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We present a fully convolutional neural network (ConvNet), named RatLesNetv2, for

segmenting lesions in rodent magnetic resonance (MR) brain images. RatLesNetv2

architecture resembles an autoencoder and it incorporates residual blocks that facilitate

its optimization. RatLesNetv2 is trained end to end on three-dimensional images and

it requires no preprocessing. We evaluated RatLesNetv2 on an exceptionally large

dataset composed of 916 T2-weighted rat brain MRI scans of 671 rats at nine different

lesion stages that were used to study focal cerebral ischemia for drug development.

In addition, we compared its performance with three other ConvNets specifically

designed for medical image segmentation. RatLesNetv2 obtained similar to higher Dice

coefficient values than the other ConvNets and it produced much more realistic and

compact segmentations with notably fewer holes and lower Hausdorff distance. The

Dice scores of RatLesNetv2 segmentations also exceeded inter-rater agreement of

manual segmentations. In conclusion, RatLesNetv2 could be used for automated lesion

segmentation, reducing human workload and improving reproducibility. RatLesNetv2 is

publicly available at https://github.com/jmlipman/RatLesNetv2.

Keywords: ischemic stroke, lesion segmentation, deep learning, rat brain, magnetic resonance imaging

1. INTRODUCTION

Rodents frequently serve as models for human brain diseases. They account for more than 80%
of the animals used in research in recent years (Dutta and Sengupta, 2016). In addition to basic
research, rodent models are important in, for example, drug discovery and the development of new
treatments. In vivo imaging of rodents is used for monitoring disease progression and therapeutic
response in longitudinal studies. In particular, magnetic resonance imaging (MRI) is essential in
pre-clinical studies for conducting quantitative analyses due to its non-invasiveness and versatility.
As an example, the quantification of brain lesions requires segmenting the lesions, and the lack
of reliable tools to automate rodent brain lesion segmentation forces researchers to segment these
images manually.

Manual segmentation can be prohibitively time-consuming as studies involving animals may
acquire hundreds of three-dimensional (3D) images. Furthermore, the difficulty of defining lesion
boundaries leads to moderate inter- and intra-rater agreement; previous studies have reported that
Dice coefficients (Dice, 1945) between annotations made by two humans can be as low as 0.73
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(Valverde et al., 2019) or 0.79 (Mulder et al., 2017a). Moderate
inter-rater agreement is caused by several factors that affect
the segmentation quality, including partial volume effect, image
contrast and annotator’s knowledge and experience. Despite
these liabilities, manual segmentation is the gold standard and
a common practice among researchers who use animal models
(Moraga et al., 2016; De Feo and Giove, 2019).

Semi-automatic methods are a faster alternative to manual
segmentation. However, they fail to overcome the subjectivity
of the manual segmentation, as human interaction is required.
To the best of the authors’ knowledge, there are only two
studies that introduce and evaluate semi-automatic algorithms
for rodent brain lesion segmentation. Wang et al. (2007)
evaluated a combination of thresholding operations commonly
used in the literature to segment lesions on apparent diffusion
coefficient (ADC) maps and T2-weighted images. Choi et al.
(2018) first normalized the intensity values of each image
with respect to the contralateral hemisphere of the brain, and
they performed a series of thresholding operations to segment
permanent middle cerebral artery occlusion ischemic lesions in
31 diffusion-weighted images (DWIs) of the rat brain. Both
methods require the manual segmentation of the contralateral
hemisphere. Additionally, these thresholding-based and other
voxel-wise approaches disregard the spatial and contextual
information of the images, and they are sensitive to the image
modality, contrast, and possible artifacts. Pipelines that rely on
thresholding operations may result in poor and inconsistent
segmentation results in the form of holes within and outside the
lesion mask (Figure 1).

For lesion segmentation in rodent MRI, researchers have
proposed a few fully-automated methods in recent years. Mulder
et al. (2017a) developed a level-set-based algorithm that was
tested on 121 T2-weighted mouse brain scans. However, the
accuracy of their method heavily relies on the performance of
other independent steps, such as registration, skull-stripping and
contralateral ventricle segmentation. Arnaud et al. (2018) derived
a pipeline that detects voxels that are anomalous with respect
to a reference model of healthy animals, and they evaluated the
pipeline on 53 rat brain MRI maps. Nonetheless, this pipeline

FIGURE 1 | (Left) Representative lesion with its ground truth. (Right)

Segmentation of the lesion using thresholding where the threshold was found

by maximizing the Dice coefficient with respect to the manual segmentation.

The arrows indicate the presence of holes and islands (independently

connected components) within and outside the mask, respectively. The

hippocampus and ventricles were entirely misclassified as lesion.

was specifically designed for quantitative MRI, and it expects
sham-operated animals in the data set, a requirement that is not
always feasible.

Deep learning, and more specifically convolutional neural
networks (ConvNets), has become increasingly popular due to
its competitive performance in medical image segmentation.
Literature on brain lesion segmentation in MR images with
ConvNets is dominated by approaches tested on human-
derived data (e.g., Duong et al., 2019; Gabr et al., 2019; Yang
et al., 2019). Despite using ConvNets, typical brain lesion
segmentation approaches are multi-step, i.e., they rely on
preprocessing procedures, such as noise reduction, registration,
skull-stripping and inhomogeneity correction. Therefore, the
performance of the preprocessing steps influences the quality
of the final segmentation. In contrast to human-derived
data, rodent segmentation data sets are scarce and smaller
in size (Mulder et al., 2017b); consequently, ConvNet-based
segmentation methods benchmarked on rodent MR images are
rare. An exception—not in the lesion segmentation—is Roy et al.
(2018)’s work, which introduced a framework to extract brain
tissue (i.e., skull-stripping) on human and mice MRI scans after
traumatic brain injury.

We present RatLesNetv2, the first 3DConvNet for segmenting
rodent brain lesions in pre-clinical MR images. Our fully-
automatic approach is trained end to end, requires no
preprocessing, and it was validated on a large and diverse data
set composed by 916 MRI rat brain scans at nine different lesion
stages from 671 rats utilized to study focal cerebral ischemia. We
extend our earlier conference paper (Valverde et al., 2019) by
(1) improving our previous ConvNet (Valverde et al., 2019) with
a deeper and different architecture and providing an ablation
study (Meyes et al., 2019) justifying certain architectural choices;
(2) evaluating the generalization capability of our model on a
considerably larger and more heterogeneous data set via Dice
coefficient, compactness and Hausdorff distance under different
training settings (training set size and different ground truth);
and (3) making RatLesNetv2 publicly available.

We show that RatLesNetv2 generates more realistic
segmentations than our previous RatLesNet, and than 3D
U-Net (Çiçek et al., 2016) and VoxResNet (Chen et al., 2018a),
two state-of-the-art ConvNets specifically designed for medical
image segmentation. Additionally, the Dice coefficients of the
segmentations derived with RatLesNetv2 exceeded inter-rater
agreement scores.

2. MATERIALS AND METHODS

2.1. Data
The data set consisted of 916 MR T2-weighted brain scans of
671 adult male Wistar rats weighting between 250 and 300
g. The data, provided by Discovery Services site of Charles
River Laboratories,1 were derived from 12 different studies.
Transient (120 min) focal cerebral ischemia was produced by
middle cerebral artery occlusion in the right hemisphere of
the brain (Koizumi et al., 1986). MR data acquisitions were

1https://www.criver.com/products-services/discovery-services
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TABLE 1 | Number of scans per study segregated by lesion stage, including

sham-operated animals.

Study 2 h 24 h D3 D7 D14 D21 D28 D35 Shams

A 12 12 0 0 0 0 0 0 24

B 0 46 0 0 0 0 0 0 3

C 0 59 0 0 0 0 0 0 1

D 0 162 0 0 0 0 0 0 4

E 0 0 0 0 0 0 0 20 1

F 0 33 30 0 30 0 27 0 46

G 0 0 0 53 0 0 0 0 12

H 0 45 0 0 0 0 0 0 0

I 0 0 64 0 0 0 62 0 0

J 0 32 0 0 0 0 0 0 0

K 0 17 0 0 0 0 0 0 0

L 0 0 41 0 0 40 0 0 40

Total 12 406 135 53 30 40 89 20 131

performed at different time-points after the occlusion (for details,
see Table 1). Some studies also had sham-operated animals that
underwent identical surgical procedures, but without the actual
occlusion. All animal experiments were conducted according to
the National Institute of Health (NIH) guidelines for the care and
use of laboratory animals, and approved by the National Animal
Experiment Board, Finland. Multi-slice multi-echo sequence was
used with the following parameters; TR =2.5 s, 12 echo times
(10–120 ms in 10ms steps), and 4 averages in a horizontal
7T magnet. T2-weighted images were calculated as the sum of
the all echoes. Eighteen coronal slices of 1 mm thickness were
acquired using a field-of-view of 30 × 30 mm2 producing 256
× 256 imaging matrices of resolution 117 × 117µm. No MRI
preprocessing steps, such as inhomogeneity correction, artifact
removal, registration or skull stripping, were applied to the T2-
weighted images. Images were zero-centered and their variance
was normalized to one.

The provided lesion segmentations were annotated by several
trained technicians employed by Charles River. We performed
an additional independent manual segmentation of the lesions
on the first study that was acquired (study A, Table 1) to
approximate inter-rater variability. The average Dice coefficient
(Dice, 1945) between the two manual segmentations was 0.67
with a standard deviation of 0.12 on 2 h lesions and 0.79
with a standard deviation of 0.08 on 24 h lesions. The overall
average was 0.73 ± 0.12. Unless stated otherwise, we used our
independent segmentation as the ground truth for study A.

We produced two different train/test set divisions. (1) In the
first one, the training set contained the 48 scans of the study
which was used to approximate inter-rater variability (study A,
Table 1) and the test set contained the remaining 868 images.
The training set was further divided to training (36 images) and
validation sets (12 images). This train/test division is referred
to as “homogeneous” and its train/validation split has the
same ratio 2/24 h time-points and sham/no-sham animals. (2)
The second division also contained 48 training scans and the
test set contained 868 scans, but the training set was different

from the homogeneous division. This division is referred to as
“heterogeneous” because the training set was more diverse. The
training set was divided into training (40 images) and validation
(8 images) set. The training and the validation sets were formed
by 5 and 1 images per lesion time-point, respectively, with no
images from sham-operated animals. The size of our training set
was deliberately much smaller than the test set for two reasons:
(1) to replicate the typical pre-clinical setting in which rodentMR
images are few and (2) to create a large and representative test set.

2.2. Convolutional Neural Networks
Convolutional neural networks (ConvNets) use stacks of
convolutions to transform spatially correlated data, such as
images, to extract their features. The first layers of the
network capture low-level information, such as edges and
corners, and the final layers extract more abstract features. The
number of convolutions adjusts two attributes of ConvNets:
parameter number and network depth. An excessive number of
parameters leads to overfitting—memorizing the training data;
an insufficient number of parameters constrains the learning
capability of the model. Model depth is associated with the
number of times the input data is transformed, and this depth
also adjusts the area that influences the prediction—the receptive
field (RF). Recent approaches reduce model parameters while
maintaining the RF by using more stacked convolutions of
smaller kernel size (Szegedy et al., 2016).

Model architectures based on U-Net (Ronneberger et al.,
2015) are popular in medical image segmentation tasks. In
contrast to patch-based models, the input images and the
generated masks are the same size, which makes U-Nets
computationally more efficient to train and to evaluate. The U-
Net architecture resembles an autoencoder with skip connections
between the same levels of the encoder and decoder. The encoder
transforms and reduces the dimensionality of the input images,
and the decoder recovers the spatial information with the help of
skip connections.

Skip connections also facilitate the gradient flow during back-
propagation (Drozdzal et al., 2016), but they are not sufficient
to prevent the gradient of the loss to vanish, which makes the
network harder to train. This is also referred as the vanishing
gradient problem (He et al., 2016), and it particularly affects the
final layers of the encoder part. Adding residual connections (He
et al., 2016) along the network alleviates the vanishing gradient
problem and it also yields in faster convergence rates during the
optimization (Drozdzal et al., 2016).

2.3. RatLesNetv2 Architecture
RatLesNetv2 (Figure 2) has three downsampling and three
upsampling stages connected via skip connections. Maxpooling
downsamples the data with a window size and strides of 2, and
trilinear interpolation upsamples the feature maps. Bottleneck
layers (Figure 2, green blocks) stack a ReLU activation function, a
batch normalization (BatchNorm) layer (Ioffe and Szegedy, 2015)
and a 3D convolution with kernel size of 1 that combines and
modifies the number of channels of the feature maps from in to
out. ResNetBlock layers (Figure 2, orange blocks) contain two
stacks of ReLU activations, BatchNorm, and 3D convolutions
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FIGURE 2 | RatLesNetv2 network architecture. See the text for the detailed explanation of the blocks.

with kernel size of 3. Similarly to VoxResNet (Chen et al., 2018a),
the input and output of each block is summed in a ResNet-
style (He et al., 2016). The width of the blocks in the decoder
is twice (64) with respect to the encoder part (32) due to the
concatenation of previous layers in the same stage of the network.

At the end of the network, the probabilities z = [z1, z2]
(corresponding to non-lesion and lesion labels) for each voxel are
normalized by the Softmax function

qi = Softmax(z)i =
ezi

∑2
j = 1 e

zj
, (1)

and the segmentation label is argmaxi(qi), i = 1, 2.
RatLesNetv2 architecture differs from our previous RatLesNet

(Valverde et al., 2019) in two aspects. First, RatLesNetv2 has
one additional downsampling and upsampling level, increasing
the receptive field to 76 × 76 × 76 voxels. These extra levels
allows RatLesNetv2 to consider more information from a larger
volume. Second, RatLesNetv2 replaces unpooling (Noh et al.,
2015) and DenseNetBlocks (Huang et al., 2017) with trilinear
upsampling and ResNetBlocks, respectively, reducing memory
usage and execution time. In contrast to VoxResNet (Chen et al.,
2018a), RatLesNetv2 architecture resembles an autoencoder, and
RatLesNetv2 employs no transposed convolutions, reducing the
number of parameters. Additionally, unlike 3D U-Net (Çiçek
et al., 2016), RatLesNetv2 uses residual blocks that reutilize
previous computed feature maps and facilitate the optimization.

2.4. Loss Function
ConvNets’ parameters are optimized by minimizing a loss
function that describes the difference between the predictions
and the ground truth. RatLesNetv2 was optimized with Adam
(Kingma and Ba, 2014) by minimizing cross entropy and Dice
loss functions Ltotal = LBCE + LDice. Cross entropy measures

the error as the difference between distributions. Since our
annotations consist of only two classes (lesion and non-lesion)
we used binary cross entropy

LBCE = − 1

N

N
∑

i = 1

pi · log(qi)+ (1− pi) · log(1− qi), (2)

where pi ∈ {0, 1} represents whether voxel i is lesion in the
ground truth and qi ∈ [0, 1] is the predicted Softmax probability
of lesion class. Dice loss (Milletari et al., 2016) is defined as:

LDice = 1− 2
∑N

i piqi
∑N

i p2i +
∑N

i q2i
. (3)

The rationale behind using Dice loss is to directly maximize the
Dice coefficient, one of the metrics to assess image segmentation
performance. Although the derivative of Dice loss can be unstable
when its denominator is very small, the use of BatchNorm and
skip connections helps during the optimization by smoothing the
loss landscape (Li et al., 2018; Santurkar et al., 2018).

2.5. Post-processing
Since our model optimizes a per-voxel loss function, small
undesirable clusters of voxels may appear disconnected from the
main predicted mask. These spurious clusters may be referred
as “islands” when they are separated from the largest connected
component and “holes” when they are inside the lesion mask.
Figure 1 illustrates these terms.

Small islands and holes can be removed in a final post-
processing operation, yielding more realistic segmentations.
Determining the maximum size of these holes and islands is,
however, challenging in practice: A very small threshold will not
eliminate enough small islands and a too large threshold may
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remove small lesions. In our experiments, we chose a threshold
such that 90% of the holes and islands in the training data were
removed. More specifically, we removed holes and islands of 20
voxels or less, inside and outside the lesion masks.

2.6. Evaluation Metrics
We assessed the performance of each ConvNet by measuring
the Dice coefficient, Hausdorff distance and compactness. In
agreement with the literature (Fenster and Chiu, 2005), we argue
that Dice coefficient alone is not an effective measure in rodent
lesion segmentation, which is why we complemented it with the
two other metrics.

2.6.1. Dice Coefficient
Dice coefficient (Dice, 1945) is one of the most popular metrics in
the field of image segmentation. It measures the overlap volume
between two binary masks, typically the prediction of the model
and the manually-annotated ground truth. Dice coefficient is
formally described as:

Dice(A,B) = 2|A ∩ B|
|A| + |B| , (4)

where A and B are the segmentation masks.

2.6.2. Compactness
Compact lesion masks are realistic and resemble human-made
annotations. Compactness can be defined as the ratio between
surface area (area) and volume of the mask (volume) (Bribiesca,
2008). More specifically, we define compactness as:

Compactness = area1.5/volume, (5)

which has a constant minimum value of 6
√

π for any sphere.
Compactness measure penalizes holes, islands and non-smooth
borders because these increase the surface area with respect to
the volume. Therefore, low compactness values that describe
compact segmentations are desirable.

2.6.3. Hausdorff Distance
Hausdorff distance (HD) (Rote, 1991) is defined as:

d(A,B) = max

{

max
a∈∂A

min
b∈∂B

|b− a|, max
b∈∂B

min
a∈∂A

|a− b|
}

, (6)

where A and B are the segmentation masks, and ∂A and ∂B
are their respective boundary voxels. It measures the maximum
distance of the ground truth surface to the closest voxel of
the prediction, i.e, the largest segmentation error. Measuring
Hausdorff distance in brain lesion segmentation studies is crucial
since misclassifications far from the lesion boundaries are more
severe. The reported Hausdorff distances were in millimeters.

Hausdorff distance and compactness values were calculated
exclusively in animals with lesions. Hausdorff distance values on
slightly imperfect segmentations of sham-operated animals are
excessively large and distort the overall statistics. Additionally,
compactness can not be calculated on empty volumes derived
from scans without lesions. Voxel anisotropy was accounted

for when computing HD and compactness. Finally, we
assessed significance of performance difference through a paired
permutation test with 10,000 random iterations on the post-
processed segmentations with 0.05 as the significance threshold.

2.7. Experimental Setup
2.7.1. Training
RatLesNetv2, 3D U-Net (Çiçek et al., 2016), VoxResNet (Chen
et al., 2018a) and RatLesNet (Valverde et al., 2019) were
optimized with Adam (Kingma and Ba, 2014) (β1 = 0.9,β2 =
0.999, ǫ = 10−8), starting with a learning rate of 10−5 for
700 epochs. A small set of learning rates were tested on
each architecture to ensure that we used the best performing
learning rate in each model. Models were randomly initialized
and trained three times separately, and their performance was
evaluated from the lesion masks derived with majority voting
across these three independent runs. In other words, for each
architecture we ensembled three independently trained models.
We confirmed that this strategy, typical to remove uncorrelated
errors (Dietterich, 2000), improves performance.

2.7.2. Experiments

2.7.2.1. Performance Comparison
We optimized RatLesNetv2, 3D U-Net (Çiçek et al., 2016),
VoxResNet (Chen et al., 2018a) and RatLesNet (Valverde et al.,
2019) on both the homogeneous and heterogeneous data set
divisions (section 2.1) and compared their performance.

2.7.2.2. Ablation Study
We conducted an ablation study (Meyes et al., 2019) in
which we changed or removed certain parts of the model to
comprehend the effects of the characteristics of RatLesNetv2
architecture. More specifically, we modified the interconnections
between layers within each block, changed the number of
downsampling/upsampling blocks, and increased and decreased
the number of filters.

2.7.2.3. Ground Truth Disparity Effect
We trained two separate RatLesNetv2 models on segmentations
annotated by two different operators. This can be seen as an
inter-rater variability study of the same ConvNet with disparate
knowledge. We run RatLesNetv2 three times for each ground
truth on the homogeneous training data, which come exclusively
from the study with the two annotations (Study A, Table 1).
RatLesNetv2 produced six sets of 868 masks ŷg,r where g ∈ {1, 2}
refers to the annotator segmenting the training data and r ∈
{1, 2, 3} refers to the run. First, we approximated the intra-rater
variability of RatLesNetv2 by calculating the Dice coefficients
among the three runs for each ground truth separately, i.e.,
{dice(ŷg,1, ŷg,2), dice(ŷg,2, ŷg,3), dice(ŷg,1, ŷg,3)} for g = 1, 2. This
led to two sets of three Dice coefficients per mask. Second, we
calculated the Dice coefficient of the masks across the different
ground truths {dice(ŷ1,i, ŷ2,j)} for i, j = 1, 2, 3 to approximate
inter-rater similarity, leading to nine Dice coefficients per mask.

2.7.2.4. Training Set Size
We optimized RatLesNetv2 with training sets of different
sizes to understand the relation between training set size and
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generalization capability. The training sets had the same ratio
of time-points, i.e., we enlarged the training sets by 1 sample
per time-point. Since the lowest number of samples across time-
points corresponds to 12 (2 h lesions) and we want to keep at least
1 image per time-point in the test set, we produced 11 training
sets Ti of size |Ti| = 8i for i = 1, . . . , 11, where 8 is the number
of lesion stages.

2.7.3. Implementation
RatLesNetv2 was implemented in Pytorch (Paszke et al., 2019)
and it was run on Ubuntu 16.04 with an Intel XeonW-2125 CPU
@ 4.00 GHz processor, 64 GB of memory and an NVidia GeForce
GTX 1080 Ti with 11 GB of memory. RatLesNetv2 is publicly
available at https://github.com/jmlipman/RatLesNetv2.

3. RESULTS

3.1. Performance of RatLesNetv2
Table 2 lists the quantitative validation results on the test
set excluding sham-operated animals that typically yield Dice
coefficients of 1.0. As can be seen in Table 2, RatLesNetv2
produced similar or better Dice coefficients and Hausdorff
distances, and more compact segmentations than the other
ConvNets. The average Dice coefficients varied from 0.784
(homogeneous division) to 0.813 (heterogeneous division). Dice
coefficients had a large standard deviation regardless of the
architecture (from 0.15 to 0.20). However, note that the sample-
wise difference between the Dice coefficients of RatLesNetv2 and
VoxResNet had a smaller standard deviation of 0.05, i.e., the Dice
values between different networks were correlated. Table 2 shows
that RatLesNetv2 achieved significantly better compactness
values (all p-values < 0.011) than 3D U-Net, VoxResNet and
RatLesNet. Remarkably, 3D U-Net and VoxResNet produced
masks with non-smooth borders and several more holes and
islands, leading to less compact segmentations (see Figure 3

and Figures in the Supplementary Material). The average
compactness values of RatLesNetv2 were higher than the ground
truth (20.98 ± 3.28, p = 0.003); this was expected as human
annotators are likely to produce segmentations with excessively
rounded boundaries.

Post-processing had little to no effect on the average Dice
coefficients, but it enhanced the final segmentation quality
as it removed spurious clusters of voxels. This improvement
was reflected in the reduction of compactness values and the
considerable decrease of Hausdorff distances. Remarkably, the
difference in the Hausdorff distances before and after post-
processing was more pronounced in 3D U-Net, VoxResNet
and RatLesNet.

Table 3 lists the quantitative results by lesion stage to
understand the performance of RatLesNetv2 in detail. Training
RatLesNetv2 on the homogeneous data division, whose training
set included almost twice as many 24 h lesion scans as the
heterogeneous division (9 scans vs. 5 scans), led to a slight
increase in the average Dice coefficient and Hausdorff distance
in 24 h lesion scans. However, there was no significant difference
between either the Dice coefficients (p = 0.057) nor Hausdorff
distances (p = 0.08) of the segmentations derived in the

TABLE 2 | Performance evaluation on the test set before and after

post-processing.

Model Dice (no shams) Compactness HD

RatLesNetv2-post 0.784 ± 0.18*a 29.332 ± 7.86*b 3.522 ± 3.64

RatLesNetv2 0.784 ± 0.18 29.609 ± 8.12 3.687 ± 3.30

3D U-Net-post 0.769 ± 0.20 36.741 ± 11.41 3.665 ± 3.81

3D U-Net 0.768 ± 0.20 37.599 ± 11.77 4.097 ± 3.69

VoxResNet-post 0.757 ± 0.19 37.096 ± 13.00 3.692 ± 3.46

VoxResNet 0.757 ± 0.19 38.161 ± 13.62 4.943 ± 3.38

RatLesNet-post 0.742 ± 0.18 35.045 ± 10.71 3.892 ± 2.54

RatLesNet 0.741 ± 0.18 35.888 ± 10.76 4.679 ± 2.55

RatLesNetv2-post 0.813 ± 0.16 23.105 ± 4.58*c 3.334 ± 3.34

RatLesNetv2 0.813 ± 0.16 23.177 ± 4.64 3.512 ± 3.31

3D U-Net-post 0.813 ± 0.15 28.247 ± 5.92 3.099 ± 2.47

3D U-Net 0.812 ± 0.15 28.639 ± 5.99 3.221 ± 2.47

VoxResNet-post 0.806 ± 0.14 32.937 ± 10.05 3.585 ± 3.27

VoxResNet 0.805 ± 0.14 33.634 ± 10.53 4.535 ± 3.46

RatLesNet-post 0.764 ± 0.15 31.348 ± 9.66 3.218 ± 2.79

RatLesNet 0.764 ± 0.15 31.669 ± 9.86 3.384 ± 2.56

Average Dice coefficients were reported in images of animals with lesions. Top:

Homogeneous division. Bottom: Heterogeneous division. Bold: Values significantly better

than the other architectures (*ap = 0.007,*bp = 0.011,*cp = 0.005).

two cases. Dice coefficients, compactness values and Hausdorff
distances of the segmentations produced after training on the
homogeneous division deteriorated as the time-point was farther
from 2 and 24 h.

Training on the heterogeneous training set notably improved
the average Dice coefficients and compactness values of every
model (Table 2) and every time-point (Table 3) with respect to
homogeneous division, except on 24 h lesions. Furthermore, it
decreased the standard deviation of the Dice coefficients and
compactness values. RatLesNetv2 recognized animals without
lesions notably well even if they were not part of the training
set, providing average Dice coefficients of 1.0 on sham-
operated animals even without post-processing. Additionally,
Dice coefficients on 2 h lesions, 24 h lesions, and overall were
higher than inter-rater agreement.

Ensembling three ConvNets of the same architecture
optimized on the same training set led to significantly better
performance scores in all cases (all p-values < 0.007) as it
discarded small segmentation inconsistencies. This strategy
increased Dice coefficients by an average of 2% and decreased
compactness and Hausdorff distances by an average of 5 and 23%
with respect to the first run. The Dice coefficients, compactness
values and Hausdorff distances from the individual images used
for calculating the reported statistics are also included in the
Supplementary Materials as CSV files.

3.2. Ablation Studies
The performance scores of RatLesNetv2 after modifying its
architecture during the ablation studies are reported in Table 4.
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FIGURE 3 | Comparison of the segmentation masks of four consecutive slices. The depicted T2-weighted image corresponds to a typical scan, i.e., the volume

whose segmentation achieved the median Dice coefficient in the test set (heterogeneous division). Segmentations were not post-processed.

3.2.1. DenseNetBlock
Similarly to RatLesNet (Valverde et al., 2019), DenseNet-
style (Huang et al., 2017) blocks were implemented in
RatLesNetv2 while keeping the same number of parameters
of the baseline RatLesNetv2 model. Dice coefficients and
compactness values were significantly deteriorated with respect
to RatLesNetv2 baseline (all p-values < 0.037), and Hausdorff
distances increased slightly in homogeneous data division,
whereas they decreased in heterogeneous division. Additionally,
DenseNetBlocks demanded notably more memory due to the
concatenation operation.

3.2.2. Halving the Receptive Field (RF)
The third downsampling stage of RatLesNetv2 was eliminated
in order to reduce the receptive field from 72 voxels down to
36. An additional test (marked in Table 4 with an ∗) matched
the number of parameters to the baseline. The reduction of the
receptive field yielded in significant improvements of the Dice
coefficient and a significant deterioration of the compactness
and Hausdorff distance in the heterogeneous division (all p-
values < 0.028). On the other hand, in the homogeneous
division Dice coefficients and compactness values were worse
than RatLesNetv2 baseline.

3.2.3. Network Width
We increased and decreased the number of filters of RatLesNetv2
by 4 (Table 4, Width-28 and Width-36). This modification
decreased the Dice coefficients with respect to RatLesNetv2 and

led to no significant difference in the Hausdorff distances.
Compactness values showed contradictory results; they
deteriorated in homogeneous division whereas they remained
similar or slightly worse in heterogeneous division.

3.3. On the Influence of Disparate Ground
Truths
As expected, optimizing separate RatLesNetv2 models with
segmentations from different annotators produced more
different segmentation masks than when optimizing with
segmentations from the same annotator. In other words, the
three sets of predictions ŷ1,1, ŷ1,2, ŷ1,3 were similar among
themselves in the same manner as ŷ2,1, ŷ2,2, ŷ2,3 (Figure 4B,
Annotation 1 and 2), and their differences arise from the
stochasticity of ConvNets optimization. In contrast, the shape
of the distribution of the Dice coefficients that compare masks
derived from RatLesNetv2 models optimized with different
annotations (Figure 4B, Mixed) was notably different. Also,
Annotation 1 andMixed Dice coefficients as well as Annotation 2
and Mixed Dice coefficients were significantly different (p-values
< 0.002).

In a visual inspection, we observed that Annotation 2 was
more approximate, with simpler contours, than Annotation 1.
Figure 4A (top row) shows the manual segmentations of the scan
with the most disparate annotations and Figure 4A (bottom row)
shows the predictions on a scan with the highest Dice coefficient
on our baseline study when RatLesNetv2 was trained on the
different annotations.
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TABLE 3 | Performance evaluation on the test set after post-processing

segregated by lesion stage.

Time-point (scans) Dice Compactness HD

24 h (394) 0.831 ± 0.15 26.539 ± 4.86 3.691 ± 3.53

D3 (135) 0.782 ± 0.12 29.705 ± 8.01 3.067 ± 2.31

D7 (53) 0.790 ± 0.11 40.742 ± 10.65 2.580 ± 2.63

D14 (30) 0.735 ± 0.21 36.018 ± 11.07 3.329 ± 5.06

D21 (40) 0.800 ± 0.11 33.797 ± 6.50 2.546 ± 0.92

D28 (89) 0.593 ± 0.28 29.598 ± 7.46 4.238 ± 5.22

D35 (20) 0.751 ± 0.23 31.203 ± 4.72 4.831 ± 5.76

Shams (107) 1.000 ± 0.00 — —

2 h (6) 0.719 ± 0.11 23.111 ± 2.27 1.920 ± 0.16

24 h (400) 0.826 ± 0.15 23.218 ± 4.67 3.919 ± 3.79

D3 (129) 0.809 ± 0.10 23.376 ± 5.15 2.796 ± 2.24

D7 (47) 0.860 ± 0.09 23.555 ± 3.99 2.439 ± 2.83

D14 (24) 0.827 ± 0.19 21.705 ± 3.36 3.015 ± 5.69

D21 (34) 0.877 ± 0.10 23.874 ± 2.38 2.002 ± 0.70

D28 (83) 0.692 ± 0.25 22.147 ± 4.65 2.875 ± 1.93

D35 (14) 0.886 ± 0.07 22.037 ± 2.55 1.700 ± 0.67

Shams (131) 1.000 ± 0.00 — —

Top: Homogeneous division. Bottom: Heterogeneous division.

TABLE 4 | Ablation study.

Study Dice (no shams) Compactness HD

Baseline 0.784 ± 0.18 29.332 ± 7.86 3.522 ± 3.64

DenseNetBlock* 0.771 ± 0.20 30.094 ± 8.86 3.692 ± 3.96

Halving RF 0.754 ± 0.20 30.766 ± 10.57 3.340 ± 3.91

Halving RF* 0.765 ± 0.19 31.867 ± 10.41 3.464 ± 3.53

Width-28 0.781 ± 0.18 30.095 ± 8.42 3.423 ± 2.84

Width-36 0.765 ± 0.19 31.620 ± 10.09 3.557 ± 3.73

Baseline 0.813 ± 0.16 23.105 ± 4.58 3.334 ± 3.34

DenseNetBlock* 0.801 ± 0.16 23.313 ± 5.13 3.093 ± 2.70

Halving RF 0.819 ± 0.15 25.226 ± 5.34 3.679 ± 3.12

Halving RF* 0.820 ± 0.15 25.394 ± 5.51 3.719 ± 3.40

Width-28 0.803 ± 0.17 22.861 ± 4.63 2.892 ± 2.94

Width-36 0.801 ± 0.16 24.036 ± 5.04 2.900 ± 2.84

Top: Homogeneous task. Bottom: Heterogeneous task. Bold: baseline significantly better.

Italic: baseline significantly worse (p-values < 0.05). *Equal number of parameters as

Baseline.

3.4. The Impact of the Training Set Size on
the Performance
Figure 5 illustrates the evolution of the Dice coefficients,
compactness values and Hausdorff distances as the training
set increases in size. Dice coefficients (Figure 5, left) were
remarkably different across time-points and almost every time-
point reached a performance plateau with large data sets. Time-
points 24 h and D3—which composed the majority of the test set
scans by 56.7 and 17.8% of the total, respectively—reached their
plateaus later. This effect can be a consequence of the variability
within samples. On the contrary, the time-points with the lowest

number of samples (2 h and D35 lesions with 1 and 9 image,
respectively) exhibited fluctuations.

Compactness values (Figure 5, center) and Hausdorff
distances (Figure 5, right) oscillated considerably regardless
of the time-point. Hausdorff distances were higher in the
time-points with the largest number of samples (24 h and D3),
likely due to the existence of outliers. Compactness values,
including the average (dashed line), increased analogously
to the training set size, i.e., enlarging the training set yielded
less compact segmentations. Yet, these compactness values
were markedly lower than the compactness values derived
from segmentations produced by 3D U-Net, VoxResNet, and
RatLesNet (section 3.1).

4. DISCUSSION

We showed that RatLesNetv2 yielded similar or better Dice
coefficients and Hausdorff distances, and notably more compact
segmentations than other convolutional neural networks (Çiçek
et al., 2016; Chen et al., 2018a; Valverde et al., 2019). These
measurements indicate that the segmentations derived from
RatLesNetv2 were more similar to the ground truth, had less
large segmentation errors and were more realistic. Additionally,
the smaller differences between Hausdorff distances before and
after post-processing derived fromRatLesNetv2 also indicate that
RatLesNetv2 produced fewer segmentation errors far from the
lesion surface.

RatLesNetv2 produced more compact segmentations than
the other ConvNets without directly minimizing compactness
(see Table 2), indicating that RatLesNetv2 architecture favors
segmentations with smooth borders without holes. Although
optimizing compactness (and Hausdorff distance) directly might
further improve the results, incorporating these terms to
the loss function leads to additional hyper-parameters that
require costly tuning. Dice coefficients had large standard
deviations and were lower than in existing human brain
tumor segmentation studies (Jiang et al., 2019; Myronenko
and Hatamizadeh, 2019). These results may arise due to the
subjectivity of the segmentation task caused by low image
contrast in certain lesions and its consequent high inter- and
intra-rater disagreement. However, this is not unexpected as
relatively low Dice coefficients and large standard deviations
are typical in rodent (Mulder et al., 2017a; Valverde et al.,
2019) and human brain lesion segmentation studies (Chen
et al., 2017; Valverde et al., 2017; Subbanna et al., 2019), even
when studying inter-rater disagreement of manual annotations
relying on a semi-automatic segmentation pipeline (Mulder
et al., 2017a). We also argued that Dice coefficient alone is
not sufficient to measure the segmentation performance. To
illustrate the importance of providing additional measurements,
consider a brain with a very large and a very small lesion. If the
segmentation accurately predicts the large lesion and ignores the
small one, Dice coefficients will have a high value not reflecting
the segmentation error, but Hausdorff distance is high capturing
the segmentation error. Likewise, a lesion segmentation mask
with non-smooth surface and several small holes and islands
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FIGURE 4 | (A) (Top row): Scan with the most disparate annotations between operators 1 and 2. (A) (Bottom row): A randomly selected scan of the test set (left),

segmentations of the scan with RatLesNetv2 trained on Annotator 1 ground truth (middle), and Annotator 2 ground truth (right). (B) Kernel density estimation of three

sets of Dice coefficients. Red (dashed line) and blue (solid line) estimations were calculated between the predictions of the model optimized for the same ground truth.

Green (thick solid line) estimation was computed between the predictions whose model was optimized for different ground truths. The predictions generated when the

same model is optimized for different ground truths are notably different.

FIGURE 5 | RatLesNetv2 performance when optimizing for training sets of multiple sizes. Metrics (from left to right: Dice coefficient, compactness and Hausdorff

distance) were processed from the masks derived with the majority voting across three runs on a fixed test set (828 images). Averages (dashed lines) were segregated

by time-point. Compactness graph includes the average compactness of the ground truth (dotted line).

(i.e., a high compactness value) may have a high Dice coefficient
despite being unrealistic.

The difference in the performance between homogeneous and
heterogeneous data set divisions indicates that although few 24 h
lesion volumes were needed to generalize well, adding more 24 h
lesion volumes to the training data (homogeneous division)made
RatLesNetv2 specialize on that time-point (Table 3). On the
other hand, increasing data diversity (heterogeneous division)
improved performance, demonstrating that RatLesNetv2 is
capable of learning from a heterogeneous data set. Thus, training
on this heterogeneous division increased RatLesNetv2 capability
to extrapolate to different-looking ischemic brain lesions.
However, without optimizing on additional data, RatLesNetv2
performance on images with other types of lesions, such as tumor
lesions, is limited by the lesions’ appearance.

The ablation experiments showed that modifications of
RatLesNetv2 architecture yielded similar or worse performance,

justifying RatLesNetv2’s architectural choices. Despite both
residual connections (He et al., 2016) and DenseNetBlocks
(Huang et al., 2017) facilitate gradient propagation (Drozdzal
et al., 2016), residual connections were preferred over
DenseNetBlocks due to their notably higher performance
and lower memory requirements. Additionally, a large receptive
field empirically demonstrated to increase compactness and
reduce large segmentation errors possibly because RatLesNetv2
considers a larger context. The choice of a large receptive field is
in agreement with other state-of-the-art ConvNets that achieve
large receptive fields by stacking several convolutional layers
and/or utilizing dilated convolutions (Chen et al., 2018b).

Our ground-truth disparity experiment confirmed that
predictions generated when the same model is optimized for
different ground truths are different. Consequently, the quality
of the manually-annotated ground truth has a direct impact on
the quality of the lesion masks generated automatically. As there

Frontiers in Neuroscience | www.frontiersin.org 9 December 2020 | Volume 14 | Article 610239

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Valverde et al. RatLesNetv2: Rodent Brain Lesion Segmentation

is no unique definition of “lesion,” it may be advantageous for an
algorithm to perform differently depending on the labels of the
training set. On the other hand, it may also be desirable to design
a robust algorithm that performs consistently regardless of some
changes in the annotations.

The experiment of training RatLesNetv2 on several training
sets of different sizes showed that even with few available training
data RatLesNetv2 can generalize well and, despite increasing
its performance when optimizing on larger training sets, such
improvement is small and compactness values and Hausdorff
distances fluctuate considerably.

5. CONCLUSION

We presented and made publicly available RatLesNetv2, a
3D ConvNet to segment rodent brain lesions. RatLesNetv2
has been evaluated on an exceptionally large and diverse
data set of 916 rat brain MR images, validating RatLesNetv2
reliability on a wide variety of lesion stages with lesions
of different appearance. Additionally, RatLesNetv2 produced
segmentations that exceeded overall inter-rater agreement Dice
coefficients (inter-rater: 0.73 ± 0.12, RatLesNetv2: 0.81 ±
0.16). This enhancement indicates that RatLesNetv2 produces
segmentations that are remarkably more consistent with the
ground truth than the similarity between different human-
made annotations. This consistency is of special importance for
research reproducibility, crucial in preclinical studies.

Based on our experiments and, more specifically, the accuracy
greater than inter-rater agreement and than of other ConvNets,
RatLesNetv2 can be used to automate lesion segmentation in
preclinical MRI studies on rats.
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