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Abstract: Skin cancer is the most common type of cancer worldwide. Ozone depletion and climate
changes might cause a further increase in the incidence rate in the future. Although the early detection
of skin cancer enables it to be treated successfully, some tumours can evolve and become more
aggressive, especially in the case of melanoma. Therefore, good diagnostic and prognostic markers
are needed to ensure correct detection and treatment. Transcription factor p63, a member of the
p53 family of proteins, plays an essential role in the development of stratified epithelia such as skin.
In this paper, we conduct a comprehensive review of p63 expression in different types of skin cancer
and discuss its possible use in the diagnosis and prognosis of cutaneous tumours.
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1. Transcription Factor p63: Gene Structure and Function in Normal Skin and Skin Cancer

p63, like its sibling p73 [1], belongs to the p53 family of transcription factors [2]. Phylogenetic
analysis classifies p63 as the most ancient member of the family, followed by p73 and the more
recently evolved p53 [3,4]. In evolutionary terms, family members share conserved gene structure and
show high sequence homology. Notably, the three members present peculiar functional properties,
as indicated, for example, by the phenotypes of the Trp53, Trp63, and Trp73 knockout mice [5–7].
Among these, p63 regulates different cellular responses that primarily affect epithelial biology.

1.1. Gene Structure and Isoforms of p63

The TP63 gene gives rise to several protein isoforms resulting from the use of alternative
transcription start sites and alternative C-terminus splicing events. Indeed, the TP63 gene harbours
two different promoters that generate two N-terminal isoforms (TAp63 and ∆Np63) (Figure 1a).
The TAp63 isoforms present an N-terminus transactivation domain (TA), which is responsible for
its transcription activity, while the ∆Np63 isoforms lack this domain and may act as repressors, also
exhibiting a dominant-negative effect towards p53 and TAp63/TAp73 [8]. Importantly, ∆Np63 harbours
an additional short TA domain, which can positively affect the transcription of specific genes [9].
Through alternative splicing, p63 mRNA generates at least three C-terminal isoforms: p63α, p63β, and
p63γ [10], for both the TAp63 and ∆Np63 isoforms. However, unlike p53, the p63α variant presents
a protein–protein interaction domain of unknown function, the sterile alpha motif (SAM) [4,11,12],
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and the transactivation inhibitory domain (TID), which is involved in transcriptional inhibition of the
TAp63 isoform [13–15] (Figure 1a).
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Figure 1. p63 function in normal skin. (a) Two different promoters on the TP63 gene can give rise
to TAp63 and ∆Np63 isoforms. These can be further spliced at the C-terminus, producing α, β, or γ
isoforms. ∆Np63α is the most abundant isoform in normal skin as well as in skin tumours. p63 protein
harbours TA (transcription activation), PR (proline-rich), DBD (DNA-binding), OD (oligomerisation),
SAM (sterile α-motif), and TID (transcriptional inhibitory) domains. (b) p63 is expressed in most
cells of the basal and suprabasal layers of the epidermis but its expression is decreased in the upper
spinous layer and absent in the granular and cornified layers of epidermis. p63 intensively marks
basal cells of the sebaceous and sweat glands, yet it is not present in mature sebocytes as well as the
ductal cells of sweat glands. The cells of the hair matrix, hair bulge stem cells, and outer root sheath
show high expression of p63. By contrast, well differentiated cells of the inner root sheath and hair
shaft lack p63. Melanocytes and cells of mesenchymal origin, fibroblasts and endothelial cells (not
shown), are p63 negative. No data are available regarding p63 expression in Langerhans and Merkel
cells (shown as negative); (c) In basal layer keratinocytes, p63 plays a crucial role in the maintenance of
cell proliferation as well as adhesion. Through direct binding to the promoters of target genes, p63
can repress (upper panel) or activate (lower panel) gene expression; (d) During the early stages of
keratinocyte differentiation, p63 activates expression of the master regulator of epithelial differentiation,
ZNF750, and chromatin remodelers, Brg1 and Satb1. Furthermore, p63 co-operates with chromatin
remodeler complex SWI/SNF and binds to epithelial-specific enhancers to allow for the transcriptional
activation of a terminal differentiation programme (e.g., ZNF185).
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1.2. p63 Expression in Normal Skin

The ∆Np63 isoform is mainly expressed in ectoderm-derived tissues, such as the epidermis, skin
appendages, simple epithelia, and the thymus [4,16–19]. The striking developmental abnormalities
found in ∆Np63 genetic-complemented mice [19] and in ∆Np63-null mice [20], demonstrate the
indispensable role of the ∆Np63 isoform in epithelial biology. Figure 1b summarises the expression of
p63 in normal skin (p63 positive cells are highlighted in green). p63 is expressed in virtually all cells
of the basal layer of the epidermis, and the level of its expression decreases towards the outermost
terminally differentiated granular and cornified layers. It is detected in all basal germinative cells of the
sebaceous gland as well as some sebocytes; however, it is absent in mature excreting cells. In eccrine
and apocrine sweat glands, p63 is diffusely expressed in myoepithelial cells but is not present in cells
facing the lumen of the ducts. In the hair follicle, p63 can be readily detected in the keratinocytes of the
outer root sheath of the hair, stem cells of the hair bulge, and the transit-amplifying cells of the matrix
in the bulb of the follicle [21,22]. However, p63 is not expressed in the hair papilla nor in the cells of
the inner root sheath. By contrast, neuronal cells and cells of a mesodermal nature, such as the smooth
muscle of arrector pili (Figure 1b), dermal fibroblasts, endothelial cells, and adipocytes (not shown in
Figure 1b) are p63 negative [23–25].

Remarkably, no direct evidence has been provided using immunohistochemistry for p63 expression
in Langerhans cells and melanocytes. However, p63 was found to be absent in normal melanocytes
by polymerase chain reaction (PCR) [26]. This observation was supported by RNA-sequencing
performed in melanocytes [27]. Furthermore, no data are available to support p63 expression in the
mechanosensory Merkel cells of the touch dome in human skin, even though high levels of p63 have
been found in feline Merkel cells [28].

In summary, p63 appears to be expressed in stem cells and highly-proliferating transit-amplifying
cells of ectodermal origin. However, it is present at low levels or absent in differentiating cells as well
as cells of mesenchymal origin.

1.3. Transcription Regulation of Skin Development by p63

As a transcription factor, p63 can activate or repress expression of its target genes through direct
binding to their promoter regions (Figure 1c). For instance, in basal keratinocytes, p63 is believed
to repress the expression of CDKN1A [29], a gene codifying for cyclin-dependent kinase inhibitor 1
(p21), and HES1 [30], one of the members of the Notch pathway, thus supporting proliferation of
transit-amplifying cells and inhibiting their differentiation. By contrast, p63 positively regulates the
expression of a plethora of structural proteins to ensure proper cell–cell and cell–matrix adhesion.
Among the bona fide p63 target genes are components of hemidesmosomes such as BPAG1 [31]
and PERP [32]; integrin-coding genes ITGA6 and ITGB4 [33]; the P-cadherin-coding gene CDH3, a
component of adherens junctions [34]; FRAS1 codifying for an extracellular protein [35]; and KRT14, a
component of keratin intermediate filaments [19]. Furthermore, p63 has been shown to attenuate the
metabolism of keratinocytes [36] by directly activating hexokinase II [37] and cytoglobin [38]. Different
chromatin remodelers such as HDAC1/2 [39,40] and KMT2D [41] cooperate with p63 to determine its
transcriptional activity.

Conversely, p63 is closely involved in the process of keratinocyte differentiation in both early
and late stages. ZNF750 is one of the earliest transcription factors activated during differentiation by
p63 [42]. It induces and later interacts with KLF4 to allow terminal differentiation of keratinocytes [43].
Among the other p63 regulated genes are chromatin remodelers SATB1 [44] and SMARCA4 (codifying
for Brg1) [45]. Their activity is of pivotal importance in establishing a proper genomic 3D structure
and accessibility of the epidermal differentiation complex of genes on chromosome one.

Recent investigations have unveiled the existence of pre-established epithelia-specific enhancers
in undifferentiated keratinocytes. These might interact with the promoter regions of target genes to
allow their transcription during differentiation [46]. Notably, p63 was found to cooperate with the
Brg1/Brm subunit of the switch/sucrose nonfermenting (SWI/SNF) chromatin remodelling complex
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on epidermal enhancers [47]. Indeed, it is suggested that p63 bookmarks multiple enhancers already
present in proliferating keratinocytes. Many of these loci overlap with active chromatin marks such
as H3K27ac. This is the case even if p63 alone cannot induce expression of these genes and needs
partners to allow the transcription [48]. One example of this type of network is a component of
adherens junctions, ZNF185, whose expression is regulated by p63 during differentiation. Binding to an
epithelia-specific enhancer already present in undifferentiated cells, p63 is essential for the maintenance
of the enhancer–promoter interaction in order to allow ZNF185 transcription in the suprabasal layers
of the epidermis [49].

Altogether, p63 is well the established master regulator of epidermal homeostasis and
differentiation. Its transcriptional network is an example of an extremely complex spatiotemporal
system of positive and negative regulation, which allows for the proper development, self-renewal,
and differentiation of the skin. p63 both impedes and triggers keratinocyte differentiation depending
on the epithelial compartment, proliferative state, and the network of interacting proteins.

1.4. Transcription Regulation of Skin Cancer Mediated by p63

Although mechanistic aspects of p63 function in the cutaneous basal cell carcinoma (cBCC) and
rare skin tumours remain poorly investigated, the role of p63 in tumourigenesis has been intensively
studied in squamous cell carcinoma (SCC). A transcriptional programme of p63 in cutaneous SCC
is similar to SCC from other epithelial origins such as the head and neck (see recent reviews [50,51]).
In the next section, we will highlight specific pathways with a focus on understanding tumourigenic
activities of p63 conducted exclusively in the context of cutaneous SCC (cSCC).

The oncogenic properties of ∆Np63 were established in in vivo experiments that showed
overexpression of ∆Np63 enhances mutant Ras-driven tumourigenesis of undifferentiated cSCC [52].
Indeed, p63 contributes to cancer development, preventing oncogene-induced senescence of
keratinocytes by activating the expression of the chromatin remodeler LSH [53]. A well-known
inhibitor of p53, iASPP, was shown to regulate p63 expression via repression of miR-574 and miR-720
in the normal epidermis [54]. This pathway is epigenetically dysregulated in cSCC, leading to high
levels of p63 expression and induction of epithelial-to-mesenchymal transition [55]. However, the
nuclear localisation of p63 appears to be an important issue in its oncogenic transcriptional activity.
Indeed, Rho-dependent phosphorylation of NUP62 leads to nuclear translocation of p63 and permits
its oncogenic activity [56]. Furthermore, p63 can attenuate the function of other members of the
p53 family. For instance, p63 represses p73-mediated apoptosis in cSCC [57]. It can also co-operate
with mutant p53 in tumour cells to induce the expression of KLF4 and therefore enhance tumour
growth [58]. Although the role of p63 in tumour initiation is well established, Bornachea and colleagues
reported that, in more advanced tumours, p63 represses the epithelial–mesenchymal transition, thus
inhibiting the development of metastases [59]. Overall, these studies indicate that p63 is a multifaceted
transcription factor; the ∆Np63 isoform acts as a potent oncogene that exerts its pro-tumourigenic effects
by regulating specific transcriptional programmes to sustain malignant cell proliferation and survival.

2. Expression Pattern of p63 in Skin Cancer

Skin cancer is the leading type of cancer worldwide with up to 3 million new cases every year.
The most common risk factor for the development of skin cancer is ultraviolet (UV) exposure to the sun.
This provokes multiple cytosine-to-thymine transitions that result in DNA mutations [60]. However,
in some cases, skin cancer can arise due to other causes such as human papilloma virus infection or
chronic arsenic exposure [61]. If detected early and treated appropriately, skin cancer can, in most
cases, be cured. However, more aggressive tumours might metastasise and cause death. Therefore,
good diagnostic and prognostic markers are needed to ensure the correct diagnosis has been made and
the appropriate treatment has been chosen. Herein, we therefore summarise our existing knowledge of
p63 expression in different types of skin cancer. A scheme representing the morphological issues of
p63 positive tumours as well as a list of p63 negative tumours is presented in Figure 2.
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Figure 2. p63 expression in skin cancer. p63 positively marks both benign precancerous lesions
(seborrheic-, actinic-, and porokeratoses, keratoacanthoma, Bowen’s disease, and Bowenoid papulosis)
and malignant tumours of the skin (basal cell carcinoma, squamous cell carcinoma, spindle cell
squamous cell carcinoma (SCC), adenosquamous carcinoma, and SCC with single cell infiltration).
Multiple adnexal neoplasms of both a benign and malignant character stain intensively for p63.
Merkel cell carcinoma shows positive p63 expression in less than 50% of cases; indeed, its expression is
correlated with poor prognosis of Merkel cell carcinoma (MCC). By contrast, neural tissue, mesenchymal
tissue tumours, cutaneous lymphomas and histiocytosis, Paget’s disease, and atypical fibroxanthoma
lack p63 in most cases. Metastatic carcinoma to skin stains positively for p63 in only 15% of cases.
Melanocytic naevi as well as malignant melanoma are virtually all p63 negative, with the exception of
one report [26].

2.1. p63 Expression in Non-Melanoma Skin Cancer

Cutaneous basal cell carcinoma (cBCC) is the most common type of cancer worldwide with almost
750,000 cases detected every year in the USA. cBCC accounts for up to 80% of all non-melanoma skin
tumours. Basal cell carcinomas are slowly growing and rarely metastasise. Among the most frequently
mutated genes are TP53 and PTCH1. However, cBCC genomes are considered genetically stable
compared to those from aggressive types of cancer [62]. Recent reports have indicated that cBCC might
arise from stem cells of the hair follicle and touch dome [63]. Multiple studies have demonstrated high
expression of p63 in cBCC [23]. Moreover, p63 has been detected in all tumour cells [24,25,64–68].

The second most frequent type of skin cancer after cBCC is cutaneous squamous cell carcinoma.
With a diagnosis rate of 15–30 per 100,000 people, cSCC accounts for 20% of all skin cancer cases.
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Notwithstanding a lower frequency with respect to cBCC, cSCC is characterised by a higher incidence
of metastases and poorer prognoses [69]. RAS and TP53 are frequently mutated in cSCC. In contrast
to cBCC, cSCC can originate from hair follicle bulge stem cells as well as interfollicular epidermal
stem cells [70]. p63 is highly expressed in all cSCC [24,25,64,65,67,68,71]. However, unlike cBCC, p63
exhibits a diffuse pattern of expression in cSCC [72] with higher expression on the periphery of the
tumour gradually reducing towards the well-differentiated centre [64].

A rare variant of cSCC is cutaneous spindle cell squamous cell carcinoma (cSCSCC).
The epidemiology of cSCSCC is associated with sun- or radiation-exposure of the skin. Radiation
exposure is thought to be correlated with more aggressive phenotypes of the disease. Histologically,
cSCSCC is characterised by bizarre and pleomorphic tumour cells that infiltrate deep into the dermis [73].
Several studies have shown that p63 is diffusely expressed in cSCSCC in 70%–100% of cases [74–77].
Remarkably, two single reports have highlighted the possible utility of p63 in detecting the squamous
component in adenosquamous carcinoma of the skin as well as in rare forms of squamous cell carcinoma
with single cell infiltration. Indeed, in both cases, the tumours were p63 positive [78,79].

Although several cutaneous lesions are of a benign nature, they can be precursors of skin tumours
such as cSCC. The most frequent benign tumour of the skin is seborrheic keratosis (SK), which
primarily affects people over the age of 50 and has low malignant potential [80]. Another relatively
common benign tumour is keratoacanthoma (KA), which arises from the cells of hair follicles [81].
Notwithstanding their benign nature, these pathological conditions show an increased level of p63
positive basaloid cells relative to non-affected skin [64,67,68,72]. Another rare precancerous condition
of the skin, generally found in young people, is porokeratosis (PK). It is believed that PK originates
from abnormal keratinocytes due to an aberrant programme of terminal differentiation; however, a
genetic predisposition has also been demonstrated. PK is mainly benign, although in rare cases it
can evolve into skin cancer [82]. In PK, p63 stains positive all cell layers with higher intensity in
basaloid cells [65]. Actinic or solar keratosis (AK) is a precancerous condition of the skin with a higher
risk of malignant transformation relative to other benign lesions that, if not treated, can evolve into
cSCC. In fact, AK is now considered an early form of cSCC in situ [83]. Several research groups have
demonstrated high expression of p63 in the basaloid part of skin regions affected by AK [65,68,71,72],
although the percentage of p63 positive cells was lower than that of SCC [72]. Bowen’s disease (BD) is
cSCC in situ that in 3%–5% of cases leads to invasive and metastatic cSCC [84]. Like other precancerous
conditions, BD is characterised by high expression of p63 [64,65,67,68,72]. A very rare form of cSCC in
situ is Bowenoid papulosis (BP). This is an uncommon sexually transmitted disease believed to be
caused by viruses such as the human papilloma virus [85]. However, it is important to note that p63
positive staining was only found in 9 out of 15 cases [71].

Takeuchi and colleagues performed a comprehensive analysis of p63 expression in several skin
tumours of different origins, including very rare cases. As expected, p63 was found to be positive
in epidermal tumours as well as most adnexal neoplasms (as will be discussed in the next section).
In contrast, in all neural tissue tumours, mesenchymal tumours, lymphomas, and histiocytosis, p63
expression was found to be negative [64,86]. Remarkably, extramammary Paget’s disease, a slowly
growing rare intraepithelial adenocarcinoma of unknown origin [87], also tested negative for p63 [64,68].
These findings confirm a strong positive correlation between p63 expression and the epidermal origin
of neoplastic cells.

2.2. p63 Expression in Melanoma

Although malignant melanoma (MM) is less frequent than cBCC or cSCC, it is among the deadliest
forms of skin cancer, leading to 50,000 deaths every year [88]. MM arises from mature melanocytes
from both chronically sun-exposed and non-chronically sun-exposed regions of skin [89].

No consensus has been reached regarding the pattern of p63 expression in melanoma. Multiple
lines of evidence suggest that p63 is virtually never expressed in MM samples (positive in 5 out of 131
samples [64,68,77,90–92]) and benign melanocytic naevi [64]. However, Matin and colleagues reported
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up to 60% of p63 positive specimens (63/121) of melanoma [26]. Furthermore, unexpected evidence
recently emerged of a high incidence of mutation in the TP63 gene in melanoma samples (14.7% of
samples) [93]. In contrast to the cancer, mutations within the TP63 gene are common in epidermal
dysplasia [94]. Therefore, the possible impact of TP63 mutation of melanomagenesis remains elusive.

3. Diagnostic and Prognostic Value of p63 in Skin Cancer

p63 is used as a gold standard marker for highlighting myoepithelial cells in multiple types of
cancer [95–97]. In the following section, we discuss the utility of p63 for the diagnosis of different skin
tumours and also for prognosis prediction in Merkel cell carcinoma.

3.1. p63 in the Diagnosis of Metastases in Skin

Cutaneous adnexal neoplasms (CANs) are a wide group of benign and malignant skin tumours
that normally exhibit differentiation towards one of the cutaneous appendages: hair follicle, sebaceous
gland, eccrine, or apocrine glands. Even though the precise origin of these neoplasms remains
unknown, it has been hypothesised that CANs might arise from stem cells located within normal
cutaneous adnexa [98]. CANs are mainly found in patients aged between 20 and 50 years and most
have a benign character [99]. Diagnosis of CANs can be facilitated by histological examination of the
morphology of differentiated cells. However, in more complicated cases, specific markers are needed
to ensure the correct diagnosis of CANs [100]. As mentioned previously, p63 is expressed in the basal
cells of cutaneous appendages in normal skin, therefore, high expression can be expected in adnexal
tumours. Indeed, multiple studies have confirmed the presence of p63 in these tumours and proposed
the utility of p63 for distinguishing CANs from metastatic carcinoma to skin. Qureshi and colleagues
demonstrated strong expression of p63 in cylindroma, poroma, hidradenoma papilliferum, nodular
hidradenoma, hidradenocarcinoma, adenoid cystic carcinoma, sebaceous carcinoma, porocarcinoma,
digital papillary adenocarcinoma, and syringomatous carcinoma. By contrast, 92% of metastatic
carcinoma samples of different origins were found to be negative for p63, except for metastasis of
oesophageal and urothelial carcinoma [101]. The same group later reported that p63 can be useful in
recognising primary cutaneous mucinous carcinoma from those that metastasise to other tissues by
highlighting p63 and CK5/6 positive myoepithelial cells (Figure 3a) [102]. Other reports have confirmed
high p63 expression not only in primary cutaneous adnexal carcinoma but also in their cognate
metastases (eccrine, apocrine, pilomatrical, sebaceous, and hidradenocarcinoma). Moreover, in the
same study, 20 out of 20 metastases analysed in skin from other tissues tested negative for p63 [103,104].
Recent reports have strongly supported previous observations demonstrating high specificity (100%)
and sensitivity (58%) in distinguishing CANs from metastasis of breast cancer to skin [105]. Another
challenge for pathologists can be well-differentiated neuroendocrine tumours (WDNT) that originate
in the stomach or lungs and can metastasise to skin. A total of 10 out of 10 samples of WDNT tested
negative for p63, which can be useful in distinguishing them from CANs [106].

3.2. p63 in the Diagnosis of Atypical Fibroxanthoma

Atypical fibroxanthoma (AFX) is a rare benign tumour with a favourable prognosis that mainly
occurs in sun-exposed skin on the head and neck regions of elderly patients, predominantly men. AFX is
believed to be of fibroblastic origin and is characterised by myofibroblastic differentiation. The diagnosis
of AFX is difficult and is performed by excluding other malignancies such as cSCSCC [107,108].

p63 was found to be negative in 188 out of 199 samples. Notably, in several reports the expression
of p63 in AFX samples was assessed in parallel with its expression in cSCSCC. Indeed, 110 out of 130
cSCSCC samples stained positively for p63 [74–77,86,109–112]. Thus, in addition to the classical panel
of cytokeratins, p63 is suggested for use in excluding cSCSCC in AFX diagnosis (Figure 3b).
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3.3. p63 in the Prognosis of Merkel Cell Carcinoma

Merkel cell carcinoma (MCC) displays neuroendocrine features and is a rare but aggressive type of
skin cancer. It mainly affects elderly patients (>75 years old) and can be caused by chronic UV exposure
or Merkel cell polyomavirus. The origin of MCC remains elusive; however, it is speculated that this
kind of cancer may arise from Merkel cell precursors as well as pre-B cells or fibroblasts, rather than
mature post-mitotic Merkel cells. MCC is characterised by a high risk of metastases and death [113].
Due to the rare character of MCC, initial investigations based on small samples showed negative
staining for p63 in MCC; indeed, p63 was proposed as a differential marker for distinguishing MCC
from other epithelial types of cancer [64,67]. However, Asioli and colleagues published a striking report
in 2007 demonstrating that more than 50% of MCC samples stained positively for p63. Furthermore,
p63 expression was correlated with a poorer prognosis [114]. This finding was supported further by
the same group [115] as well as by others (Figure 3c) [116–118]. Notwithstanding this clear correlation
between p63 status and survival, Lim et al. reported that only 5 out of 103 samples positively stained
for p63 [119]. Another group later found similar results [120]. One possible explanation for this may
be the geographical factor: Higher percentages of p63 positive cases (up to 50%) were reported by
American, Canadian, and European groups, and lower percentages of cases (5%–17%) by Australian
groups. Therefore, the clinical utility of p63 as a prognostic marker remains uncertain. Nevertheless,
the unusual differential pattern of p63 positivity raises many questions about the role of p63 role
in MCC tumourigenesis. For instance, Asioli and colleagues detected TAp63, ∆Np63, as well as β

isoforms by PCR in MCC tumours. It is speculated that p63 may be expressed in a portion of tumour
cells, triggering the switch towards stemness and thus rendering the tumour more aggressive [115].
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Figure 3. Diagnostic and prognostic value of p63 in skin cancer. p63 can be used in diagnostics to
distinguish adnexal tumours from metastases to skin (a) as well as spindle cell squamous cell carcinoma
from atypical fibroxanthoma (b); (c) In Merkel cell carcinoma, p63 expression is correlated with poor
prognosis. The Kaplan–Meier plot shows the MCC-specific survival of patients with p63-positive and
p63-negative tumours (modified from [117]); (d) 4A4 antibody is a pan-p63 antibody that recognises
the DNA-binding domain of all isoforms of p63. By contrast, the p40 antibody recognises a specific
portion of the N-terminus of ∆Np63 isoforms; (e) p40 is superior to pan-p63 4A4 in the diagnosis of
atypical fibroxanthoma (modified from [111]).
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3.4. p40 as an Alternative to the Pan-p63 Antibody

Since the discovery of p63 [4], researchers have been interested in understanding the role and
patterns of expression of multiple isoforms of p63 in normal tissues as well as in cancer. Indeed, as
early as 2001, Senoo and colleagues investigated by PCR the expression of different isoforms of p63
in SCC and concluded that ∆p73L, now known as ∆Np63α, is the most abundant isoform of p63 in
squamous cell carcinoma of the skin [121]. Two years later, Geddert and colleagues used a ∆Np63
specific antibody (p40) for the analysis of oesophageal SCC, which indeed recapitulated the staining
using the pan-p63 antibody 4A4 [122]. The position of epitopes recognised by pan-p63 and p40 is
shown in Figure 3d. However, it was only in the 2010s that the p40 antibody was re-introduced into
diagnostics as a more precise molecular marker for squamous carcinoma. Bishop and colleagues
reported an equal sensitivity of p40 with respect to pan-p63 in lung SCC, but higher specificity in lung
adenocarcinomas and large cell lymphomas [123].

The reason for the discrepancy between 4A4 and p40 staining patterns remains unclear. One
possible explanation might be that tumour cells express not only ∆N but also TA isoforms of p63 that
are recognised by 4A4 but not p40. Another, more plausible, hypothesis is that different staining results
are due to the non-specific binding of 4A4 to other members of the p53 family or even other proteins.
Indeed, it has been shown that the 4A4 antibody can readily recognise p73 isoforms in vitro [124].

Several reports have also confirmed the utility of p40 in the diagnosis of skin tumours. Lee et al.
demonstrated higher specificity of p40 with respect to pan-p63 (92% vs. 83%, respectively) in
distinguishing adnexal carcinoma from metastases in skin [125]. As described previously, atypical
fibroxanthoma can be a challenge for diagnosis. Notably, Henderson and colleagues reported the
usefulness of p40 in distinguishing AFX from cSCSCC: 8 out of 27 cases of AFX were variably positive
for pan-p63 whereas none were positive for p40, rendering p40 superior to pan-p63 in AFX diagnosis
(Figure 3e) [111]. These findings were further supported by another study [112]. Ha Lan and colleagues
debated the superior quality of p40; while p40 and pan-p63 antibodies gave similar results for AFX
and desmoplastic melanoma, pan-p63 showed higher sensitivity in the detection of cSCSCC relative
to p40 (81% vs. 56%, respectively) [86]. Notwithstanding this discrepancy, other recent studies have
suggested using p40 in the diagnosis of skin cancer [126,127] and as a gold standard for other tumours
as non-small cell lung cancer [128]. In line with increased evidence for the usefulness of p40, a
monoclonal MMp40 antibody against ∆Np63 (clone BC28) was produced and is currently commercially
available for diagnostics (Roche, Cat No. 790-4950). The high specificity and sensitivity of MMp40
BC28 was confirmed in multiple types of cancer such as lung, prostate, breast, and skin cancer [129].

4. Concluding Remarks

Forty years ago, the master tumour suppressor p53 was discovered, heralding a new era of
understanding regarding the ubiquitous molecular mechanisms of cellular defence against cancer
initiation and progression (Figure 4). Almost two decades later, p73 and p63 were described as close
homologues of p53. Further investigation led by the research group of Frank McKeon unveiled the
essential role of p63 in epithelial development and homeostasis. Multiple lines of evidence supported
the existence of the N-truncated isoform, ∆Np63, predominantly expressed in stratified epithelia.

Recent studies carried out with primary keratinocytes have elucidated a very complex and
thorough transcriptional programme governed by p63. Via interaction with chromatin remodelers,
p63 enables the establishment of a well-organised three-dimensional genomic architecture to ensure
the proper development of the skin as well as its homeostasis. Not surprisingly, in skin cancer, p63
pathways can be altered, disrupting the balance between proliferation and differentiation.

The paramount importance of p63 in epithelia development encouraged researchers and
pathologists to explore its expression in epithelial cancer. Multiple groups in the early 2000s carried
out an extremely comprehensive study of different types of skin cancer using immunohistochemistry,
providing strong evidence for high expression of p63 in virtually all types of non-melanoma skin cancer,
including pre-cancerous lesions as well as rare forms of squamous cell carcinoma. By contrast, several
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skin-related tumours of non-epithelial origin such as atypical fibroxanthoma, along with diverse
metastases to skin from other organs, are in most cases p63 negative.
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Smirnov et al.  Figure 4 Timeline of important discoveries in studying of p63 in skin cancer   

Figure 4. Timeline of important discoveries in the study of p63 in skin cancer. Since the discovery of
p63 in 1998, significant progress has been achieved in understanding its role in normal epithelia as well
as in cancer. In the early 2000s, multiple lines of evidence demonstrated its possible use as a diagnostic
marker in excluding cutaneous spindle cell SCC (cSCSCC) and adnexal neoplasms during the diagnosis
of atypical fibroxanthoma and metastases to skin, respectively. Development of the ∆Np63-specific
antibody, p40 (ab), improved the specificity of diagnosis. Moreover, p63 expression is associated with a
poorer prognosis in Merkel cell carcinoma, rendering it a new predictive marker of MCC.

Even though no decision has been made regarding the use of p63 as a gold standard in skin cancer,
multiple reports have proposed its utility in differential diagnosis. Furthermore, p63 has emerged as a
putative marker for outcomes in Merkel cell carcinoma, where high p63 expression is associated with a
poorer prognosis. Based on the pre-clinical studies, summarised in this review, we can speculate that
p63 might be an important and targetable molecule, although no clinical trials have been reported that
address how the level of p63 expression could modify current therapies. Nevertheless, a growing body
of evidence suggests that p63 could be a promising diagnostic and predictive marker for unusual cases
of skin cancer.
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BD Bowen’s disease
BP Bowenoid papulosis
CANs cutaneous adnexal neoplasms
cBCC cutaneous basal cell carcinoma
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