattern analysis
	Feature selection
	Permutation test
	Characterization of the multivariate pattern analysis-selected functional connectivities
	Correlations between the selected functional connectivities and clinical variables


	Results
	Demographic and clinical indices
	Univariate comparisons of functional connectivities between patients with obstructive sleep apnea and healthy controls
	Classification between patients with obstructive sleep apnea and healthy controls
	Characterization of the multivariate pattern analysis-selected functional connectivities
	Correlations between the selected functional connectivities and clinical variables

	Discussion
	Weak alterations of resting-state functional connectivities in obstructive sleep apnea can be detected by multivariate pattern analysis
	The whole-brain resting-state functional connectivities were altered in a dispersed way in obstructive sleep apnea
	The relationship of the multivariate pattern analysis-selected functional connectivities with the predefined resting-state functional networks
	Correlations between the functional connectivities and the disease severity
	Limitations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


