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Abstract

Escherichia coli (E. coli) bacteria govern their trajectories by switching between running and tumbling modes as a function of
the nutrient concentration they experienced in the past. At short time one observes a drift of the bacterial population, while
at long time one observes accumulation in high-nutrient regions. Recent work has viewed chemotaxis as a compromise
between drift toward favorable regions and accumulation in favorable regions. A number of earlier studies assume that a
bacterium resets its memory at tumbles – a fact not borne out by experiment – and make use of approximate coarse-
grained descriptions. Here, we revisit the problem of chemotaxis without resorting to any memory resets. We find that
when bacteria respond to the environment in a non-adaptive manner, chemotaxis is generally dominated by diffusion,
whereas when bacteria respond in an adaptive manner, chemotaxis is dominated by a bias in the motion. In the adaptive
case, favorable drift occurs together with favorable accumulation. We derive our results from detailed simulations and a
variety of analytical arguments. In particular, we introduce a new coarse-grained description of chemotaxis as biased
diffusion, and we discuss the way it departs from older coarse-grained descriptions.
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Introduction

The bacterium E. coli moves by switching between two types of

motions, termed ‘run’ and ‘tumble’ [1]. Each results from a

distinct movement of the flagella. During a run, flagella motors

rotate counter-clockwise (when looking at the bacteria from the

back), inducing an almost constant forward velocity of about

20 mm=s, along a near-straight line. In an environment with

uniform nutrient concentration, run durations are distributed

exponentially with a mean value of about tR~1s [2]. When

motors turn clockwise, the bacterium undergoes a tumble, during

which, to a good approximation, it does not translate but instead

changes its direction randomly. In a uniform nutrient-concentra-

tion profile, the tumble duration is also distributed exponentially

but with a much shorter mean value of about tT~0:1s [3].

When the nutrient (or, more generally, chemoattractant)

concentration varies in space, bacteria tend to accumulate in

regions of high concentration (or, equivalently, the bacteria can

also be repelled by chemorepellants and tend to accumulate in low

chemical concentration) [4]. This is achieved through a modula-

tion of the run durations. The biochemical pathway that controls

flagella dynamics is well understood [1,5–7] and the stochastic

‘algorithm’ which governs the behavior of a single motor is

experimentally measured. The latter is routinely used as a model

for the motion of a bacteria with many motors [1,8–11]. This

algorithm represents the motion of the bacterium as a non-

Markovian random walker whose stochastic run durations are

modulated via a memory kernel, shown in Fig. 1. Loosely

speaking, the kernel compares the nutrient concentration experi-

enced in the recent past with that experienced in the more distant

past. If the difference is positive, the run duration is extended; if it

is negative, the run duration is shortened.

In a complex medium bacterial navigation involves further

complications; for example, interactions among the bacteria, and

degradations or other dynamical variations in the chemical

environment. These often give rise to interesting collective

behavior such as pattern formation [12,13]. However, in an

attempt to understand collective behavior, it is imperative to first

have at hand a clear picture of the behavior of a single bacterium

in an inhomogeneous chemical environment. We are concerned

with this narrower question in the present work.

Recent theoretical studies of single-bacterium behavior have

shown that a simple connection between the stochastic algorithm of

motion and the average chemotactic response is far from obvious

[8–11]. In particular, it appeared that favorable chemotactic drift

could not be reconciled with favorable accumulation at long times,

and chemotaxis was viewed as resulting from a compromise

between the two [11]. The optimal nature of this compromise in

bacterial chemotaxis was examined in Ref. [10]. In various

approximations, while the negative part of the response kernel

was key to favorable accumulation in the steady state, it suppressed

the drift velocity. Conversely, the positive part of the response kernel

enhanced the drift velocity but reduced the magnitude of the

chemotactic response in the steady state.

Here, we carry out a detailed study of the chemotactic behavior of

a single bacterium in one dimension. We find that, for an ‘adaptive’
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response kernel (i.e., when the positive and negative parts of the

response kernel have equal weight such that the total area under the

curve vanishes), there is no incompatibility between a strong steady-

state chemotaxis and a large drift velocity. A strong steady-state

chemotaxis occurs when the positive peak of the response kernel

occurs at a time much smaller than tR and the negative peak at a

time much larger than tR, in line with experimental observation.

Moreover, we obtain that the drift velocity is also large in this case.

For a general ‘non-adaptive’ response kernel (i.e., when the area

under the response kernel curve is non-vanishing), however, we find

that a large drift velocity indeed opposes chemotaxis. Our

calculations show that, in this case, a position-dependent diffusivity

is responsible for chemotactic accumulation.

In order to explain our numerical results, we propose a simple

coarse-grained model which describes the bacterium as a biased

random walker with a drift velocity and diffusivity, both of which

are, in general, position-dependent. This simple model yields good

agreement with results of detailed simulations. We emphasize that

our model is distinct from existing coarse-grained descriptions of

E. coli chemotaxis [13–16]. In these, coarse-graining was

performed over left- and right-moving bacteria separately, after

which the two resulting coarse-grained quantities were then added

to obtain an equation for the total coarse-grained density. We

point out why such approaches can fail and discuss the differences

between earlier models and the present coarse-grained model.

Models

Following earlier studies of chemotaxis [9,17], we model the

navigational behavior of a bacterium by a stochastic law of motion

with Poissonian run durations. A switch from run to tumble occurs

during the small time interval between t and tzdt with a

probability

dt

tR

1{F c½ �f g: ð1Þ

Here, tR^1s and F c½ � is a functional of the chemical

concentration, c(t
0
), experienced by the bacterium at times

t
0
ƒt. In shallow nutrient gradients, the functional can be written

as

Author Summary

The chemotaxis of Escherichia coli is a prototypical model
of navigational strategy. The bacterium maneuvers by
switching between near-straight motion, termed runs, and
tumbles which reorient its direction. To reach regions of
high nutrient concentration, the run-durations are modu-
lated according to the nutrient concentration experienced
in recent past. This navigational strategy is quite general,
in that the mathematical description of these modulations
also accounts for the active motility of C. elegans and for
thermotaxis in Escherichia coli. Recent studies have
pointed to a possible incompatibility between reaching
regions of high nutrient concentration quickly and staying
there at long times. We use numerical investigations and
analytical arguments to reexamine navigational strategy in
bacteria. We show that, by accounting properly for the full
memory of the bacterium, this paradox is resolved. Our
work clarifies the mechanism that underlies chemotaxis
and indicates that chemotactic navigation in wild-type
bacteria is controlled by drift while in some mutant
bacteria it is controlled by a modulation of the diffusion.
We also propose a new set of effective, large-scale
equations which describe bacterial chemotactic naviga-
tion. Our description is significantly different from previous
ones, as it results from a conceptually different coarse-
graining procedure.

Figure 1. Bilobe response function of wild-type E. coli used in the numerics in Fig. 3. For the sake of computational simplicity, we have
used a discrete sampling of the experimental data presented in Ref. [18] instead of working with the complete data set. This did not affect our
conclusions.
doi:10.1371/journal.pcbi.1002283.g001

Chemotaxis when Bacteria Remember

PLoS Computational Biology | www.ploscompbiol.org 2 December 2011 | Volume 7 | Issue 12 | e1002283



F c½ �~
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{?
dt
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R(t{t

0
)c(t

0
) ð2Þ

The response kernel, R(t), encodes the action of the biochemical

machinery that processes input signals from the environment.

Measurements of the change in the rotational bias of a flagellar

motor in wild-type bacteria, in response to instantaneous

chemoattractant pulses were reported in Refs. [17,18]; experi-

ments were carried out with a tethering assay. The response kernel

obtained from these measurements has a bimodal shape, with a

positive peak around t^0:5s and a negative peak around t^1:5s
(see Fig. 1). The negative lobe is shallower than the positive one

and extends up to t^4s, beyond which it vanishes. The total area

under the response curve is close to zero. As in other studies of E.

coli chemotaxis, we take this response kernel to describe the

modulation of run duration of swimming bacteria [8–11]. Recent

experiments suggest that tumble durations are not modulated by

the chemical environment and that as long as tumbles last long

enough to allow for the reorientation of the cell, bacteria can

perform chemotaxis successfully [19,20].

The model defined by Eqs. 1 and 2 is linear. Early experiments

pointed to a non-linear, in effect a threshold-linear, behavior of a

bacterium in response to chemotactic inputs [17,18]. In these

studies, a bacterium modulated its motion in response to a positive

chemoattractant gradient, but not to a negative one. In the

language of present model, such a threshold-linear response entails

replacing the functional defined in Eq. 2 by zero whenever the

integral is negative. More recent experiments suggest a different

picture, in which a non-linear response is expected only for a

strong input signal whereas the response to weak chemoattractant

gradient is well described by a linear relation [21]. Here, we

present an analysis of the linear model. For the sake of

completeness, in Text S1, we present a discussion of models

which include tumble modulations and a non-linear response

kernel. Although recent experiments have ruled out the existence

of both these effects in E.coli chemotaxis, in general such effects

can be relevant to other systems with similar forms of the response

function.

The shape of the response function hints to a simple

mechanism for the bacterium to reach regions with high nutrient

concentration. The bilobe kernel measures a temporal gradient of

the nutrient concentration. According to Eq. 1, if the gradient

is positive, runs are extended; if it is negative, runs are

unmodulated. However, recent literature [8,9,11] has pointed

out that the connection between this simple picture and a detailed

quantitative analysis is tenuous. For example, de Gennes used

Eqs. 1 to calculate the chemotactic drift velocity of bacteria [8].

He found that a singular kernel, R(t)~ad(t{D), where d is a

Dirac function and a a positive constant, lead to a mean velocity

in the direction of increasing nutrient concentration even when

bacteria are memoryless (D~0). Moreover, any addition of a

negative contribution to the response kernel, as seen in

experiments (see Fig. 1), lowered the drift velocity. Other studies

considered the steady-state density profile of bacteria in a

container with closed walls, both in an approximation in which

correlations between run durations and probability density were

ignored [11] and in an approximation in which the memory of

the bacterium was reset at run-to-tumble switches [9]. Both these

studies found that, in the steady state, a negative contribution to

the response function was mandatory for bacteria to accumulate

in regions of high nutrient concentration. These results seem to

imply that the joint requirement of favorable transient drift and

steady-state accumulation is problematic. The paradox was

further complicated by the observation [9] that the steady-state

single-bacterium probability density was sensitive to the precise

shape of the kernel: when the negative part of the kernel was

located far beyond tR it had little influence on the steady-state

distribution [11]. In fact, for kernels similar to the experimental

one, model bacteria accumulated in regions with low nutrient

concentration in the steady state [9].

Results

Simulations and analytical treatment of chemotactic
bacterial accumulation

In order to resolve these paradoxes and to better understand the

mechanism that leads to favorable accumulation of bacteria, we

perform careful numerical studies of bacterial motion in one

dimension. In conformity with experimental observations [17,18],

we do not make any assumption of memory reset at run-to-tumble

switches.

We model a bacterium as a one-dimensional non-Markovian

random walker. The walker can move either to the left or to the

right with a fixed speed, v, or it can tumble at a given position

before initiating a new run. In the main paper, we present results

only for the case of instantaneous tumbling with tT~0, while

results for non-vanishing tT are discussed in Text S1. There, we

verify that for an adaptive response kernel tT does not have any

effect on the steady-state density profile. For a non-adaptive

response kernel, the correction in the steady-state slope due to

finite tT is small and proportional to tT=tR.

The run durations are Poissonian and the tumble probability is

given by Eq. 1. The probability to change the run direction after a

tumble is assumed to have a fixed value, q, which we treat as a

parameter. The specific choice of the value of q does not affect our

broad conclusions. We find that, as long as q=0, only certain

detailed quantitative aspects of our numerical results depend on q.

(See Text S1 for details on this point.) We assume that bacteria are

in a box of size L with reflecting walls and that they do not interact

among each other. We focus on the steady-state behavior of a

population. Reflecting boundary conditions are a simplification of

the actual behavior [22,23]; as long as the total ‘probability

current’ (see discussion below) in the steady state vanishes, our

results remain valid even if the walls are not reflecting.

As a way to probe chemotactic accumulation, we consider a

linear concentration profile of nutrient: c(x)~cx. We work in a

weak gradient limit, i.e., the value of ac is chosen to be sufficiently

small to allow for a linear response. Throughout, we use c~1=L in

our numerics. From the linearity of the problem, results for a

different attractant gradient, k=L, can be obtained from our

results through a scaling factor k. In the linear reigme, we obtain a

spatially linear steady-state distribution of individual bacterium

positions, or, equivalently, a linear density profile of a bacterial

population. Its slope, which we denote by b, is a measure of the

strength of chemotaxis. A large slope indicates strong bacterial

preference for regions with higher nutrient concentration.

Conversely, a vanishing slope implies that bacteria are insensitive

to the gradient of nutrient concentration and are equally likely to

be anywhere along the line. We would like to understand the way

in which the slope b depends on the different time scales present in

the system.

Results with non-adaptive response kernels. One

particular advantage of a linear model is that a general problem

can be solved by superposing the solutions of simpler problems–

namely, with delta-function response kernels–with suitably chosen

coefficients. Thus, solving the problem with a singular response

kernel amounts to a full solution and we focus here on this case.

Chemotaxis when Bacteria Remember
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In our simulations, we start from an arbitrary bacterium

position inside a box of size L. Each time step has a duration dt,
during which a running bacterium moves over a distance vdt. This

distance corresponds to one lattice spacing in our model, in which

a lattice is introduced because time is discretized. Throughout the

numerics, we use dt~0:01s and v~10mm=s, which means that the

lattice spacing in our simulations is 0:1mm. Results for different

values of v can be obtained by rescaling the lattice spacing

accordingly. At the end of each time step, we compute the

functional defined in Eq. 2; for a singular response kernel,

R(t)~ad(t{D), this takes the form ac x(t{D)½ �, where c x(t{D)½ �
is the nutrient concentration experienced by the bacterium at time

t{D. At the end of each time step the bacterium either tumbles,

with a probability 1{ac x(t{D)½ �ð Þdt=tR, or continues to move in

the same direction. At every tumble, the velocity of the bacterium

is reversed with a probability q.

The system reaches a steady state over a time scale which is of

order L2=D, where the diffusivity is given by D~v2tR. We verify

numerically that after this time the bacterial density profile inside

the box does not change further and assumes a time-independent

linear form. We focus on the slope, b, of this profile. For an

experimental realization of the steady-state behavior of a single

bacterium, we provide here an estimate of the time scales and

length scales involved. Since the long-time behavior of the system

is diffusive (see the discussion of the coarse-grained model below),

the relaxation time is L2=D. Our results on the steady-state

distribution of bacteria hold, realistically, if this relaxation time

does not exceed the typical division time of an E. coli bacterium,

which is of the order of 30 minutes. Substituting experimental

values for the parameters, we find the description should be valid

for system sizes L 400mm. In our simulations, we use a somewhat

larger system (L~1000mm) so as to have cleaner results with

negligible effects of the reflecting walls at the two boundaries.

(Numerics data show that the width of the boundary layer is about

*80mm.)

According to our numerical simulations, for av0, b increases

with D and displays a plateau for D&tR (Fig. 2). Simulations

probing various values of tR also confirmed that b~F (D=tR), i.e.,

that the slope is a scaling function of D=tR. Clearly, for positive a
the sign of b is simply reversed, which corresponds to an

unfavorable chemotaxis [11,14].

For small D, one can write down an approximate master

equation for left-mover and right-mover densities and use it to

show that the slope increases linearly with D (see Text S1 for

details). It is surprising, however, that the slope appears to saturate

to a non-vanishing value for D&tR. Indeed one would expect that,

if the response kernel relies on a time much earlier than t{tR, a

large enough number of tumbles occur between this past time and

the present time so as to eliminate any correlation between the

nutrient concentration in the past and the present direction of

motion. If this argument holds, one would expect that the slope b
vanish for D&tR. Below, we return to this argument and explain

why it is misleading.

Results with adaptive response kernels. For wild-type

bacteria, the total area under the response kernel vanishes (Fig. 1).

As a result, their behavior is adaptive: chemotaxis is insensitive to

the overall level of nutrient, but sensitive to spatial variations

[17,18]. In this section, before examining the case of a bilobe

response kernel similar to the experimental one, we consider a toy

model defined by the difference of two singular forms:

R(t)~ad(t{D1){ad(t{D2), with aw0. Because our problem

is linear, the steady-state slope of bacterial density, b, can be

calculated from a simple linear superposition, as:

b~F
D1

tR

� �
{F

D2

tR

� �
: ð3Þ

Since the function F (:) is monotonic, the absolute value of b
increases with the difference of D1 and D2. Strong chemotaxis

occurs when D1~0 and D2&tR.

 

Figure 2. The slope b (scaled by a factor of 108) as a function of D=tR, for the choice of response kernel R(t)~ad(t{D). Note that for
D&tR the slope saturates to a non-vanishing value. The symbols z, �, and % correspond to slopes measured in simulations with tR~1:5,1:0, and 0:5
seconds, respectively. The black solid circles are derived from our coarse-grained formulation (Eq. 9). Here q~0:5, a~{0:02, L~1000mm,
c~0:001mm{1 , v~10mm=s.
doi:10.1371/journal.pcbi.1002283.g002
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We now turn to the experimental case of a bilobe response

kernel. It is not computationally feasible to work with the complete

set of experimental data [18], so we have used a discrete subset

(Fig. 1) which we represent as a series of delta-functions. Given this

approximate response kernel, we investigate the behavior of the

slope as a function of tR. Based on our results for the case of two

delta functions, we expect that chemotaxis be weak if tR is either

much smaller than the delay of the positive peak in the response

kernel or much larger than the delay of the negative peak. We

expect optimum chemotaxis for a value of tR that falls in between

the two delays. We verify this prediction in Fig. 3 (in the linear

model). We note that the maximum slope occurs for a value of tR

close to the experimentally recorded value of about 1s.

Coarse-grained description of chemotaxis as diffusion
with drift

In order to gain insight into our numerical results, we developed a

simple coarse-grained model of chemotaxis. For the sake of simplicity,

we first present the model for a non-adaptive, singular response

kernel, R(t)~ad(t{D), and, subsequently, we generalize the model

to adaptive response kernels by making use of linear superposition.

The memory trace embodied by the response kernel induces

temporal correlations in the trajectory of the bacterium. However,

if we consider the coarse-grained motion of the bacterium over a

spatial scale that exceeds the typical run stretch and a temporal

scale that exceeds the typical run duration, then we can assume

that it behaves as a Markovian random walker with drift velocity

V and diffusivity D. Since the steady-state probability distribution,

P(x)~P(D,tR,x), is flat for a~0, for small a we can write

P~P0zaP(D,tR,x)zo(a2), ð4Þ

D~D0zaD(D,tR,x)zo(a2), ð5Þ

V~aV(D,tR,x)zo(a2): ð6Þ

Here, P0~1=L and D0~v2tR. Since we are neglecting all higher

order corrections in a, our analysis is valid only when a is

sufficiently small. In particular, even when D&tR, we assume that

the inequality D=tR%1=a is still satisfied. The chemotactic drift

velocity, V , vanishes if a~0; it is defined as the mean

displacement per unit time of a bacterium starting a new run at

a given location. Clearly, even in the steady state when the current

J , defined through LtP~{LxJ, vanishes, V may be non-

vanishing (see Eq. 8 below). In general, the non-Markovian

dynamics make V dependent on the initial conditions. However,

in the steady state this dependence is lost and V can be calculated,

for example, by performing a weighted average over the

probability of histories of a bacterium. This is the quantity that

is of interest to us. An earlier calculation by de Gennes showed

that, if the memory preceding the last tumble is ignored, then

for a linear profile of nutrient concentration the drift velocity

is independent of position and takes the form V~

acv2tRexp({D=tR) [8]. While the calculation applies strictly in

a regime with D%tR (because of memory erasure), in fact its result

captures the behavior well over a wide range of parameters (see

Fig. 4). To measure V in our simulations, we compute the average

displacement of the bacterium between two successive tumbles in

the steady state, and we extract therefrom the drift velocity. (For

details of the derivation, see Text S1.) We find that V is negative

for av0 and that its magnitude falls off with increasing values of D
(Fig. 4). We also verify that V indeed does not show any spatial

dependence (data shown in Fig. S3 of Text S1). We recall that, in

our numerical analysis, we have used a small value of a; this results

in a low value of V . We show below that for an experimentally

measured bilobe response kernel, obtained by superposition of

singular response kernels, the magnitude of V becomes larger and

comparable with experimental values.

Figure 3. The slope b (scaled by a factor of 108) as a function of tR for the experimental response kernel shown in Fig. 1. Open
squares: numerical results from simulations. Solid circles: prediction of the coarse-grained model. Here, q~0:4, L~1000mm, c~0:001mm{1,
v~10mm=s.
doi:10.1371/journal.pcbi.1002283.g003
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To obtain the diffusivity, D, we first calculate the effective mean

free path in the coarse-grained model. The tumbling frequency of

a bacterium is (1{acx(t{D))=tR and depends on the details of its

past trajectory. In the coarse-grained model, we replace the

quantity acx(t{D) by an average acSx(t{D)T over all the

trajectories within the spatial resolution of the coarse-graining.

Equivalently, in a population of non-interacting bacteria, the

average is taken over all the bacteria contained inside a blob, and,

hence, Sx(t{D)T denotes the position of the center of mass of the

blob at a time t{D in the past. As mentioned above, the drift

velocity is proportional to a, so that acSx(t{D)T~acx(t)zO(a2).
The average tumbling frequency then becomes (1{acx))=tR

and, consequently, the mean free path becomes tMFP~tR=
(1{acx)^tR(1zacx). As a result, the diffusivity is expressed as

D~v2tMFP^v2tR(1zacx). We checked this form against our

numerical results (Fig. 5).

Having evaluated the drift velocity, V , and the diffusivity, D, we

now proceed to write down the continuity equation (for a more

rigorous but less intuitive approach, see [10]). For a biased random

walker on a lattice, with position-dependent hopping rates dz(x)
and d{(x) towards the right and the left, respectively, one has

V~a dz(x){d{(x)ð Þ and D~a2 dz(x)zd{(x)ð Þ=2, where a is

the lattice constant. In the continuum limit, the temporal evolution

of the probability density is given by a probability current, as

LtP~{LxJ, ð7Þ

where the current takes the form

J~VP{Lx DPð Þ: ð8Þ

For reflecting boundary condition, J~0 in the steady state. This

constraint yields a steady-state slope

b~aLxP~a
P0

D0
V{LxDð Þ~ aV

Lv2tR

{
ac

L
ð9Þ

for small a. We use our measured values for V and D (Figs. 4 and

5), and compute the slope using Eq. 9. (For details of the

measurement of V , see Text S1.) We compare our analytical and

numerical results in Fig. 2, which exhibits close agreement.

According to Eq. 9, steady-state chemotaxis results from a

competition between drift motion and diffusion. For av0, the drift

motion is directed toward regions with a lower nutrient

concentration and hence opposes chemotaxis. Diffusion is spatially

dependent and becomes small for large nutrient concentrations

(again for av0), thus increasing the effective residence time of the

bacteria in favorable regions. For large values of D, the drift

velocity vanishes and one has a strong chemotaxis as D increases

(Fig. 2). Finally, for D~0, the calculation by de Gennes yields

V~acv2tR which exactly cancels the spatial gradient of D (to

linear order in a), and there is no accumulation [8,11].

These conclusions are easily generalized to adaptive response

functions. For R(t)~ad(t{D1){ad(t{D2), within the linear

response regime, the effective drift velocity and diffusivity can be

constructed by simple linear superposition: The drift velocity reads

V~aV(D1){aV(D2). Interestingly, the spatial dependence of D
cancels out and D~D0~v2tR. The resulting slope then depends

on the drift only and is calculated as

b~
a

Lv2tR

V(D1){V(D2)ð Þ: ð10Þ

In this case, the coarse-grained model is a simple biased random

walker with constant diffusivity. For D1vD2 and aw0, the net

velocity, proportional to a V(D1){V(D2)ð Þ, is positive and gives

rise to a favorable chemotactic response, according to which

Figure 4. The chemotactic drift velocity, V , as a function of D, for the response kernel. R(t)~ad(t{D). Solid circles: numerical results. Line:
approximate analytical results from [8]. tR~1s and other numerical parameters as in Fig. 2.
doi:10.1371/journal.pcbi.1002283.g004

Chemotaxis when Bacteria Remember

PLoS Computational Biology | www.ploscompbiol.org 6 December 2011 | Volume 7 | Issue 12 | e1002283



bacteria accumulate in regions with high food concentration.

Moreover, the slope increases as the separation between D1 and

D2 grows. We emphasize that there is no incompatibility between

strong steady-state chemotaxis and large drift velocity. In fact, in

the case of an adaptive response function, strong chemotaxis

occurs only when the drift velocity is large.

For a bilobe response kernel, approximated by a superposition

of many delta functions (Fig. 1), the slope, b, can be calculated

similarly and in Fig. 3 we compare our calculation to the

simulation results. We find close agreement in the case of a linear

model with a bilobe response kernel and, in fact, also in the case of

a non-linear model (see Text S1).

The experimental bilobe response kernel R(t) is a smooth

function, rather than a finite sum of singular kernels over a set of

discrete D values (as in Fig. 1). Formally, we integrate singular

kernels over a continuous range of D to obtain a smooth response

kernel. If we then integrate the expression for the drift velocity

obtained by de Gennes, according to this procedure, we find an

overall drift velocity V*0:3mm=s, for the concentration gradient

considered (+c~0:001mm{1). By scaling up the concentration

gradient by a factor of k, the value of V can also be scaled up by k
and can easily account for the experimentally measured velocity

range.

Discussion

We carried out a detailed analysis of steady-state bacterial

chemotaxis in one dimension. The chemotactic performance in

the case of a linear concentration profile of the chemoattractant,

c(x)~cx, was measured as the slope of the bacterium probability

density profile in the steady state. For a singular impulse response

kernel, R(t)~ad(t{D), the slope was a scaling function of D=tR,

which vanished at the origin, increased monotonically, and

saturated at large argument. To understand these results we

proposed a simple coarse-grained model in which bacterial motion

was described as a biased random walk with drift velocity, V , and

diffusivity, D. We found that for small enough values of a, D was

independent of D and varied linearly with nutrient concentration.

By contrast, V was spatially uniform and its value decreased

monotonically with D and vanished for D&tR. We presented a

simple formula for the steady-state slope in terms of V and D. The

prediction of our coarse-grained model agreed closely with our

numerical results. Our description is valid when a is small enough,

and all our results are derived to linear order in a. We assume

D=tR%1=a is always satisfied.

Our results for an impulse response kernel can be easily

generalized to the case of response kernels with arbitrary shapes in

the linear model. For an adaptive response kernel, the spatial

dependence of the diffusivity, D, cancels out but a positive drift

velocity, V , ensures bacterial accumulation in regions with high

nutrient concentration, in the steady state. In this case, the slope is

directly proportional to the drift velocity. As the delay between the

positive and negative peaks of the response kernel grows, the

velocity increases, with consequent stronger chemotaxis.

Earlier studies of chemotaxis [13–16] put forth a coarse-grained

model different from ours. In the model first proposed by

Schnitzer for a single chemotactic bacterium [14], he argued

that, in order to obtain favorable bacterial accumulation, tumbling

rate and ballistic speed of a bacterium must both depend on the

direction of its motion. In his case, the continuity equation reads

LtP~Lx

cLvR{cRvL

cLzcR

P{2
vRzvL

cRzcL

Lx

vRvL

vRzvL

P

� �� �
, ð11Þ

 

Figure 5. The diffusivity, D(x), as a function of position, x, for the response kernel R(t)~ad(t{D) with D~1s (z) and 2s (|). Instead of
plotting D(x) for the entire range of x, we leave out boundary regions to avoid the effect of the reflecting walls. (From the numerics, the width of the
boundary layer is *80mm.) D(x) falls off linearly with x and is independent of D. Data fitting yields D(x)~99:5{0:00197x and the coarse-grained
model predicts D(x)~v2tR(1zacx). For the chosen set of parameters, v2tR~100mm2=s and the v2tRac~{0:002. The discrepancy between the
numerical and the predicted slopes is due to higher-order corrections in a, while discretization of space in simulations causes the slight mismatch in
the constant term. tR~1s and other numerical parameters are as in Fig. 2.
doi:10.1371/journal.pcbi.1002283.g005

Chemotaxis when Bacteria Remember

PLoS Computational Biology | www.ploscompbiol.org 7 December 2011 | Volume 7 | Issue 12 | e1002283



where vL(R) is the ballistic speed and cL(R) is the tumbling

frequency of a bacterium moving toward the left (right). For E. coli,

as discussed above, vL~vR~v, a constant independent of the

location. In that case, Eq. 11 predicts that in order to have a

chemotactic response in the steady state, one must have a non-

vanishing drift velocity, i.e., cLvR{cRvLð Þ=(cLzcR)=0. This

contradicts our findings for non-adaptive response kernels,

according to which a drift velocity only hinders the chemotactic

response. The spatial variation of the diffusivity, instead, causes the

chemotactic accumulation. This is not captured by Eq. 11. In the

case of adaptive response kernels, the diffusivity becomes uniform

while the drift velocity is positive, favoring chemotaxis. Comparing

the expression of the flux, J , obtained from Eqs. 7 and 8 with that

from Eq. 11, and matching the respective coefficients of P and

LxP, we find D~2vRvL=(cRzcL) and V~(cLvR{cRvL)=
(cLzcR). As we argued above in discussing the coarse-grained

model for adaptive response kernels, both D and V are spatially

independent. This puts strict restrictions on the spatial dependence

of vL(R) and cL(R). For example, as in E. coli chemotaxis

vL~vR~v, our coarse-grained description is recovered only if

cL and cR are also independent of x.

We comment on a possible origin of the discrepancy between

our work and earlier treatments. In Ref. [14], a continuity

equation was derived for the coarse-grained probability density of

a bacterium, starting from a pair of approximate master equations

for the probability density of a right-mover and a left-mover,

respectively. As the original process is non-Markovian, one can

expect a master equation approach to be valid only at scales that

exceed the scale over which spatiotemporal correlations in the

behavior of the bacterium are significant. In particular, a biased

diffusion model can be viewed as legitimate only if the (coarse-

grained) temporal resolution allows for multiple runs and tumbles.

If so, at the resolution of the coarse-grained model, left- and right-

movers become entangled, and it is not possible to perform a

coarse-graining procedure on the two species separately. Thus one

cannot define probability densities for a left- and a right-mover

that evolves in a Markovian fashion. In our case, left- and right-

movers are coarse-grained simultaneously, and the total probabil-

ity density is Markovian. Thus, our diffusion model differs from

that of Ref. [14] because it results from a different coarse-graining

procedure. The model proposed in Ref. [14] has been used

extensively to investigate collective behaviors of E. coli bacteria

such as pattern formation [13,15,16]. It would be worth asking

whether the new coarse-grained description can shed new light on

bacterial collective behavior.

Supporting Information

Text S1 Chemotaxis when Bacteria Remember: Drift versus

Diffusion (Supporting Information).

(PDF)
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