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Abstract Majority of type 2 diabetes mellitus (T2DM) patients are highly susceptible to several

forms of cognitive impairments, particularly dementia. However, the underlying neural mechanism

of these cognitive impairments remains unclear. We aimed to investigate the correlation between

whole brain resting state functional connections (RSFCs) and the cognitive status in 95 patients

with T2DM. We constructed an elastic net model to estimate the Montreal Cognitive Assessment

(MoCA) scores, which served as an index of the cognitive status of the patients, and to select the

RSFCs for further prediction. Subsequently, we utilized a machine learning technique to evaluate

the discriminative ability of the connectivity pattern associated with the selected RSFCs. The esti-

mated and chronological MoCA scores were significantly correlated with R= 0.81 and the mean

absolute error (MAE) = 1.20. Additionally, cognitive impairments of patients with T2DM can

be identified using the RSFC pattern with classification accuracy of 90.54% and the area under

the receiver operating characteristic (ROC) curve (AUC) of 0.9737. This connectivity pattern not

only included the connections between regions within the default mode network (DMN), but also

the functional connectivity between the task-positive networks and the DMN, as well as those

within the task-positive networks. The results suggest that an RSFC pattern could be regarded

as a potential biomarker to identify the cognitive status of patients with T2DM.
Introduction

Type 2 diabetes mellitus (T2DM) is typically accompanied by
cognitive impairments and is associated with a much higher
risk of dementia [1,2]. Patients with this disorder may experi-
ence a deterioration of memory, attention, information pro-

cessing speed, and executive function [1,3]. An in-depth
understanding of the causative neuro-mechanism of cognitive
impairment in the early stages of T2DM could help clinicians

to identify patients with a high risk of dementia, and to conse-
quently introduce effective interventions to retard and even
arrest the progression of subtle cognitive decrements [4]. How-

ever, the mechanism behind the cognitive impairments in
patients with T2DM remains unclear. Recently, an increasing
number of neuroimaging studies on patients with T2DM

revealed alterations in the gray matter volume and white mat-
ter integrity associated with cognitive impairment [5,6]. This
suggests that changes in the neural substrates of patients with
T2DM are likely linked to cognitive dysfunction.

Resting state functional connections (RSFCs) are typically
used in neuroimaging studies to measure the correlation
between the fMRI time series of different brain regions with-

out any external disturbance, they also can reflect on certain
intrinsic mechanisms in the human brain [7]. The whole brain
RSFCs are a cumulation of the connections of all paired

regions of our brain and are relatively rich in information rel-
evant to the intrinsic interactions among the regions of the
brain that are induced by the spontaneous neural activities.
Therefore, an analysis of the connectivity patterns based on

the whole brain RSFCs, in comparison with the techniques
based on individual connectivity, could provide us a much
more comprehensive understanding on the neural mechanism

of certain cognitive disorders. Whole brain RSFCs have previ-
ously been used in a number of studies addressing cognitive
disorders. Previous studies have reported that patients with

Alzheimer’s disease (AD) or mild cognitive impairment
(MCI) had abnormal connectivity patterns [8,9]. Whole brain
RSFCs have also been used to successfully select biomarkers

in recent fMRI studies, such as age estimation [10] and identi-
fication of psychiatric disorders [11]. Thus, it can be speculated
that some of connectivity patterns could be regarded as poten-
tial biomarkers to either evaluate or identify cognitive impair-

ment in patients with T2DM.
Recently, a number of RSFC-based studies investigated dif-

ferences between patients with T2DM and normal controls
using their neural substrate and some have reported abnormal

RSFCs in their default mode network (DMN) [12–14]. Yang
et al. had particularly [14] reported abnormalities in the con-
nectivity within the DMN along with those among other

RSFC networks in patients with T2DM related cognitive
impairment. Another resting state study demonstrated a
decrease in RSFCs associated with the attention network of

patients with T2DM and cognitive impairment [15]. In addi-
tion to RSFC, Cui et al. [16] reported that the amplitude of
low frequency fluctuation and regional homogeneity, which

were both calculated from the resting state brain activity,
changed in regions of DMN and other brain regions, such as
the visual and auditory network of patients with T2DM and
cognitive impairment. These findings suggested that the whole

brain RSFCs provided more information about the mecha-
nism of T2DM-related cognitive impairment. However, these
studies focused on the difference in individual connectivity at

a group level between normal controls and patients with
T2DM, and did not directly examine the relationship between
the whole brain RSFC patterns and cognitive status in patients

with T2DM. Thus, these neural substrate findings cannot be
used in clinical practice for quantitatively evaluate the progres-
sion of cognitive impairment in patients with T2DM.

To bridge this gap, the present study used a multi-variate

pattern analysis (MVPA), which has been typically used in
neuroimaging studies and demonstrated to be an effective
method to analyze fMRI data [10,11,17] and examine the cor-

relations between cognitive status of patients with T2DM and
whole brain RSFCs. We particularly aimed to identify poten-
tial biomarkers that could be used to detect patients with

T2DM, who have a high risk of presenting cognitive
impairment.

We first constructed a predictive model with whole brain

RSFCs serving as predictors and the Montreal Cognitive
Assessment (MoCA), which can be used to measure the degree
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of general cognition of all participants (regardless of cognitive
impairment) serving as the dependent variable. However,
whole brain RSFCs include a large number of predictors,

which is significantly larger than the number of participants
(i.e., the number of measurement). Furthermore, there are a
number of correlations among features of whole brain RSFCs,

making it difficult to estimate a model while utilizing an ordi-
nary regressing strategy such as general linear modeling. To
address these problems, we used an elastic net (E-Net) to con-

struct a regression model to reduce the dimensions of the fea-
tures. The E-Net can both successfully select an appropriate
feature and estimate a model by balancing the goodness of
fit and model complexity and compensating for the correla-

tions among the whole brain RSFC features [18].
The surviving predictors after estimating the E-Net model,

namely the selected features of whole brain RSFCs, are the

potential biomarkers to evaluate the MoCA scores of partici-
pants. To further validate the roles of these selected features,
a machine learning method was used to evaluate their discrim-

inative ability. This step can not only evaluate the diagnostic
valuation of these features, but also help in revealing the neu-
ral mechanism behind cognitive impairment in patients with

T2DM.

Results and discussion

Characteristics of patients

The characteristics of the enrolled patients are shown in
Table 1. The average age of all patients was 54.51 years and
68.4% patients were men (65 of 95). Moreover, the average

MoCA score of the patients was 25.85, which was similar to
normal cognition. Functional MRI data of the 95 patients
enrolled, were preprocessed and we performed a functional
connectivity analysis to detect whole brain RSFCs for all the

patients. Subsequently, functional connectivity between two
of the 90 brain regions were obtained for every patient. Thus,
we identified 4005 features for each patient with T2DM for

further analysis.

Cognition estimation and selection of key RSFCs

To explore the relationship between cognition of patients with
T2DM and whole brain RSFCs, we first constructed a cogni-
tion estimation model to reveal the association between the
Table 1 Characteristics of the T2DM patients examined in this

study

Characteristics T2DM patients

(n = 95)

Age (year) 54.51 ± 8.90

Sex (male/female) 65/30

Fasting glucose (mM) 8.97 ± 2.58

HbA1c % (mmol/mol) 8.24 ± 1.71 (66.5 ± 18.7)

Total cholesterol (mM) 4.51 ± 1.08

BMI (kg/m2) 25.31 ± 3.15

Disease duration (year) 9.57 ± 6.33

MoCA 25.85 ± 1.97

Note: Data are presented as mean ± SD. HbA1c, glycated hemoglobin;

BMI, body mass index; MoCA, Montreal Cognitive Assessment; SD,

standard deviation.
MoCA score and whole brain RSFCs. Considering the limited
sample size in comparison with the number of RSFCs, we
aimed to reduce the latter used in the cognition prediction

model to avoid a potential overfitting. Since each RSFC was
not directly correlated with a MoCA score, we utilized an E-
net to obtain the most valuable RSFCs to estimate the MoCA.

E-net was a very useful tool as it could reduce the dimension-
ality of features, and concurrently isolate key features. We
used a 10-fold cross-validation via minimum criteria to select

the tuning parameter in the E-net model (Figure 1). The best
MoCA estimated model was detected as a= 0.9 and
k= 0.424. The results of the MoCA estimation revealed an
observable association between the MoCA score and whole

brain RSFCs. It showed that, the estimated MoCA scores
and real MoCA scores was significantly correlated with
R= 0.81 (Figure 2) and P = 0.002. The results indicated that

there was no better prediction in the 500 permutations
(Figure 2). Additionally, the MAE between the estimated
and real MoCA score was 1.20 (Figure 2), suggesting that

the cognitive decline of patients with T2DM that was indexed
by MoCA scores could be predicted by a combination of some
RSFCs (i.e., connectivity pattern) with a relatively good

performance.
We selected a connectivity pattern consisting of 23 RSFCs

using a non-zero coefficient in the best MoCA scores estima-
tion model corresponding to greater contributions to the esti-

mation of the MoCA scores. We did not include any clinical
characteristics in the best model. The selected 23 RSFCs, as
key features of the MoCA estimation, are illustrated in

Figure 3, and detailed information about the same, such as
their correlations with MoCA as well as their contributions
to the classification of cognition is listed in Table 2. As

indicated in Table 2, the selected connectivity pattern mainly
consisted of RSFCs within the DMN, followed by between
the DMN and other resting state brain networks such as the

audio network (AN), the visual network (VN), effective con-
trol network (ECN), and the motion network (MN). These
findings suggest that the cognitive impairment of patients with
T2DM may be associated with the abnormality of connectivity

with and between these different resting state networks.
Among the selected 23 RSFCs, there were 3 between the

brain regions within DMN (Figure 3). The first was the func-

tional connection between the right caudate and the right hip-
pocampus. The second was the connectivity between the right
superior frontal gyrus (orbital) and the right superior frontal

gyrus. The third was the connectivity between the right rectus
and the left superior frontal gyrus (orbital). DMN is consid-
ered to be a major contributor to cognitive function [19,20],
and the abnormal activity of the DMN has been demonstrated

to be related to some mental disorder such as MCI [21], AD
[22] or other mental disorders [23]. Particularly, Yang et al.
[14] found that cognitive impairment in patients with T2DM

presented a significantly decreased RSFC strength within the
DMN than the normal controls; however, such an abnormality
was not observed when comparing patients with T2DM who

have normal cognition and normal controls. This evidence
along with our findings suggested that the cognitive impair-
ment of patient with T2DM might be related to the normality

of connections within the DMN.
Among the 23 selected key RSFCs, there were 9 between

regions of DMN and regions of task-positive networks
(Figure 3, Table 2). First, there were 5 connections between



Figure 1 Feature selection with E-net

Tuning parameter selection in the E-net model used 10-fold cross-validation via minimum criteria. The mean absolute error is plotted

versus log (k). The left vertical line represents the value of k that gives minimum mean absolute error, and the right vertical line represents

the largest value of k that error was within 1� standard error of the minimum. The left vertical line was used as the optimal value in this

study.
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the DMN and the ECN, namely the ones between the left
hippocampus and left inferior frontal gyrus (opercular), the

left precentral gyrus and left inferior frontal gyrus (orbital),
the right putamen and left inferior frontal gyrus (opercular),
the left inferior parietal gyrus and left inferior frontal gyrus

(opercular), and between the right parahippocampal gyrus
and left middle frontal gyrus. Second, there were two connec-
tions between the DMN and the AN, namely the ones between

the right anterior cingulum cortex and left superior temporal
gyrus (pole), and between the right precuneus and right heschl.
Lastly, there were two connections between the DMN and the
MoN, namely the ones between the right superior frontal

gyrus (medial) and right middle cingulum cortex, and between
the left superior frontal gyrus (medial) and right paracentral
lobule.

The present study also revealed the connections among
task-positive networks (Figure 3, Table 2). There were 3 con-
nections between the AN and the ECN, 3 connections between

the AN and the VN, and 2 connections between the VN and
ECN. Additionally, there were 2 connections within the
ECN and 1 connection within the AN. The results suggested
that hippocampus could be a crucial central hub in the selected

RSFCs, which was consistent with findings of previous studies
focusing on the insulin resistance in youth [24–26]. Although
the dysconnectivity patterns in hippocampal and striatal

reward regions in youth susceptible to diabetes relates directly
to the degree of insulin resistance, our finding further
suggested that RSFCs related with hippocampus were
significantly correlated with the cognitive impairments in
patients with T2DM.
Cognition classification and performance evaluation

We conducted a correlation analysis between the selected fea-

tures and MoCA scores to investigate the relationship of these
selected RSFCs to the cognitive performance. Seven of the
selected 23 RSFCs demonstrated significant positive correla-

tion with MoCA scores (r> 0, and P < 0.05 after Bonferroni
correction for the number of features), and two of the selected
23 RSFCs showed a significant negative correlation with
MoCA scores (r > 0, and P < 0.05 after Bonferroni correc-

tion for the number of features). Additionally, there were three
RSFCs that showed marginally significant negative correla-
tions with MoCA scores. Detailed information regarding the

correlation analysis is shown in Figure 4. Moreover, these
RSFCs were presented in Figure 5. We can see that five of
the nine RSFCs with significant or marginally significant cor-

relations with MoCA scores involved in brain regions of
DMN, suggesting the importance of DMN. To investigate if
there were differences between the patients with normal and

impaired cognition, a two-sampled t-test of the selected 23
RSFCs were performed between the two groups (Figure 6).
Most of these RSFCs (18/23) showed significant differences
between these two groups (P < 0.05), while all of the 5 RSFCs

without significant differences were either between regions of



Figure 2 Results of MoCA estimation and cognition classification

A. The plot of real versus estimated MoCA scores. B. The result of the permutation test to estimate MoCA. The predictions based on 500

permutations were evaluated by the Pearson’s correlation coefficients between the estimated and permuted MoCA. The red line indicates

the estimation based on non-permuted MoCA. C. The ROC curve to classify cognition (AUC = 0.9737). The estimated MoCA was

calculated by the E-net model, and the real MoCA was obtained by a MoCA test. D. The result of the permutation test to classify

cognition. Predictions were based on 500 permutations, and the classifications were evaluated by the classification rates. The red line

indicates the classification rate based on non-permuted labels. MoCA, Montreal Cognitive Assessment; ACC, accuracy; MAE, mean

absolute error; ROC, receiver operating characteristic; AUC, the area under the ROC curve.
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DMN and regions of task-positive networks or among the

regions of task-positive networks.
Classification of the results of cognition indicated that the

SVM classifier achieved a performance with an AUC of
0.9737 and the accuracy of classification was 90.54%, based

on the selected 23 RSFCs while using a 10-fold cross validation
(Figure 2), and there was an absence of better classification
results that were detected using the non-parametric permuta-

tions with a P value of P = 0.002 (Figure 2). Additionally,
the sensitivity and specificity of the classification model were
92.11% and 88.89%, respectively. The contribution of each

selected RSFC to the classification of cognition was analyzed
with its weight in the SVM model. Detailed information about
the contributions of the 23 RSFCs is provided in Table 2.

The relatively high sensitivity and specificity of the classifi-

cation model ensured that the 23 RSFCs selected via E-net
analysis could be used as the potential biomarkers to either
evaluate or identify the cognitive impairment of T2DM

patients. It was noted that, as revealed via correlation analysis,
more than half of the 23 RSFCs (14 out of 23) were not signif-
icantly correlated with the MoCA score. Therefore, the single-

variable method (e.g., Pearson correlation) ‘‘underestimates”
the role of these RSFCs in evaluating the cognitive decline
of patients with T2DM. Furthermore, due to the limited num-
ber of brain regions and connectivity between these regions,

the connectivity patterns do not individually match with a
large number of cognitive processes. Therefore, according to
a network theory, an interaction among different regions or

networks may be more relevant to a certain cognitive process
than any particular individual region or network [22,27,28].
If this idea is correct, the RSFC pattern that we identified

using a MVPA may provide a relatively complete profile of
the neural mechanism of cognitive impairment in patients with
T2DM, and reveal potential biomarkers to evaluate or identify
the associated cognitive impairment.

Limitations

The present study has a number of limitations. First, it was a

cross-sectional investigation that only focused on the cognitive



Figure 3 The RSFCs selected from the MoCA estimation model

A. The network connectivity diagram of the RSFCs selected from the MoCA estimation model. B. Brain surface rendering of the RSFCs

selected from the MoCA estimation model. The orange dots indicate the brain regions of auditory network and the green dots indicate

brain regions of DMN, the indigo dots indicate the brain regions of effective control network, the blue dots indicate the brain regions of

motor network, and the red dots indicate the brain regions of visual network. The red lines indicate the RSFCs between regions of the

DMN, the green lines indicate the RSFCs between regions of the DMN and regions of task-positive networks, and the blue lines indicate

the RSFCs between regions of task-positive networks. In panel B, larger dots indicate more connections of the brain regions. DMN,

default mode network; RSFC, resting state functional connection.
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impairment in patients with T2DM. However, patients with
T2DM and cognitive impairment are at a significant risk of

developing AD and MCI; therefore, further longitudinal stud-
ies are required to elucidate the changes in the whole brain
RSFCs with regard to this cognitive impairment, particularly

as it progresses into either AD or MCI. Additionally, although
the sample size in the present study was large for an fMRI
study, it was relatively small for a clinical study, and this is also

a reason to explain the absence of independent validation.
Future studies with a larger population sample or multicenter
imaging data may further confirm the potentiality of the
RSFCs in predicting the cognitive impairment in patients with

T2DM, and develop an outperformed prediction model with
independent validation. Lastly, possible effects of different
hypoglycemic agents may impact the results. Future studies

should take this into consideration and explore its potential
effects.

Conclusion

Here we used an MVPA method to investigate the correlations
between the RSFCs and cognitive impairments in patients with

T2DM. We observed that the T2DM associated cognitive
decline could be predicted via an RSFC pattern. This connec-
tivity pattern included the connections between regions within
the DMN, along with those between the task-positive net-
works and the DMN, as well as those within the task-

positive networks. Although majority of these connections
do not individually demonstrate significant correlation with
the cognition of patients with T2DM, all of them together

are significantly correlated with cognitive impairment. These
results suggest that this RSFC pattern may play important
roles in the T2DM related cognitive decline; therefore, can

be regarded as potential biomarkers to evaluate or identify this
cognitive impairment.

Materials and methods

Patients

We recruited 95 patients with T2DM from the Henan Provin-
cial People’s Hospital. We used the newest criteria of the

American Diabetes Association [29] to define the disease. All
these patients were between 43 and 75 years of age, had been
suffering from the disease for longer than a year, were rou-
tinely treated with hypoglycemic agents, and were closely

self-monitored. Our exclusion criteria were as follows: (1) a
history of brain lesions such as stroke or brain tumors; (2) a
history of alcohol or substance abuse; (3) a psychiatric or

neurological disease, including major depression or any other



Table 2 RSFCs selected as the key features from the MoCA estimation model for cognition classification

ROI1 ROI2
Contribution Correlation with MoCA P value

Brain region Coordinate RSN Brain region Coordinate RSN

CAU_R (25) 11, 18, 5 DMN HIP_R (20) 25, �10, �15 DMN �0.20651 �0.297 0.069

SFG_orb_R (11) 22, 63, �6 DMN SFG_R (6) 22, 0, 64 DMN 0.00917 0.349 0.023*

REC_R (11) 8, 35, 18 DMN SFG_orb_L (11) �16, 47, �13 DMN �0.07694 �0.262 0.23

IFG_orb_L (47) �40, 36, �12 ECN IFG_oper_L (48) �53, 14, 9 ECN 0.158143 0.338 0.023*

IPG_L (40) �45, �43, 53 DMN IFG_oper_L (48) �53, 14, 9 ECN 0.157015 0.327 0.023*

HIP_L (20) �25, �21, �10 DMN IFG_oper_L (48) �53, 14, 9 ECN 0.079794 �0.261 0.253

HES_L (48) �46, �15, 12 AN INS_L (48) �40, 17, �2 AN 0.036246 �0.305 0.069

STGp_L (38) �40, 15, �20 AN ACC_R (24) 8, 37, 16 DMN �0.0138 0.263 0.23

IFG_orb_L (47) �40, 36, �12 ECN PreCG_L (6) �42, 0, 32 DMN �0.03047 0.347 0.023*

HES_L (48) �46, �15, 12 AN IOG_R (19) 38, �81, �7 VN �0.06352 0.225 0.667

LING_R (18) 16, �67, �3.87 VN IFG_tri_R (45) 50, 30, 14 ECN �0.06527 �0.297 0.069

MCC_R (24) 8, �9, 40 MoN SFG_med_R (10) 9, 51, 30 DMN �0.06985 �0.279 0.138

CAL_R (17) 17, �68, 10 VN IFG_tri_L (45) �48, 35, 12 ECN �0.07421 �0.365 0.023*

HES_R (48) 46, �15, 12 AN PCNU_R (5/23) 6, �57, 59 DMN �0.07937 0.321 0.046*

STGp_R (38) 54, 9, �2 AN IOG_L (19) �36, �82, �8 VN �0.11025 �0.349 0.023*

ROL_oper_L (48) �47, �8, 14 ECN MFG_R (8) 37, 33, 34 ECN �0.13138 �0.262 0.23

PUT_R (48) 29, 6, 8 DMN IFG_oper_L (48) �53, 14, 9 ECN �0.13228 �0.292 0.092

MTG_L (21) �54, �54, 8 AN MFG_orb_L (10) �5, 51, �6 ECN �0.17921 �0.307 0.046*

PAL_L (48) �18, 0, 0.21 AN ROL_oper _R (48) 53, �6, 15 ECN �0.18165 �0.239 0.46

MTGp_L (38) �43, 16, �32 AN MFG_L (8) �33, 10, 54 ECN �0.21036 �0.348 0.023*

STGp_R (38) 54, 9, �2 AN SOG_R (19) 23, �76, 34 VN �0.22058 �0.296 0.092

PCL_R (4) 7, �32, 68 MoN SFG_med_L (10) �5, 49, 31 DMN �0.23836 �0.262 0.23

PHG_R (28) 25, �15, �20 DMN MFG_L (8) �33, 10, 54 ECN �0.28274 �0.251 0.322

Note: RSFC, resting state functional connection; ROI; region of interest; RSN, resting state network; DMN, default mode network; ECN, executive control network, AN, auditory network; MoN,

motor network; VN, visual network. CAL, calcarine; CAU, caudate; ACC, anterior cingulum cortex; MCC, middle cingulum cortex; HES, heschl; HIP, hippocampus; IFG_oper, inferior frontal gyrus

opercular; IFG_orb, IFG orbital; IFG_tri, IFG triangular; INS, insula; IOG, inferior occipital gyrus; IPG, inferior parietal gyrus; LING, lingual; MFG, middle frontal gyrus; MFG_orb, MFG orbital;

MTG, middle temporal gyrus; MTGp, MTG pole; PAL, pallidum; PCL, paracentral lobule; PHG, parahippocampal gyrus; PreCG, precentral gyrus; PCNU, precuneus; PUT, putamen; REC, rectus;

ROL_oper, rolandic opercular; SFG, superior frontal gyrus; SFG_med, SFG medial; SFG_orb, SFG orbital; SOG, superior occipital gyrus; STGp, superior temporal gyrus pole; R, right; L, left. *,

P< 0.05 (after Bonferroni correction for the number of features).
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Figure 4 Correlations between the selected RSFCs and MoCA scores

Pearson’s correlations between the selected RSFCs and MoCA scores were calculated for different region pairs. The red dots indicate the

cognition impairment group with MoCA scores <26. The blue dots indicated the normal cognition group with MoCA scores >26. The

dashed line indicates the correlation trend line. IFG_orb_L, left inferior frontal gyrus orbital; IFG_oper_L, left inferior frontal gyrus

opercular; IFG_tri_L, left inferior frontal gyrus triangular; IPG_L, left inferior parietal gyrus; SFG_orb_R, right superior frontal gyrus

orbital; SFG_R, right superior frontal gyrus; PreCG_L, left precentral gyrus; CAL_R, right calcarine; HES_R, right heschl; PCNU_R,

right precuneus; STGp_R, right superior temporal gyrus pole; IOG_L, left inferior occipital gyrus; MTG_L, left middle temporal gyrus;

MFG_orb_L, left middle frontal gyrus orbital; MTGp_L, left middle temporal gyrus pole; MFG_L, left middle frontal gyrus; CAU_R,

right caudate; HIP_R, right hippocampus; LING_R, right lingual; INS_L, left insula.
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psychopathology; (4) a history of hypertension; (5) a history of

hypoglycemic episodes; and (6) contraindications to MRI. All
patients underwent a MoCA test to examine their general cog-
nition [30]; an education-adjusted MoCA score was detected

for every patient [31]. The Ethics Committee of Henan Provin-
cial People’s Hospital approved the present study in accor-
dance with the Helsinki declaration, and written informed
consent was obtained from all patients prior to their participa-
tion in our study. The characteristics of the patients are sum-

marized in Table 1.

Data acquisition and imaging processing

All MRI images were captured using a Magnetom Trio 3.0 T
scanner (Siemens, Erlangen, Germany) at the Radiology



Figure 5 RSFCs demonstrate significant or marginally significant correlations with MoCA scores

A. The network connectivity diagram of the RSFCs which were significantly or marginally significantly associated with MoCA scores. B.

Brain surface rendering of the RSFCs demonstrated significantly or marginally significantly associated with MoCA scores. The red lines

indicate the RSFCs significantly correlated with MoCA scores, the blue lines indicate the RSFCs showed marginally significant

correlations with MoCA scores. The orange dots indicate the brain regions of auditory network, the green dots indicate the brain regions

of DMN, the indigo dots indicate the brain regions of effective control network, and the red dots indicate the brain regions of visual

network. In panel B, larger dots indicate more connections of the brain regions. Associations between RSFCs and MoCA scores are

considered significant with P < 0.05 after Bonferroni correction for the number of features, while associations are considered marginally

significant with P � 0.05 after Bonferroni correction for the number of features,.
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Department of Henan Provincial People’s Hospital utilizing a

12-channel receive-only head coil. The patients were instructed
simply to rest with their eyes closed, to relax, but not fall
asleep, and to keep still. Functional resting state images were

acquired using a gradient echo T2-weighted pulse sequence
with TR = 2000 ms, TE = 30 ms, matrix = 64 � 64, field of
view (FOV) = 240 mm � 240 mm, thickness = 4 mm, and flip

angle = 90�. The functional resting state scan lasted for 7 min,
and 210 volumes were collected.

The data was preprocessed via the Data Processing Assis-

tant for Resting-State toolbox (DPARSF; http://www.rest-
fmri.net/forum/DPARSF). We discarded the first ten
volumes to equilibrate the magnetic field. All remaining vol-
umes were then realigned to adjust for head motions using a

least-squares minimization technique. Any patient with head
motion >2.0 mm of translation or >2.0� of rotation in any
direction were excluded. We then further processed the image

data with the spatial normalization based on Montreal Neuro-
logical Institute (MNI) space [32], and resampled to
3 � 3 � 3 mm3. Smoothing (full width at half maximum

[FWHM] = 4 mm), detrending, and filtering (0.01–0.08 Hz)
were performed in order. Regression analysis including six
head motion parameters and mean time series of global, white
matter, and cerebrospinal fluid signals were conducted to

remove the possible effects on the results.
We performed functional connectivity analysis using

Resting-State fMRI Data Analysis Toolkit (REST). The regis-
tered images were divided into 90 regions according to the
automated anatomical labeling atlas [33]. The atlas divided

the cerebrum into 90 regions (45 in each hemisphere). The rep-
resentative time series of each region used to analyze func-
tional connectivity was estimated by averaging the fMRI

time series over all voxels in the region. We evaluated the func-
tional connectivity between each pair of regions with a Pearson
correlation coefficient. A Fisher’s transform was applied to

improve the normality of the correlations. Therefore, a
resting-state functional network captured via a 90 � 90 sym-
metric matrix was detected for each patient. We removed 90
diagonal elements and the upper triangle elements of the

matrix were used as features for further analysis, i.e., the fea-
ture space was spanned by the (90 � 89)/2 = 4005-
dimensional feature vectors.

MoCA estimation and feature selection

The MoCA scores were estimated with a linear model based on

the 4005 RSFCs and the clinical characteristics of patients
including their age, sex, fasting glucose, glycated hemoglobin
(HbA1c), total cholesterol, body mass index (BMI), and disease

duration. The linear model is defined as follows:

http://www.restfmri.net/forum/DPARSF
http://www.restfmri.net/forum/DPARSF


Figure 6 RSFCs comparison between normal cognition group and cognition impairment group

A. The network connectivity diagram of the RSFC comparison between normal cognition group and cognition impairment group. B.

Brain surface rendering of the RSFCs comparison between normal cognition group and cognition impairment group. The orange dots

indicate the brain regions of auditory network, the green dots indicate the brain regions of DMN, the indigo dots indicate the brain

regions of effective control network, the blue dots indicate the brain regions of motor network, and the red dots indicate the brain regions

of visual network. The red lines indicate significant difference in RSFCs between the two groups, whereas the blue lines indicate that there

is no significant difference in RSFCs between the two groups. In panel B, larger dots indicate more connections of the brain regions.

Differences in RSFCs between normal cognition group and cognition impairment group are considered significant with P < 0.05 (two

sample t test).

450 Genomics Proteomics Bioinformatics 17 (2019) 441–452
y ¼
Xn

i¼1

bixi þ b0 þ e

Where, n was the number of features used in the model, here
n= 4012; y was MoCA score of the patients; xi (i = 1, 2,
. . ., n) was the predicting parameter in the model, such as

the RSFC or its clinical characteristics; bi (i= 0, 1, 2, . . ., n)
was coefficient of each parameter, and e was the error term.
E-Net was used to estimate the coefficients of the model [34].

Here, we simultaneously estimated the coefficients and selected
the feature, minimizing the following cost function:

XN

i¼1

ðyi �
Xn

j¼1

bjxij � b0Þ
2

þ k
Xn

j¼1

ða bj

�� ��þ 0:5ð1� aÞðbjÞ2Þ

Where, N was the number of patients; xij was the jth feature of
the ith patients; yi was the MoCA score of the ith patients; and
k and a were regularization parameters. Subsequently, features

with a greater contribution to the MoCA estimation could be
selected.

We used glmnet [35] to estimate MoCA. We selected k and

a and estimated MoCA using a 10-fold cross validation. The
candidate values for the k and a parameters were both
restricted to a range between 0 and 1 in steps of 0.1, in which
the optimal k and a were selected via minimum criteria. The
model goodness criteria that we employed were the MAE

and the correlation between the estimated and real MoCA
scores. The features of the best estimation model were further
used to classify cognition.

Cognition classification and performance evaluation

To classify cognition, 36 patients with a MoCA score >26

were taken as the normal cognition group, while 38 patients
with a MoCA score <26 were taken as the cognition impair-
ment group. We classified cognition for these two groups with
the features selected from the MoCA estimation model. When

we obtained the data for features that highly correlated with
MoCA, we used linear support vector machines (SVM) to per-
form cognition classification. The toolbox LibSVM [36] was

used to construct the classification model based on the selected
features. The results were based on the best parameter setting.
We then investigated the discrimination performance of the

SVM model with a 10-fold cross validation. The classification
results were further interpreted using the classification accu-
racy, specificity, and sensitivity based on the cross-validation.

Moreover, the ROC curve and AUC were also calculated.
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Evaluation of the selected RSFCs

We performed a correlation analysis between the selected
RSFCs andMoCA scores to investigate the relationship of these
selected RSFCs to the cognitive performance. A linear regres-

sion was identified between the RSFC andMoCA score of each
included patient, so we can detect the correlation between them.

We also analyzed the contribution of each RSFC to the
cognitive classification. The weight value of the RSFC in the

SVM model was considered as contribution to classify cogni-
tion. The weight value of each feature was calculated through
summing the coefficients allocated to the RSFC across the 10-

fold cross validation, and then normalized by dividing the
maximal coefficients across all the selected features.

Permutation tests

The framework of permutation tests to assess predictive per-
formance has been used in several previous studies [10,11].

We performed 500 permutations to estimate the probability
of detecting identical MoCA estimation/classification perfor-
mance. Specifically, the MoCA (for MoCA estimation)/cogni-
tion labels (for the classification of cognition) of the patients

were permuted 500 times randomly. Furthermore, the P value
of the probability for detecting the estimation/classification
accuracy was defined as follows:

P ¼ 1þNBetter predictions

1þN

Where, N = 500 here represents the number of permutations;
to estimate MoCA, NBetter predictions was the number of permu-
tations with larger correlations (compared to the result based

on non-permuted MoCA scores) between the permuted and
estimated MoCA scores for the estimation; and to classify cog-
nition, NBetter predictions was the number of permutations with
higher classification accuracy (compared to the result based

on non-permuted labels).
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