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Heparin and heparan sulfate (HS) are polydisperse mixtures of polysaccharide chains

between 5 and 50 kDa. Sulfate modifications to discreet regions along the chains form

protein binding sites involved in cell signaling cascades and other important cellular

physiological and pathophysiological functions. Specific protein affinities of the chains

vary among different tissues and are determined by the arrangements of sulfated residues

in discreet regions along the chains which in turn appear to be determined by the

expression levels of particular enzymes in the biosynthetic pathway. Although not all the

rules governing synthesis and modification are known, analytical procedures have been

developed to determine composition, and all of the biosynthetic enzymes have been

identified and cloned. Thus, through cell engineering, it is now possible to direct cellular

synthesis of heparin and HS to particular compositions and therefore particular functional

characteristics. For example, directing heparin producing cells to reduce the level of a

particular type of polysaccharide modification may reduce the risk of heparin induced

thrombocytopenia (HIT) without reducing the potency of anticoagulation. Similarly, HS

has been linked to several biological areas including wound healing, cancer and lipid

metabolism among others. Presumably, these roles involve specific HS compositions

that could be produced by engineering cells. Providing HS reagents with a range of

identified compositions should help accelerate this research and lead to new clinical

applications for specific HS compositions. Here I review progress in engineering CHO

cells to produce heparin and HS with compositions directed to improved properties and

advancing medical research.

Keywords: anticoagulant heparin, heparan sulfate composition, recombinant heparin, growth factor binding,

polysaccharide sulfation

CELLULAR PRODUCTION; AN ATTRACTIVE SOURCE OF
HEPARIN/HS

Heparin and heparan sulfate (HS) are related polysaccharide chains with expression and structural
similarities that give them similar properties but with some fundamental differences. Heparin and
HS polysaccharide chains have backbones composed of the same repeating disaccharides that are,
in both cases, modified by sulfation at various positions of the sugar residues. Biosynthesis of
heparin and HS—initiation, elongation, and modification of the polysaccharide chains—proceed
through the same enzymatic pathway in the Golgi (1, 2). Whereas, HS is displayed on the surfaces
of all cells, heparin is exclusively stored in the cytoplasmic granules of mast cells. The functional
characteristics of heparin and HS are determined by the sulfation patterns in localized regions
of the polysaccharide chains. In HS, particular sulfation patterns in these localized regions form
specific protein binding sites that serve as coreceptors for growth factors and cytokines (3).
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HS sulfation patterns change during development and vary
among different tissues, differentially regulating the effects of
growth factor and cytokine signal transduction. These properties
give HS important roles in a number of physiological and
pathophysiological areas. In vivo heparin function is much less
well-understood. Heparin may aid in the packaging and storage
of histamine and other inflammatory mediators stored in mast
cell granules that are released upon IgE stimulated degranulation.
Structurally, heparin can be thought of as over-sulfated HS as
it tends to be considerably more highly sulfated; including the
high frequency of a characteristic trisulfated disaccharide, and
the presence of the antithrombin 3 (AT3) binding site (see
below) that is almost completely absent in HS. This structure
is responsible for the potent anticoagulant properties for
which pharmaceutical heparin is known and widely prescribed.
Pharmaceutical heparin is a highly purified fraction of material
prepared from animal tissue, largely porcine intestine, and
formulated for intravenous or subcutaneous administration.
in vivo heparin is sequestered in granules where it is not thought
to have effects on blood clotting, although, on release, there may
be protective effects on tissues from inflammatory cell invasion
(4, 5). Like HS, heparin chains harbor numerous protein binding
sites, although at a higher density due to the high levels of
sulfation, and many non-anticoagulant physiological properties
of heparin were identified retrospectively from patients treated
with heparin to prevent blood clotting. Clinicaltrials.gov lists
hundreds of clinical trials where patients treated with heparin
were monitored for non-anticoagulant benefits, for example in
sepsis and oncology.

Pharmaceutical heparin is a widely prescribed anticoagulant
drug, with 300,000 doses administered daily in the U.S. and a
worldwide market of over $7B (6–8). US regulatory agencies
are concerned about the heparin supply because ∼80% of the
worldwide heparin API is produced from pig intestines in
China. Heparin manufacturing is hard to regulate in China
as evidenced by the heparin adulteration crisis in 2008 that
led to allergic reactions and over 250 deaths worldwide. There
is also concern as to whether the pig population can keep
up with the growing global demand for heparin. To shore
up the heparin supply chain, the FDA recently decided to
consider reintroducing bovine heparin as an alternative source.
Bovine heparin was allowed in the US until the 1990s when
it was discontinued over concerns about bovine spongiform
encephalopathy (BSE), aka mad cow disease (9). Mad cow
disease was never detected in the US and has all but been
eliminated in Europe (From the CDC in 2017: A rough
estimate of this risk for the UK in the recent past, for
example, was about 1 case per 10 billion servings) however,
bovine heparin, as an animal-derived product, is still subject
to contamination from animal tissues and shortages due to
diseases in the animal population. Additionally, bovine heparin
has different anticoagulant properties and would be dosed
differently than porcine heparin (10–12). This complication is
underscored by the Brazilian Pharmacopeia, which has developed
two separate monographs for bovine and porcine intestinal
heparin in anticipation of reintroduction of bovine heparin (10).
Along with those concerns, heparin standardization only reflects

anticoagulant activity, which depends on the antithrombin
binding pentasaccharide. Other biological activities caused by
non-anticoagulant polysaccharide sequences may differ between
animal species leading to unexpected side effects (13). Cellular
production of heparin offers an alternative that allows the entire
supply chain to be under GMP control. Cellular production can
be scaled to meet demands, and it would be much simpler and
quicker to clean and restart a contaminated bioreactor than to
restart a diseased animal population.

New oral anticoagulants (NOA) are gaining acceptance
and market share because of more convenient routes of
administration, decreased monitoring requirements and in some
cases better safety profiles. How extensive this market infiltration
becomes remains to be seen. Heparin is fast acting, completely
reversible and currently has the advantage of efficacy and safety
data from dosing patients globally for over 75 years. There are
also clinical situations where heparin may be preferable, such as
for patients with prosthetic heart valves as NOA have greater
risks of valve thrombosis (14, 15), pregnancy where there is a
lack of clinical experience (16–18), renal impairment as NOAs are
renally excreted (19), severe liver diseases as NOAs are hepatically
metabolized (19), and gastrointestinal disease as direct Factor Xa
inhibitors have greater risks of intestinal bleeding (19).

Perhaps the real power of cellular production is the
prospect of altering the structure of heparin, in order to
improve its properties, or to produce polysaccharide chains
that are tailored to the non-anticoagulant applications identified
retrospectively. For example, in cardiopulmonary bypass surgery
where heparin is the drug of choice (20), risks of heparin
induced thrombocytopenia (HIT) associated with the high doses
of heparin administered before and during surgery have already
led to the introduction of alternative anticoagulant therapies.
Recombinant heparin provides an opportunity to reduce the risk
of HIT by engineering the molecular structure of cell-produced
heparin.

Biotechnology has come a long way in eliminating the
need to source medicines from animals. Heparin has been an
exception, perhaps due to the large number of slaughtered
pigs in China and the low (but rising) cost of labor there,
but more importantly, producing recombinant heparin entails
a higher level of complexity than producing a recombinant
protein. Unlike recombinant proteins that are expressed by
a single gene, heparin is synthesized in a complex metabolic
pathway involving over 20 enzymes. Heparin polysaccharides
are uniquely produced in mast cells but because mast cells
are particularly difficult to propagate and maintain, they are
not suitable for commercial production. The CHO cell line is
an industry standard for producing recombinant therapeutic
products. This familiarity may be an advantage from a
regulatory standpoint, but another advantage is that CHO cells
make relatively large amounts of HS. Producing recombinant
heparin from CHO cells entails engineering the CHO cells
genetically, to produce HS with the anticoagulant properties
of heparin. Further genetic engineering could be aimed at
reducing other protein binding substructures, for example,
platelet factor 4 (PF-4) binding to reduce the risk of heparin-
induced thrombocytopenia (HIT).
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RECOMBINANT HEPARIN

Two major challenges confront the prospect of developing cell
lines that produce recombinant heparin. The first challenge
is the difference in composition between heparin and HS.
Heparin inhibits coagulation by binding to AT3 and enhancing
its activity (∼1,000-fold). AT3 is a serine protease inhibitor
that inhibits blood clotting by neutralizing thrombin (Factor
IIa), Factor Xa and other serine proteases in the coagulation
pathway. Heparin binds to AT3 via pentasaccharide binding
motifs located along the heparin chains (see Figure 1). The
AT3 binding pentasaccharide is present in about one third
of heparin chains, while it is almost absent in HS (5) (see
Table 1). Strong electrostatic interactions due to the high
negative charge density in longer heparin sequences are also
important for binding (21, 22). Thus, CHO cells must be
engineered to produce highly sulfated polysaccharide chains
containing sufficient AT3 pentasaccharide binding sites to
meet the heparin standards for Factor Xa and Factor IIa
assays.

Heparin and HS are members of a class of polysaccharides
referred to as glycosaminoglycans (GAGs). The heparin/HS
backbone is a polysaccharide synthesized as a copolymer
of alternating D-glucuronic acid (GlcA) and N-acetyl-D-
glucosamine (GlcNAc) residues by two enzymes, GlcNAc
and GlcA transferases (Ext1 and Ext2; See Figure 2) (2).
The polysaccharide chain is synthesized while attached to
a core protein to form proteoglycan structures through
a tetrasaccharide linker (GlcA-Gal-Gal-Xyl-). Specific
protein binding sites are formed by modifications to short
oligosaccharide regions along the backbone (22). Proteins
bind through certain geometries of electrostatic charges on
heparin formed by the modification enzymes that epimerize
glucuronic acid to iduronic acid (glucuronic C-5 epimerase,
Glce) and transfer negatively charged sulfate groups to the
2-O-position of iduronic acid (Hs2st), to the N-position of
N-acetylglucosamine (four isozymes NDST1-4), to the 3-O-
position of N-sulfoglucosamine (seven Hs3st isozymes), and to
the 6-O-position of N-acetyl/sulfoglucosamine (three isozymes
Hs6st1-3) (2). Research has provided clues to how these enzymes
act on the polysaccharide during synthesis (1, 2, 5, 23).

• First, NDST deacetylates and sulfates a subset of GlcNAc
residues to form GlcNS.

• Further N-deacetylation and sulfation of GlcNAc is preferred
in regions proximal to GlcNS.

• The epimerase requires an upstream (toward the
non-reducing end) GlcNS.

• The epimerase is inhibited by downstream (toward the
reducing end) 6-O-sulfation.

• 6-O-sulfation generally requires prior N-sulfation or an
adjacent GlcNS unit.

• 3-O-sulfation occurs in areas of high sulfate and iduronic acid.
• Sulfation compensation tends to maintain the wildtype net

charge e.g., by increasing N- and 6-O-sulfation in the absence
of 2-O-sulfation.

Sulfation levels are determined by the expression levels of the
modification enzymes but how that is regulated is not well-
known. Synthesis is not template driven, and none of the
reactions in the biosynthetic pathway proceed to completion so
there is structural heterogeneity among the polysaccharide chains
in both size and structure. Typically, heparin and HS samples
are characterized by compositional analyses, which quantify
the disaccharides that make up the polysaccharide chains by
their modifications. Table 1 compares structural and functional
characteristics of heparin and HS.

The enzymes immediately relevant to increasing the number
of AT3 binding sites can be predicted from the AT3 binding
site structure (Figures 1, 2) and the contribution of each sulfate
group to the AT3-pentasaccharide binding energy. The high
affinity pentasaccharide terminates with a trisulfated disaccharide
(residues 4 and 5 in Figure 1) (24). This is the most abundant
disaccharide in heparin and it is relatively rare in HS. The AT3-
pentasaccharide also contains a critical 3-O-sulfated group on the
central glucosamine (residue 3) and a critical 6-O-sulfate group
on the non-reducing end glucosamine (residue 1). These two
sulfate groups are responsible for more than half of the binding
energy of the interaction (25). 3-O-sulfate levels vary in HS from
different cell types and tissues but are generally rare (5). While
2-O-sulfate is present in the canonical AT3-pentasaccharide

TABLE 1 | Properties of HS and heparin (22).

Property HS Heparin

Sulfates/hexosamine 0.6–1.8 1.8–2.4

GlcN N-sulfation 30–60% ≥80%

IduA content 20–50% ≥80%

Major disaccharide species Variable Trisulfated

Solubility in 2M KAc pH 5.7 + –

Chains supporting AT3 binding 0–0.3% ∼30%

FIGURE 1 | AT3 binding pentasaccharide.
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FIGURE 2 | Genes encoding Heparin/HS biosynthetic enzymes. Xytl, xylosyltransferase; Galt, galactosyltransferase; Ext, exostosins, GlcNAc and GlcA transferases;

Ndst1-4, GlcNAc N-deacetylase/N-sulfotransferase; Hs2st, uronyl 2-O-sulfotransferase; Hs3st1-6, glucosaminyl 3-O-sulfotransferase; Hs6st1-3, glucosaminyl

6-O-sulfotransferase; HsGlce, uronyl C5 epimerase; ExtL3, Exostosin Like Glycosyltransferase 3; Glcat1, glucuronyltransferase 1. Enzymatic isoforms indicated by

numbers. Oligosaccharides identified by brackets.

sequence, it has been shown to be dispensable for high affinity
binding to AT3 (23). These studies indicate that N-sulfate, 6-O-
sulfate and 3-O-sulfate are critical components for high affinity
binding. Disaccharide compositional comparisons of CHO-S HS
and heparin showed that HS was deficient in N-sulfate and O-
sulfate when compared to heparin (26). Since sulfate levels are
largely determined by the expression levels of the modification
enzymes, these data indicate that overexpression of Ndsts, Hs6sts,
andHs3sts may convert CHO cell HS into a heparin-like product.

Hs3st1 is the 3-O-sulfotransferase isozyme responsible for
producing anticoagulant heparin (5). Previous attempts at
engineering CHO-S cells to produce recombinant heparin were
partially successful (26). These studies compared the expression
of heparin/HS biosynthetic ezymes in rat mast cells to CHO-
S cells by RT-PCR. Hs3st1 was highly expressed in rat mast
cells but undetectable in CHO cells. Curiously, Hs3st1 epitopes
were detected by Western blotting but this most likely represents
inactive enzyme as Hs3st1 enzyme activity is undetectable in
CHO-S and AT3 binding is near zero. Ndst2 was also highly
expressed in rat mast cells but undetectable in CHO-S by RT-
PCR and by Western blotting. CHO-S cells were transfected to
overexpress enzymes Ndst2 and Hs3st1. Two double transfected
cell lines were characterized, where both showed significantly
increased N-sulfation, AT3 binding and Factor Xa inhibition
relative to the host CHO-S cell line. However, AT3 binding
and Factor Xa inhibition were still well below USP standards
for heparin, presumably due to the lack of 6-O-sulfation, which
decreased in the transfected cell lines. 3-O-sulfate levels could
not be analyzed because 3-O-sulfate inhibits the heparin lyases
that digest heparin/HS to disaccharides. On the other hand, N-
sulfation was dramatically increased; potentially reaching levels
that inhibited subsequentO-sulfation. Although regulation of the
heparin/HS biosynthetic pathway is not completely understood,
a leading hypothesis is that Ndst is involved in the termination
of sulfation as well as the initiation of sulfation (2). The partial
increase in AT3 binding and Factor Xa inhibition and the
corresponding decrease in 6-O-sulfation observed in the double
transfectants along with the known importance of 6-O-sulfation
in the AT3 binding pentasaccharide (see above) suggests that

increasing 6-O-sulfation by over expression of Hs6st1, Hs6st2,
Hs6st3, or combinations may be required to achieve the USP
standards for heparin. This study also shows that it will be
important to achieve a balance of expression levels between
transgenes and endogenous genes. In E. coli and Saccharomyces
cerevisiae, the expression levels of enzymes involved in metabolic
pathways have been controlled by gene titration, promoter
engineering, or transcriptional regulation (27–29).

Introducing recombinant heparin to compete with
inexpensive unfractionated heparin could be difficult but
engineering heparin with fewer side effects could justify a
somewhat higher cost making it more competitive. HIT is a
significant side effect of heparin. In HIT, the blood platelet count
drops below the normal range 5–14 days after the first heparin
administration. This can lead to blood clots, stroke, heart attack,
deep vein thrombosis and pulmonary emboli, leading to loss of
life and limb (30). Treatment requires alternative anticoagulants.
Overall, the absolute risk of HIT is 2–3% for unfractionated
heparin however, this is a significant risk since hospitals use
unfractionated heparin almost exclusively for applications from
cardiac surgery to hemodialysis to coating IV tubing. Treating
HIT costs around $40,000 per patient. Testing the susceptible
patients (10–15%) adds to the costs.

HIT is an immune response against heparin when it is
complexed with platelet PF4 (31). Low molecular weight heparin
(LMWH) is thought to have reduced risks of eliciting HIT (0.2–
0.6%) (32, 33); however, not all researchers are convinced that
this has been adequately demonstrated in the clinic (30). In
addition, LMWH is not fully reversible with protamine, leaving
some high risk patients at risk of bleeding and limiting the
use of LMWHs in cardiopulmonary bypass surgery (34). We
and other researchers have shown that removal of 2-O-sulfate
from HS results in significant increases in the IC50 for PF-
4 binding to heparin in competition formats [(35) and TEGA
unpublished data]. It has also been shown that 2-O-sulfation
is dispensable for activation of AT3 in CHO cells transduced
to express Hs3st1 (23). Thus, removal of 2-O-sulfation should
result in low PF4 affinity but AT3 binding should not be
affected.
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Another strategy for producing a “premium heparin” to
compete with inexpensive unfractionated heparin would be to
engineer a LMWH or mediummolecular weight heparin directly
from cells. As discussed above, LMWH may have a 10-fold
decreased risk of HIT but is not fully reversible with protamine,
both of these properties, attributed to the lower molecular
weight (average 2,000–8,000 Da or dp 4–16) (34). One approach
would be to engineer recombinant heparin with an intermediate
molecular weight—low enough to inhibit PF4 binding (dp < 42)
(22) but large enough to permit complete reversal with protamine
(dp > 14) (34, 36). It is known that a 50% reduction in the
HS biosynthetic enzyme Ext1 reduces HS chain length (37–
39), so Ext1 heterozygous knockout cell lines could be tested.
An alternative approach for directly producing LMWH would
be to incorporate heparin degrading enzymes in the CHO cell
heparin production process. Currently commercial preparation
of LMWHs from unfractionated heparin includes various forms
of controlled chemical depolymerization. These methods can
result in process artifacts due to the harsh reaction conditions
(40–42) relative to the milder enzymatic depolymerization
conditions (40). Heparin lyase I, isolated from Flavobacterium
heparinum ismost commonly used (43, 44) although a number of
other heparin lyases are available for depolymerizing heparin and
HS (45). To overcome the lack of stability of microbally produced
heparinase and to reduce costs associated with its industrial use,
heparinases have been immobilized (45). Bioreactors containing
immobilized heparinase have been developed for deheparinizing
blood and for heparin depolymerization for producing LMWHs
(46–50). Alternatively, CHO cells could be engineered to produce
heparinase and secrete it into the culture medium. Currently
CHO cells secrete mammalian heparanase which has variable
effects on HS chain length depending on HS composition (51).
Lyase digestion would have to be carefully controlled as, for
example, heparinase I cleaves the AT3 binding site within the
heparin molecule (52, 53). This may suggest using a different
heparin lyase or combination of lyases, or alternatively the
activity of heparin lyase I may be improved by directed molecular
evolution (54).

The second major challenge to produce a commercially
viable product is achieving production levels that can compete
economically with the current production of animal derived
heparin. Hundreds of millions of slaughtered pigs in China
translates into low priced heparin. Industry production methods
are closely guarded secrets so determining the cost of heparin
production is difficult. Online prices for heparin through
Pharmacy Checker.com and GoodRx show retail prices ranging
from $0.023–$5.50/international unit (IU) for quantities between
10,000 and 60,000 IU. Costs for recombinant heparin API
production come primarily from initial equipment outlay
operation and maintenance, cell culture media, and supplies
and purification and processing. Increasing production efficiency
(or decreasing costs) will be critical. Not considering overhead
and sales & marketing, we estimate that recombinant heparin
production becomes competitive at production levels of 1 g/L.

As HS is produced as a proteoglycan, one way to increase
production may be to overexpress the core protein. Mast cells
produce heparin on the core protein serglycin, which is not

normally made in CHO cells (55, 56). In addition, serglycin from
different species contains different numbers of polysaccharide
attachment sites. Over expression of early enzymes in the HS
biosynthetic pathway, such as the enzymes catalyzing linker
addition (see Figure 2), may increase production if one or more
is limiting. Another way to potentially increase productivity is to
eliminate the production of inessential cell products genetically,
that may compete for precursor molecules or otherwise limit HS
production. Commercial production will also require substantial
scale-up. Currently TEGA is producing HS from CHO cells
in suspension, grown in shaker flasks in serum free medium.
Studies with CHO cells demonstrate that bioprocess optimization
in bioreactors can substantially improve GAG production
(57). Currently available media have been optimized for
protein production. Recombinant protein production has greatly
increased through bioprocess optimization. Polysaccharide
production is likely to have different requirements for precursor
molecules, nutrients, and growth conditions so developing
medias tailored to polysaccharide production is likely to have a
large impact.

APPLICATIONS FOR NON-
ANTICOAGULANT RECOMBINANT HS

As discussed, non-anticoagulant physiological properties of
heparin and HS have been identified retrospectively from
patients treated with heparin to prevent blood clotting (58).
These properties are active areas of research and clinical
testing. Modifying heparin for non-anticoagulant applications is
often aimed at reducing or eliminating anticoagulant properties
because in these settings, the anticoagulant activity is an
unwanted side effect. Engineering HS in cells has advantages
because HS can provide similar benefits without affecting blood
clotting. In addition to the lack of anticoagulant activity, different
compositions of HS may be more or less effective in different
therapeutic applications. This is reflected in the fact that HS
compositions differ among different tissues and change during
development and aging as well as in disease and in response to
injury (22, 59).

Relating HS structure to function is complex because
carbohydrate chemistry makes sequencing difficult and HS is a
heterogenous mixture of polysaccharide chains. Currently HS
is characterized by its composition of sulfated disaccharides
despite the fact that the binding sites are families of higher
order oligosaccharides that are not revealed by the compositional
analysis. HS function is determined by the protein binding sites
in localized regions along the chains, but the long polysaccharide
chains may contain multiple protein binding sites some of
which may stimulate while others inhibit particular cell signaling
pathways. This complexity is compounded by the heterogeneity,
presumably enabling HS from a particular tissue to be involved
inmultiple cell signaling pathways. None-the-less HS participates
in defined physiologically relevant processes which appear to be
regulated by the expression and activity of the enzymes in the
metabolic pathways. From an applications standpoint, using HS
therapeutically may depend on producing HS with a composition
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tailored to the relevant HS binding proteins or put another
way with the right combination of protein binding sites. That
composition reflects a particular combination of binding sites
may be reflected by the fact that tissue specific compositions are
conserved among different species.

HS acts by binding proteins in the extracellular matrix (ECM)
and growth factors and cytokines at the cell surface. In the ECM,
it may provide a growth factor sink, which could be released by
digestion with heparanase or the activities of other heparin/HS
modification enzymes such as the SULFs which reduce subsets
of 6-O-sulfation. At the cell surface, HS typically functions as a
coreceptor modifying growth factor affinity/activity albeit more
subtly than the growth factor receptor peptides; much like a
rheostat (59). Binding interactions between proteins and HS are
complex as there is considerable structural variability in the sites
on HS that bind different proteins (22). In some cases, binding
requires very specific structural modifications, like the binding
sites for AT3 and fibroblast growth factor 2 (FGF2) (60, 61).
Other proteins have less-specific interactions with domains along
the HS polysaccharide. HS is arranged in alternating highly
sulfated NS domains, poorly sulfated NAc domains and domains
that are a mixture NS/NAc (2). As varied as the binding sites,
are the effects HS binding can have on the HS binding proteins.
HS binding can increase the half-life of bound proteins, facilitate
oligomerization, and act as an allosteric regulator to change the
conformation of a bound protein thereby regulating its activity,
for example the AT3 inhibitory activity on Factor Xa (62, 63).
By immobilizing or tethering proteins, HS can concentrate them
spatially, sequester them as a sink, or arrange them to set up
gradients such as VEGF to guide angiogenesis (64).

Through research and clinical observations, a number of
potential non-anticoagulant clinical applications of heparin/HS
have come to light. In acute inflammatory reactions, heparin
has been shown to protect against ischemia-reperfusion injury in
animal models (65, 66). Heparin has been used in a number of
clinical trials and is currently being tested clinically for treating
inflammation associated with sepsis (67). In inflammatory
disease, heparin has shown clinical benefit to patients with
asthma (58, 68–74) and inflammatory bowel disease (75–78).

There is also significant evidence for the benefit of heparins
in cancer because of the frequent use of heparin in the
prophylaxis of venous thromboembolism in cancer patients (58,
79–85). Heparin protects against metastatic infiltration related to
inflammatory diapedesis (86, 87) and also against tumor growth
and angiogenesis (88). With regard to wound healing, isolated
reports suggest that topical or systemically applied heparin is able
to promote healing and reduce inflammation in burn patients
(89). Mechanistically, heparin-binding epidermal growth factor
located near the site of injury could be released as an autocrine
mitogen competitively, with soluble heparin (90). Embryonic
stem cells lacking HS do not differentiate but differentiation
can be induced with heparin (91, 92). Multiple growth factor
signaling pathways are involved where HS is a critical component
(91).

In these applications, anticoagulation is usually an unwanted
side effect. In addition, heparin is highly sulfated and is therefore
likely to influence multiple signaling pathways, some of which

may be counterproductive. Thus, engineering HS may provide
advantages due to the lack of anticoagulant activity and because
the composition can potentially be engineered to tailor it
to the application. It is thus important to understand the
relationship between HS composition and application. Examples
discussed below are from research aimed at determining how
HS composition affects physiology and pathophysiology, which
could lead to therapeutic HS compositions or applications where
HS is a drug target.

Inflammation
How HS composition relates to physiological function has
been studied by altering the expression of enzymes in the
HS biosynthetic pathway. Targeted Ndst1 deletion in myeloid
cells showed the HS proteoglycans (HSPGs) are important
regulators of macrophage stimulation by Type 1 interferon
(IFN) (93). In the knockout, a 10–15% decrease in N-
sulfation, 6-O-sulfation and 2-O-sulfation was associated with
the macrophages in a perpetual activated state, with increased
proinflammatory cytokine secretion, enhanced infiltration and
foam cell conversion leading to atherosclerotic lesion formation
and increased diet-induced obesity. Macrophages constitutively
express low amounts of Type I IFNs. Perpetual macrophage
activation in the knockout suggests that the capacity of HS
to bind Type I IFNs is a mechanism to retain the interferons
near their site of secretion preventing them from interacting
with their receptors IFNAR1 and IFNAR2. In this model, under
resting conditions, highly sulfated macrophage HS maintains
Type I IFN in a quiescent state through sequestration of IFN-
β. This model is supported by observations that HS sulfation
is decreased in advanced atherosclerotic lesions (94, 95) and a
correlation between heparanase expression and the expression
of inflammatory markers (96). A similar sulfation dependent
model may explain HS regulation of Wnt and BMP signaling
(97, 98). Wnt signaling through frizzled receptors is inhibited
by HS (similarly BMP signaling through noggin receptors is
inhibited by HS). A soluble pool of Wnt or BMP is generated
by activation of extracellular sulfatases (SULFs) that remove a
subset of 6-O-sulfate groups in highly sulfated domains. It is
not known whether the SULFs are involved in the regulation of
macrophage stimulation. Thus, HS is an important regulator of
IFN stimulation. Understanding howHS composition is involved
in this regulation could suggest new therapeutic avenues for
treating atherosclerosis, either by targeting specific enzymes
in the heparin/HS biosynthetic pathway or developing highly
sulfated heparanoids that bind type I INFs.

In addition to regulating cytokine secretion, heparin is known
to reduce inflammation through its ability to bind inflammatory
mediators and inhibit various inflammatory cells including
neutrophils. LMWH was tested in COPD patients, an airway
inflammatory disease predominated by neutrophils, and found
to add significant clinical benefit as an add-on therapy to
patients receiving standard treatments (70). Heparin is also
effective in stopping the recruitment of inflammatory cell types
into tissues through binding adhesion molecules involved in
interactions between leukocytes and vascular endothelial cells.
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Heparin binds a number of adhesion molecules including L-
selectin (99), a C-type lectin that uses HS as a ligand for leukocyte
rolling during the early interactions with the endothelium
and binds P-selectin on endothelial cells (100) which mediates
leukocyte/platelet interactions. Chemically modified heparin/HS
with defined structures were used to help define HS structures
involved in these interactions. Animal studies using modified
heparin derivatives showed that heparin inhibits inflammation
by blocking P and L-selectin interactions and that inhibition
critically depends on 6-O-sulfation (101).

In cystic fibrosis (CF), high levels of neutrophil elastase (NE)
in lung and sputum promote inflammation by up-regulating
neutrophilic cytokines, help disrupt the protease-antiprotease
balance by activating other proteases and degrading antiproteases
as well as elicit a series of additional pathological effects that
make NE an established biomarker of CF progression (102–105).
Serine proteases are currently an untreated major cause of airway
injury in CF, so they may provide drug targets for innovative
therapies. A recent study has shown effective inhibition of NE
with 2-O,3-O-desulfated heparin in CF patient sputum but only
in combination with the CF treatment dornase (DNAase-I)
because DNA and heparin compete for binding sites on NE
(106). Polymer length is also important as effective O-desulfated
heparin chains should be in the range of 15 saccharides.

Metastasis
Heparin may also be used to target metastasis (107). Selectin
dependent interactions are important for metastatic tumor cell
extravasation (88). Tumor cells express mucins on their surface
which interact with selectins on the surfaces of endothelial
cells, platelets and leukocytes. Clinically, mucins correlate with
poor prognosis and increased metastasis (108–110). Heparin and
heparin derivatives block P-selectin, which prevents interactions
with endothelial cells that arrest circulating tumor cells and
prevents binding to platelets that form a protective cloak around
tumor cells. Again, 6-O-sulfation is critical for inhibition of the
selectin interactions (101, 111).

Tumor Angiogenesis
Targeted deletion of Ndst1 in endothelial cells reduced the
N-sulfate content of cellular HS and reduced tumor growth
and tumor angiogenesis without affecting normal angiogenesis
(wound healing) (112). Reduction of N-sulfation reduced FGF2
andVEGF164 binding to cultured endothelial cells that resulted in
decreased Erk1/2 phosphorylation and decreased branching and
increased apoptosis in branching assays (112). Although non-
tumor endothelial cells showed these alterations, physiological
angiogenesis remained normal suggesting that tumor dependent
factors contributed to the difference; such as a higher demand on
tumor vasculature or different compositions of growth factors.
Thus, physiological and pathophysiological contributions of HS
to cell signaling are complex, depending on HS composition and
tissue environments but may none-the-less be exploited. With
respect to tumor angiogenesis, targeting HSmay have advantages
over targeting single growth factors because HS contributes
to the activity of numerous proangiogenic factors including
FGF2, VEGF, hepatocyte growth factor (HGF), platelet-derived

growth factor (PDGF), heparin-binding epidermal growth factor
(HB-EGF), angiopoietin, tumor necrosis factor-α (TNF-α),
interleukin-8 (IL-8), and others (113). In light of the tumor
specificity observed here, inhibitors of particular biosynthetic
enzymes in the heparin/HS biosynthetic pathway or antibodies to
HS may be more effective than the current anti-VEGF antibodies
[Avastin R© (bevacizumab), Roche].

Cancer Stem-Like Cells
A separate study identified a hexasaccharide that selectively
inhibits cancer-stem cells (CSCs) (114). Like the study
above, Erk1/2 activity was inhibited but the hexasaccharide
also produced sustained activation of p38 MAPK. With
an understanding that proteoglycans and GAGs modulate
important aspects of cancer progression, a screening technology
was used, that was developed by the group (115, 116), that
enriches for CSCs, because CSCs constitute a small fraction of
the tumor cell population. The screening technology identifies
agents that specifically target CSCs and not progenitor cells
or other cells in the cancer cell population. HS06 contained
the repeated disaccharide IdoA2S-GlcNS6S, and demonstrated
differential, isoform specific modulation of MAPK family
members; increasing p38α and attenuating activation of
p38δ, without activating other MAPK family members. The
importance of fine structure was clearly demonstrated as similar
sized CS and DS oligosaccharides were considerably less effective
and longer HS chains displayed reversed activities; as p38
inhibition and ERK1/2 activation.

Stem Cells
Stem cell maintenance, expansion and differentiation are also
areas where heparin and HS are of prime interest both
commercially and for research. Embryonic stem cells (ESCs)
have been used to characterize the role of HS in regulating
differentiation because alterations in HS structure can be lethal
in mice (91). ESCs are an ideal alternative as they can self-
renew so they can be maintained in an undifferentiated state and
they are pluripotent. Mutating enzymes in the HS biosynthetic
pathway causes numerous developmental defects and stem cells
with these mutations can be derived from the embryos of
mutant mice (91). Knocking out HS completely and then adding
stimuli that promotes differentiation leaves the cells in a primed
state but limits further differentiation. Cells lacking N-sulfation
also lack 2-O-sulfation as 2-O-sulfation depends on N-sulfation
(see above) however the cells maintain half of the normal
6-O-sulfation. These cells maintain their ESC characteristics
under conditions that maintain pluripotency however angiogenic
differentiation is impaired. Thus, sulfated HS is required for
normal development. Knocking out 2-O-sulfation resulted in
an increase in N-and 6-O-sulfation with proliferative defects
and defects under conditions promoting neural differentiation.
Under these conditions haemopoietic differentiation appeared
normal. Consistent with the increase in 6-O-sulfation, neural
defects were also observed in SULF enzyme mutants, that
also increased 6-O-sulfation. However, under these conditions,
defects in haemopoietic differentiation were also evident. This
may suggest the need for tighter control of 6-O-sulfation (91).
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As discussed, stem cell differentiation is often promoted by the
addition of costly growth factors and heparin, however, adding
lower concentrations of growth factors with polysaccharides
selected for activation of those growth factors may be
more effective and cost effective. For example, mesodermal
differentiation in HS deficient cells was restored by the addition
of heparin or HS presumably by restoring correct processes
involving Wnt, BMP4, and Nodal signaling (117). Using a
panel of HS compositions, the requirement for 6-O- and N-
sulfation were identified with HS being more effective than
heparin; again indicating that the organization of the sulfate
groups on the polysaccharide chains is important, not just high
levels of sulfation. Neural differentiation required some distinctly
different structures. Addition of heparin/HS to HS-containing
cells significantly improved neural differentiation where N-, 2-
O- and 6-O-sulfations were all important. Thus, there is a strict
requirement to specifically tailor the composition of exogenous
HS added, depending on the type of differentiation (91).

Satellite cells (SC) are muscle stem cells that lie quiescent
in muscle fibers. In response to injury, SCs are activated,
proliferate as myoblasts and form new muscle fibers (118).
Understanding how SC activation is regulated is of clinical
interest because during aging, skeletal muscle loses regenerative
capacity due to SC impairment and altered molecular signaling
in muscle (119–122). A number of factors have implicated HS
in this process. HS from SC-derived proliferating myoblasts has
equal levels of non-sulfated and sulfated disaccharides whereas
cultures of differentiated myotubes express a much higher ratio
of sulfated disaccharides relative to non-sulfated disaccharides.
This was primarily due to increased levels of mono-sulfated
disaccharides, that were principally 6-O-and 2-O-sulfated. 6-
O-sulfation continues to increase with age which corresponds
with the decreasing regenerative capacities of SCs. Further
examination revealed evidence that enhanced FGF2 signaling
due to increased 6-O-sulfation (6-O-sufated HS is required for
fibroblast growth factor receptor, FGFR, binding and FGF2
signaling) in the aging mice exhausted the quiescent SCs leading
to fibrosis and sarcopenia (123).

To identify key HS structures, heparin was chemically
modified to form HS mimetics (124). Since heparin is over
sulfated HS, the mimetics contained the variant types of
HS found in tissues including: heparin, completely desulfated
heparin/HS and heparin/HS forms that were N-sulfated; 2-
O-sulfated; 6-O-sulfated; N- and 2-O-sulfated; N- and 6-O-
sulfated; N-, 2-O- and 6-O-sulfated and over-sulfated heparin
with additional 3-O-sulfation. All of the mimetics except over-
sulfated heparin reduced differentiation. In most cases, decreased
differentiation was accompanied by increased proliferation. Over
sulfated heparin did not reduce differentiation but reduced
cell numbers. One mimetic: N-acetylated-2-O-desulfated (with
increased 6-O-sulfation like aging) inhibited differentiation and
did not promote proliferation. Since myoblast proliferation
is strongly promoted by FGF2, over-sulfated heparin was
tested to see if its antiproliferative effects were mediated by
inhibition of FGF2 signaling. Over-sulfated heparin reduced
Erk1/2 phosphorylation presumably by acting as an extracellular
sink for FGF2. In contrast, N-acetylated heparin which inhibits

differentiation, prolonged Erk1/2 phosphorylation consistent
with promoting cell expansion. These results strongly suggest
that myoblast proliferation is regulated by HS though FGF2
signaling. The HS mimetics were then tested for their ability to
promote or inhibit SC self-renewal since aging is accompanied
by reductions in SCs. In cell culture, self-renewal consists of
myoblasts that exit the cell cycle but instead of differentiating
they enter a quiescent state. Quiescence can be detected by the
expression of transcription factor Pax7 (125). Although most
of the HS mimetics inhibited differentiation the results on self-
renewal varied. 2-O-sulfated derivatives inhibited self-renewal
while N-sulfated derivatives promoted it. Thus, HS has multiple
roles in cell differentiation and cell fate determination which
critically depends on composition. These results suggest that N-
sulfated HS or heparanoids could promote self-renewal of SC.
Alternatively, inhibitors of 2-O-sulfation may also be effective.

Different growth factor binding affinities were identified in
differentially regulated neural precursor cell HS from E9 and
E11 mouse neuroepithelium (126). These affinities correlate with
growth factor expression where FGF2 expression begins at E9
and continues throughout development while FGF1 expression
begins at E11 when neurons begin to differentiate. HS expression
appears to match growth factor expression as HS prepared from
cultured E9 neuroepithelial cells bound FGF2 four times more
strongly than FGF1 whereas HS from E11 cells bound FGF1 six
times more strongly than FGF2. Correspondingly, E9 HS was
seven times more effective at stimulating cell proliferation with
FGF2 consistent with the observation that FGF2 regulates neural
precursor cell division (127–129). This E9 HS was subsequently
used to preferentially expand human mesenchymal stem cells
(hMSCs) (130), which, unlike conventional methods with a
cocktail of protein factors that typically result in heterogeneous
cultures, were particularly effective in a bone repair model.

Bone Wound Healing
HS has also been tested with clinically applied growth factors.
In the US, a significant percentage of bone fractures show
healing deficiencies (131). Standard-of-care calls for orthopedic
rod or plate supported allograft or autograft bone (132), however,
complications limit these methods (133–135). Subsequently,
growth factor-based treatments have been tested for promoting
bone formation. Endogenous bone morphogenic protein (BMP)
levels can be limiting at bone trauma sites and BMP is inhibited
by secreted antagonists like noggin and gremlin (136, 137).
Devices containing BMP-2 are FDA approved, however rapid
degradation and poor pharmacokinetics limit their effectiveness
so there is concern that excessive dosing used to compensate
for these limitations can lead to adverse events (138, 139).
In addition, using high levels of growth factors is expensive
(140). Heparin has been used to promote BMP-2 efficacy.
BMP-2 is a heparin binding protein and heparin improves its
bioavailability by blocking BMP-2 binding to cell surface HS,
stabilizes and protects the growth factor and reduces inhibition
by the antagonist noggin. These are general effects that heparin
has on heparin binding growth factors which have led to
heparin containing biomaterials aimed at improving BMP-2
efficacy. BMP-2mediated bone formation is enhanced by heparin
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however, heparin’s osteoporotic and anticoagulant activities
along with side effects due to a wide range of heparin binding
proteins has limited its clinical use in bone regeneration. BMP-
2 also binds HS, implicated by the fact that HS is tissue specific
and developmentally regulated in stem cells and osteoprogenitor
cultures (141–145). Temporal coordination of HS expression
with biomarkers of bone healing is consistent with selective HS
growth factor interactions. These interactions stabilize BMP-
2 and prolong its half-life while recruiting the BMP receptor
to enhance downstream signaling. HS also has less side effects
than heparin but preparations from commercial sources would
be less efficacious due to the extensive structural heterogeneity
among the HS chains (144). To obtain a more homogeneous
preparation with a stronger affinity for BMP-2, peptides derived
from the BMP-2 protein sequence were used to selectively enrich
porcine mucosal HS for a BMP-2 binding fraction. The bound
fraction exhibited many of the intended properties including
a major enhancement of bone repair and so this method may
constitute a platform technology in which peptides derived
from heparin binding proteins are used to enrich HS for high
affinity fractions. Disaccharide analyses identified compositional
differences between the original material, the unbound fraction
and the bound fraction with the major difference being a
significant increase in a trisulfated disaccharide (1HexUA, 2S-
Glc-NS, 6S) in the bound fraction.

CONCLUSIONS

A number of challenges remain for developing HS based
therapeutics. Relating composition to non-anticoagulant
heparin/HS function is an ongoing process and the subtler
structural aspects are still not very well-defined. For
pharmaceutical heparin, approximately one AT binding site
in a third of the chains is sufficient for anticoagulant effects. The
challenge with recombinant heparin is increasing the level of
sulfation of HS from mammalian cells to achieve that frequency.
With HS, progress has been made using HS binding proteins to
identify binding sites and select HS fractions. Binding may be
only part of the story however as growth factor binding can have
different effects in different cellular contexts. Heparin/HSs are
known to bind a range of growth factors, but this does not always
result in signaling. For example, HS functions as a coreceptor for
FGF signaling by interacting with FGF2 and FGFR1 to form cell
surface ternary complexes. HS binding to FGF2 requires N- and
2-O-sulfation whereas signaling requires simultaneous FGFR
binding which requires 6-O-sulfation (146, 147). In addition,
available commercial HS is currently a byproduct of heparin
production from animal tissue and of poor quality.

Recently, studies using libraries of engineered cell lines have
been reported that could be used to help determine HS fine
structure involved binding protein ligands. By knocking out
genes encoding particular biosynthetic enzymes in the HS and
CS/DS biosynthetic pathways and then introducing others (28
genes individually and in select combinations) the GAGome
library of engineered CHO cells was used to display complex
GAG features and determine which features are relevant for

specific binding interactions and the biosynthetic enzymes
responsible for their production (148). Similarly, gene knockout
of all of the HS biosynthetic enzyme isoforms individually and in
combinations was used to generate a library of HS mutant mouse
endothelial cell lines. This library comprises cells that produce a
diverse array of HS compositions which again have been used to
determine which specific modifications or HS fine structure as
well as overall sulfation levels are relevant to interactions with
protein ligands (149). Unlike oligosaccharide arrays, these cell
libraries display native sized HS chains with multiple binding
sites which may better correlate composition with physiological
function and thus may become increasingly important resources.

A number of strategies for producing recombinant heparin
have been reported. In an attempt to increase production,
HEK293 and HEK293T cells were transfected with human
serglycin; His-tagged to facilitate analyses of the attached GAG
chains (55). Eighty-five percent of the serglycin was secreted
as proteoglycan with the attached chains comprised of 50% HS
chains and 50% CS/DS. Trisulfated disaccharides were observed
however there was a tendency toward less sulfated disaccharides
relative to the LMWH, Deligoparin, and the anticoagulant
potency was 7-fold lower by weight than unfractionated porcine
heparin as determined in a fibrin clot assay. HEK293 cell lines are
used for production however these results indicate that additional
engineering would be required.

Bacteria produce polysaccharides, which however, tend to
be structurally simple and non-sulfated such as heparosan,
hyaluronan and chondroitin, as prokaryotes lack the machinery
found in Golgi responsible for sequential sulfation (150).
Thus, metabolic engineering of prokaryotes would not only
require the introduction of new enzymes but would also
require a strategy for compartmentalizing the enzymes to
achieve a sequential synthetic pathway. On-the-other-hand,
chemoenzymatic methods are being tested to produce heparin
in the laboratory from heparosan, the capsular polysaccharide
of E. coli K5 (151–154). Heparosan is first chemically converted
to N-sulfoheparosan and then is modified in a three step
enzymatic process to obtain anticoagulant heparin (155). Small
quantities of material, closely resembling animal sourced heparin
have been demonstrated (156) but scale up remains a major
challenge. Multistep enzymatic synthesis is already an expensive
proposition for manufacturing and in addition, substantial
quantities of E. coli expressed enzymes are required. Initial
attempts to scale up to E. coli production of two critical enzymes
in fed-batch stirred tank fermenters was unsuccessful, resulting
in low levels or inactive enzymes (155).

More recently chemoenzymatic synthesis of short
oligosaccharides have shown promise. The dodecasaccharide
(12-mer) 12-mer-1 displays anticoagulant activity similar to
LMWHs, is protamine-reversible and is amenable to multigram-
scale chemoenzymatic synthesis (157). Scale up is still a challenge
as this is a 22-step process and requires the separate expression
of the heparin biosynthetic enzymes. As the authors confirm,
industrial scale synthesis would require substantial optimization
of the enzyme expression and purification methods, but perhaps
there is precedence for this in fondaparinux which is currently
produced at the kilogram scale (158). Fondaparinux production
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involves numerous steps and initial laboratory synthesis was at
the milligram scale (159).

TEGA’s strategy is to engineer CHO cells to produce
recombinant heparin/HS, which enables the entire supply chain
to be under GMP control. With cell sourced HS, we achieve a
high level of structural consistency in size and composition of
the polysaccharide chains. Like the other strategies for producing
recombinant heparin/HS, achieving sufficiently high and cost-
effective production levels will be a challenge. Some of this
may involve bioprocess development and scale-up along with
cell engineering. We hope to accelerate the cell engineering
process by introduction of multiple genes simultaneously and
then using high throughput screening and analysis methods we
have developed.
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