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Lung adenocarcinoma (LUAD) is a prevalent cancer killer. Investigation on potential
prognostic markers of LUAD is crucial for a patient’s postoperative planning. LUAD-
associated datasets were acquired from Gene Expression Omnibus (GEO) as well as The
Cancer Genome Atlas (TCGA). LUAD metabolism-associated differentially expressed
genes were obtained, combining tumor metabolism-associated genes. COX regression
analyses were conducted to build a five-gene prognostic model. Samples were divided
into high- and low-risk groups by the established model. Survival analysis displayed
favorable prognosis in the low-risk group in the training set. Favorable predictive
performance of the model was discovered as hinted by receiver’s operative curve
(ROC). Survival analysis and ROC analysis in the validation set held an agreement.
Gene Set Enrichment Analysis (GSEA), tumor mutation bearing (TMB), and immune
infiltration differential analysis were performed. The two groups displayed differences in
glycolysis gluconeogenesis, P53 signaling pathway, etc. The high-risk group showed
higher TP53 mutation frequency as well as TMB. The low-risk group displayed higher
immune activity along with immune score. Altogether, this study casts light on further
development of novel prognostic markers for LUAD.
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INTRODUCTION

Lung cancer (LC) is a leading cause of cancer-associated deaths and the commonest cancer
worldwide (Chen et al., 2016). There is a lack of specific symptoms and tumor markers in the
early stage of lung adenocarcinoma (LUAD). Most patients are in the late stage when diagnosed and
develop lymph nodes and multiple metastases in other sites (Siegel et al., 2019). Major therapeutic
methods for LUAD include surgical excision, platinum chemotherapy, radiotherapy, or/and targeted
therapy. Unfortunately, LUAD patients have a poor prognosis, and terminal patients usually relapse
in the early stage, with a 5 years overall survival (OS) lower than 20% (Torre et al., 2016; Siegel et al.,
2021). Thus, the development of prognostic markers for LUAD is warranted.

Metabolism is a prerequisite for all life activities of an animated body, while tumor occurrence is
often accompanied by reprogramming of cell metabolism. A tumor reprograms the metabolism
pathway to meet the requirements for malignant cell biosynthesis and nutrition, which is regarded as
one of the markers of cancers (DeBerardinis and Chandel, 2016; Pavlova and Thompson, 2016).
Studies displayed two hallmarks of cancer metabolism: metabolic interactions with the
microenvironment as well as alterations in metabolite-driven gene regulation (Pavlova and
Thompson, 2016; Anastasiou, 2017). The following are typical examples: Enhanced glycolysis
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stimulates production of lactic acid, and the latter inhibits T cell
proliferation in the tumor microenvironment (Fischer et al.,
2007). Oscar et al. (Colegio et al., 2014) also found that
massive lactic acid in the tumor microenvironment stimulates
M2-like polarization of macrophages to accelerate cancer
progression. Thus, further understanding of cancer metabolism
pathway and finding key metabolism targets offer guidance for
targeted therapy of cancer metabolism.

With the rapid development of biological technology and
bioinformatics, the exploration of cancer diagnosis and
prognostic biomarkers based on bioinformatics method has
recently been in the limelight. Mo et al. (2020) identified and
validated the prognosis potential of hypoxia-related feature genes
in LUAD based on the hypoxia-related microenvironment. These
genes may be new targets for immune therapy. Zhang et al. (2019)
built a risk score model using 14 immune-related genes,
presenting a rationale for the prognosis of diverse
immunophenotypes. Gao et al. (2021) constructed a
ferroptosis-associated gene signature using bioinformatics
analysis and hinted at a possible option for LUAD treatment

by targeting ferroptosis-associated genes. Therefore, it is
promising to establish a prognostic model based on public
data combining immunity, hypoxia, and other characteristics.

Here, a five-gene prognostic model was established based on
mRNA expression data of LUAD in The Cancer Genome Atlas
(TCGA)/Gene Expression Omnibus (GEO) using several
bioinformatics methods. We also identified metabolism-
associated prognostic markers in LUAD. This investigation
offers a rationale for the development of prognostic
biomarkers of LUAD.

MATERIALS AND METHODS

Dataset Download and Processing
mRNA expression data (normal: 59, tumor: 535) in fragments per
kilo-base of exon per million fragments mapped (FPKM) and
count formats (normal: 59, tumor:535), clinical data, and single-
nucleotide variant (SNV) data (VarScan2 Annotation, sample
number: 561) were downloaded from TCGA (https://portal.gdc.

FIGURE 1 | Screening of metabolism-associated DEGs in LUAD and functional enrichment analysis. (A) Volcano plot of differential expression analysis on tumor
group and normal groups in TCGA-LUAD dataset. Red: significantly upregulated DEGs. Green: significantly downregulated DEGs. (B)Overlap of DEGs andmetabolism-
associated genes in LUAD to acquire metabolism-associated DEGs in LUAD. (C) Bubble diagram of GO enrichment analysis on DEGs associated with metabolism in
LUAD. Nodes: enriched terms. The node size is proportional to the number of enriched genes; the deeper red color of node indicates the smaller p values. (D)
Bubble diagram of KEGG enrichment analysis on DEGs associated with metabolism in LUAD. Nodes: enriched terms. The node size is proportional to the number of
enriched genes; the deeper red color of node indicates the smaller p values.
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cancer.gov/; October 20th, 2020). Dataset GSE72094 was accessed
from GEO (https://www.ncbi.nlm.nih.gov/geo/) as the validation
set. Raw data were provided by GPL15048 platform.

Screening of Lung Adenocarcinoma
Metabolism-Associated Genes and Gene
Ontology and Kyoto Encyclopedia of Genes
and Genomes Enrichment Analysis
Differential expression analysis was undertaken on the normal
group and tumor group in the training set using “edgeR” package
to screen differentially expressed genes (DEGs). The threshold
value was set as |logFC| > 1.5 and false discovery rate (FDR) <
0.05 (Robinson et al., 2010). Tumor metabolism-associated gene
sets compiled by Possemato et al. (2011) were downloaded from
Pubmed (Supplementary Table S1). DEGs were intersected with
tumor metabolism-associated genes to obtain DEGs associated
with LUAD metabolism. Thereafter, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses were performed on metabolism-associated DEGs using
“clusterprofiler” package (q value < 0.05) (Yu et al., 2012).

Screening of Prognostic Feature Genes
Associated With Metabolism in Lung
Adenocarcinoma
Samples whose survival time is less than 30 days in TCGA-LUAD
were removed. Univariate COX regression analysis was
undertaken on metabolism-associated DEGs using “survival”
package to obtain survival-related DEGs in LUAD (p < 0.05)
(Modeling Survival Data, 2013). To avoid overfitting of the
statistical model, “glmnet” package was used to perform
LASSO COX regression analysis on the above-screened DEGs
(Friedman et al., 2010). Penalty parameter “λ” was selected to
remove genes with strong relevance through cross validation to
reduce the complexity of the model. Finally, “survival” package
was used to undertake multivariate COX regression analysis on
the above genes. Prognostic feature genes associated with LUAD

FIGURE 2 | Construction of a five-gene based prognostic model. (A) The coefficients of 117 survival-related genes vary with the penalty parameter lambda in
LASSO regression analysis. (B) Selection range of the optimal penalty parameter (λ) of LASSO COX regression model. The upper coordinate indicates the number of
genes corresponding to different lambda values. (C) Forest plot of multivariate COX regression analysis. *p < 0.05. **p < 0.01.
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metabolism were identified. A risk score model was established,
and the risk score was calculated by using the following formula:

Risk score � ∑
n

i�1
expi*βi (1)

The number of prognostic feature genes associated with
metabolism is denoted by n; the expression level of gene i is
denoted by expi; the regression coefficient of gene i is denoted by βi.

Analysis of Predictive Performance of Risk
Score
The risk scores of patients in TCGA-LUADwere calculated based
on the expression levels of prognostic feature genes associated
with metabolism. The patients were divided into high- and low-
risk groups with median risk score as the threshold value. Survival
curves of the two groups were drawn using “survival” package.
Receiver’s operative curve (ROC) of patient’s 1-, 3-, and 5 years
OS was drawn with “timeROC” package. The area under the
curve (AUC) was calculated. The results were validated in the

validation set to evaluate the predictive performance of the model
(Blanche et al., 2013).

Gene Set Enrichment Analysis on High- and
Low-Risk Groups
Gene Set Enrichment Analysis (GSEA) enrichment analytics tool
was accessed from http://www.gsea-msigdb.org/gsea/index.jsp.
The signaling pathway enrichment in high- and low-risk groups
was analyzed using GSEA software (p < 0.05) to differentiate
biological functions in the two groups. The significance of the
enrichment score was analyzed by permutation test (permutation
test time: 1,000) (Subramanian et al., 2005).

Tumor Mutation Bearing in Two Groups and
Analysis of Mutation Genes in Lung
Adenocarcinoma
Tumor mutation bearing (TMB) is defined as the total number of
detected somatic cell gene coding errors, base substitutions, errors
in gene insertion, or deletions per million bases (Yarchoan et al.,

FIGURE 3 | Performance of the prognostic model. (A) Distribution of risk score of each LUAD sample in the training set (green: patients having low-risk score; red:
patients having high-risk score). (B) Scatter diagram of survival status of LUAD patients according to risk score (green: survived patients; red: dead patients). (C) Survival
curves of high- and low-risk groups in the training set. (D) ROC curves of the prognostic model in the training set. (E) Survival curves of the high- and low-risk groups in
the validation set. (F) ROC curves of the prognostic model in the validation set. (G) Heat map of the expression of the five feature genes in the high- and low-risk
groups in the training set.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7605064

Zhang et al. Construction of LUAD Prognostic Model

http://www.gsea-msigdb.org/gsea/index.jsp
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


2017). The significance of TMB in the two groups in TCGA-LUAD
was analyzed usingWilcoxon test. Mutation genes in the high- and
low-risk groups were analyzed, combining SNV mutation data.
Waterfall plots of the top 30 genemutations in the two groups were
drawn by R package “GenVisR” (Skidmore et al., 2016).

Evaluation of Immune Infiltration in Two
Groups
R package “estimate” was used to assess the stromal score,
immune score, and tumor purity in LUAD samples in TCGA.
Single simple GSEA (ssGSEA) analysis was performed on 29
immune cells using “GSVA” package to assess the immune
infiltration levels of each tumor sample. Differential expression
analysis was performed on immune infiltration levels in the two
groups using Wilcoxon test (Barbie et al., 2009).

RESULTS

Differentially Expressed Genes
Identification and Enrichment Analyses
Altogether, 3,591 DEGs were acquired through differential
expression analysis on normal and tumor groups in TCGA-
LUAD in the training set (|logFC| > 1.5, FDR <0.05), including

2,553 upregulated and 1,038 downregulated genes (Figure 1A). As
shown in Figure 1B, 562 LUADmetabolism-associated DEGs were
acquired by overlapping DEGs and tumor metabolism-associated
gene sets. GO and KEGG enrichment analyses were undertaken on
metabolism-associated DEGs in LUAD. GO enrichment analysis
showed that these genes weremostly enriched in biological functions
including regulation of membrane potential, small molecule
catabolic process, organic acid transport, and cellular response to
xenobiotic stimulus (Figure 1C). KEGG enrichment analysis
showed that these genes were mostly enriched in signaling
pathways including the metabolism of xenobiotics by cytochrome
P450, retinol metabolism, drug metabolism-other enzymes,
arachidonic acid metabolism, and purine metabolism (Figure 1D).

Prognostic Model Construction Based on
Feature Genes
Combining patient’s survival data in TCGA-LUAD in the
training set, 562 DEGs associated with metabolism of LUAD
were subjected to univariate COX regression analysis. Altogether,
117 genes relevant to survival were acquired (Supplementary
Table S2). Optimal penalty parameter “λ” was chosen through
cross validation. Eight metabolism-associated prognostic feature
genes were acquired (Figures 2A,B). These eight feature genes
were subjected to multivariate regression analysis. Lastly, five

FIGURE 4 | GSEA enrichment analysis. (A–F) Enrichment of high- and low-risk groups in pyrimidine metabolism, glycolysis gluconeogenesis, P53 signaling
pathway, glyoxylate and dicarboxylate metabolism, riboflavin metabolism, and purine metabolism, respectively.
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optimal prognostic feature genes associated with LUAD
metabolism were obtained to establish a risk score model
(Supplementary Table S3). Protective factors were CYP4B1
and SLC24A4. Hazard ratio (HR) was 0.94 and 0.89. Risk
factors were CRIK2 (1.09), ABCC2 (1.05), and glyceraldehyde
3-phosphate dehydrogenase (GAPDH) (1.27) (Figure 2C).

Evaluation of the Performance of the
Five-Gene Based Prognostic Model
Risk scores of samples in TCGA-LUAD in the training set were
calculated. Samples were then divided into high- and low-risk groups
according to the median score. Meanwhile, we drew survival status
plots, survival curves, and ROC curves of the two groups (Figures
3A–D). Survival analysis suggested poorer survival status in the high-
risk group in comparison with the low-risk group. ROC curve showed
that AUCvalues of 1-, 3-, and 5 years survival curves were 0.7, 0.7, and
0.66. The favorable prognosis predictive performance of the model

was further proved by survival curve and ROC curve of GSE72094 in
the validation set (Figures 3E,F). As shown by heatmap of expression
levels of five feature genes in the two groups, with the increasing of risk
scores, the expression of risk factors (CRIK2, ABCC2, GAPDH) were
gradually elevated, while the expression of protective factors (CYP4B1,
SLC24A4) was decreased (Figure 3G). Overall, the constructedmodel
could predict the LUAD patient’s prognosis well.

Gene Set Enrichment Analysis Enrichment
Analysis
Based on KEGG pathway enrichment analysis, the high- and low-
risk groups displayed significant differences in pathways like
pyrimidine metabolism, glycolysis gluconeogenesis, P53
signaling pathway, glyoxylate and dicarboxylate metabolism,
riboflavin metabolism, and purine metabolism (Figures 4A–F).
These pathways weremostly relevant to signaling pathways like cell
carbohydrate metabolism pathway, lipid metabolism pathway, and
P53 signaling pathway relevant to cell cycle, apoptosis, and aging.

Analysis of Tumor Mutation Bearing and
TP53 Mutation
As indicated by Wilcoxon test, high-risk groups exhibited
significantly higher TMB (Figure 5A). Further analysis on
gene mutation revealed differences in the top30 mutation

FIGURE 5 | Analysis of TMB and mutation genes. (A) Box plot of TMB differences in high- and low-risk groups in TCGA-LUAD dataset. Blue: low-risk group.
Yellow: high-risk group. (B)Waterfall plot of top30 genes in low-risk group in TCGA-LUAD. X-axis: samples; y-axis: top 30 genes. Different colors of modules represent
different mutation types. (C)Waterfall plot of top 30 genes in the high-risk group in TCGA-LUAD. (D) Histogram of TP53 mutation in high- and low-risk groups in TCGA-
LUAD. X-axis: TP53-mutation and TP53-wild in two groups. Y-axis: sample number. (E) Histogram of TP53 mutation in two groups of GSE72094 validation set.

TABLE 1 | TP53 frequency status in high and low risk groups in TCGA-LUAD and
GSE72094 datasets.

Gene Dataset low Risk
Ratio

high Risk
Ratio

P value FDR

TP53 TCGA-LUAD 0.35021097 0.606557377 3.12E-08 1.25E-07
GSE72094 0.140703518 0.346733668 3.01E-06 1.20E-05
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genes in the two groups (Figures 5B,C). GSEA showed that high-
and low-risk groups had differences in the P53 signaling pathway.
Combining clinical data and SNV data in TCGA-LUAD and
GSE72094 datasets, we acquired mutation of TP53 genes in the
two groups in two datasets. Chi-square test indicated that TP53
mutation frequency in the high-risk group was evidently higher
than that in the low-risk group in two datasets (p < 0.001, Table 1
and Figures 5D,E.

Differential Expression Analysis of Immune
Infiltration
R package “estimate” was used to evaluate the infiltration levels of
stromal cells, immune cells in TCGA-LUAD samples to acquire
stromal score, immune score, and ESTIMATE score. Stromal
score, immune score, and ESTIMATE score in the high-risk
group were evidently lower than those in the low-risk group
(Figure 6A). Subsequently, ssGSEA method was used to analyze
the immune activity of LUAD samples. Enrichment levels of 29
types of immune cell sets were acquired. Differences in immune
infiltration and activity of these 29 cells in the two groups were
also compared. Stromal score, immune score, and ESTIMATE
score were decreased with the elevation of risk score, whereas
tumor purity was increased. the low-risk group showed higher
immune infiltration levels (Figure 6B). In detail, immune cells
like T helper cells in the low-risk group had higher infiltration
levels (p < 0.001, Figure 6C), and most immune function
products such as human leukocyte antigen (HLA) had higher
expression level (Figure 6D). In summary, the low-risk group
showed higher immune activity, which may lead to better
prognosis.

DISCUSSION

With the development of scientific research, it has been found
that researching a direction solely (such as genome, proteome,
transcriptome) cannot explain all biomedical problems. From
a comprehensive perspective, analyses of interaction between
genes, proteins, and molecules also cast light on the
pathogenesis of human diseases. The bioinformatics method
emerged as required by time. Biomarkers found by this
method greatly enhance tumor research efficiency. To date,
the establishment of cancer prognostic models has been a
mainstream of tumor research. For instance, Zheng et al.
(2021) identified 12 prognostic feature genes associated
with ferroptosis in low level glioma. Jiang et al. (2019)
analyzed the glycolysis gene expression profiles of
hepatocellular carcinoma and acquired a prognostic model
based on metabolism-associated feature genes. This
investigation combined tumor metabolism-associated gene
sets and TCGA-LUAD dataset to identify metabolism-
associated prognostic markers in LUAD and established a
five-gene-based prognostic model. The results of this
investigation cast light on the research and development of
novel biomarkers of LUAD.

FIGURE 6 | Analysis of differences in immune infiltration in two groups in
TCGA-LUAD dataset. (A) Differential expression analysis on stromal score,
immune score, and ESTIMATE score in the high- and low-risk groups. Blue:
low-risk group, red: high-risk group. (B) Enrichment levels of
29 immune-related cells and types in two groups. Tumor purity, stromal score,
immune score, and ESTIMATE score of each patient in two groups. (C)
Analysis of differences in immune cell infiltration levels in two groups. Blue:
low-risk group, red: high-risk group. (D) Analysis of differences in each
immune function in two groups. Blue: low-risk group. Red: high-risk group.
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TP53 is a common mutation gene in tumors (Giacomelli
et al., 2018). We analyzed TP53 mutation in two groups. The
high-risk group showed high TP53 mutation frequency whether
in TCGA-LUAD or GSE72094. TP53 mutation is an adverse
prognostic factor for advanced non-small-cell lung cancer
(NSCLC) (Jiao et al., 2018) and a hallmark event of advanced
sporadic colon cancer (Watanabe et al., 2019). Moreover, Haupt
et al. (2019) found that high TP53 frequency and P53 network
dysregulation trigger low survival rate of male cancer patients in
North America. It is worthy to note that GSEA enrichment
analysis also showed differences in P53 signaling pathway in the
high- and low-risk groups. A study also found important
functions that P53 performs in metabolism homeostasis. P53
inhibits aerobic glycolysis and stimulates oxidative
phosphorylation via several mechanisms to offset the
Warburg effect of cancer (Berkers et al., 2013). Thus, we
speculated that P53 signaling pathway was inhibited by high
TP53 mutation frequency in the high-risk group. Therefore, the
role as an inhibitor that P53 played was hampered leading to
poor prognosis of the high-risk group.

Based on GSEA enrichment analysis, the two groups mainly
showed differences in pathways like pyrimidine metabolism and
glycolysis gluconeogenesis. Enhanced Warburg effect and
nucleotide metabolism are considered as markers of cancers
(Lu, 2019; Siddiqui and Ceppi, 2020). A reference reported
that enhanced Warburg effect glycolysis accelerates lactic acid
accumulation to influence the tumor microenvironment (TME)
and may damage immune cell functions in the TME (Vaupel
et al., 2019). In our five-gene-based risk score model, GAPDH has
been reported as a key enzyme during glycolysis (Zhong et al.,
2018). In addition, CARM1-mediated GAPDH methylation
inhibits glycolysis in liver cancer cells (Zhong et al., 2018).
Pyridine is an important component of RNA. Pyridine
metabolism disorder triggers life activities disorders like DNA
copy and protein translation, which may also indirectly lead to
immune response disorder. Thus, we postulated that enhanced
glycolysis and pyridine metabolism were factors for patient’s poor
prognosis.

We also analyzed the two groups with respect to immune cell
infiltration. It was discovered that the low-risk group had higher
immune scores and immune activity, among which immune
scores of helper T cell, dendritic cells (DCs), HLA, and C-C
chemokine receptor (CCR) were significantly higher than other
immune cells. HLA is the expression product of major
histocompatibility complex (MHC) class I molecules, which
enables to present endogenous antigen and activate
CD8+T cells. CD8+T cells can identify infected cells or cancer

cells and activate B cells to form different antigens to perform
body immunity functions (Rock et al., 2016). Helper T cells
abound with cell classifications, among which Tfh cells can
generate IL-21 and express Bcl6 to help B cells to form
corresponding antigens. Treg cells can regulate immune
response to maintain immune cell homeostasis (Zhu and Zhu,
2020). DCs are center modulators of the adaptive immune
responses and prerequisite for T-cell-mediated cancer
immunity (Gardner and Ruffell, 2016). CCL16, a ligand of
CCR1, accelerates the anti-cancer impacts of DCs and
macrophages (Cappello et al., 2006). In this investigation, the
low-risk group showed a favorable prognosis. The possible cause
may be that helper T cells and MHC class I activate CD8+T cells
in TME and activate B cells to secrete a lot of cytokines along with
CCR regulation.

On the above, this investigation used bioinformatics analysis
to screen metabolism-associated prognostic markers of LUAD.
The markers can predict patient’s prognosis well and shed light
on the development of novel prognostic markers for LUAD.
However, these results came from pure bioinformatics analysis
and lack of experimental validation. A series of molecular,
cellular, and animal experiments were planned for the future
to clarify the mechanism of feature genes screened in LUAD.
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