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Active earth pressure 
against flexible retaining wall 
for finite soils under the drum 
deformation mode
Weidong Hu, Xinnian Zhu*, Yongqing Zeng, Xiaohong Liu & Chucai Peng

A reasonable method is proposed to calculate the active earth pressure of finite soils based on the 
drum deformation mode of the flexible retaining wall close to the basement’s outer wall. The flexible 
retaining wall with cohesionless sand is studied, and the ultimate failure angle of finite soils close 
to the basement’s outer wall is obtained using the Coulomb theory. Soil arch theory is led to get the 
earth pressure coefficient in the subarea using the trace line of minor principal stress of circular arc 
after stress deflection. The soil layers at the top and bottom part of the retaining wall are restrained 
when the drum deformation occurs, and the soil layers are in a non-limit state. The linear relationship 
between the wall movement’s magnitude and the mobilization of the internal friction angle and the 
wall friction anger is presented. The level layer analysis method is modified to propose the resultant 
force of active earth pressure, the action point’s height, and the pressure distribution. Model tests are 
carried out to emulate the process of drum deformation and soil rupture with limited width. Through 
image analysis, it is found that the failure angle of soil within the limited width is larger than that of 
infinite soil. With the increase of the aspect ratio, the failure angle gradually reduces and tends to 
be constant. Compared with the test results, it is shown that the horizontal earth pressure reduces 
with the reduction of the aspect ratio within critical width, and the resultant force decreases with the 
increase of the limit state region under the same ratio. The middle part of the distribution curve is 
concave. The active earth pressure strength decreases less than Coulomb’s value, the upper and lower 
soil layers are in the non-limit state, and the active earth pressure strength is more than Coulomb’s 
value.

Deep foundation pits are often excavated near the basement of existing buildings in urban and municipal engi-
neering. The undisturbed soil between the retaining wall and the existing wall is narrow, and its width is limited, 
which is also the research object of this paper. Row pile wall, underground diaphragm wall, and sheet pile wall 
have been extensively used in enclosure structure of foundation pit engineering and slope engineering. The 
thickness of the retaining wall structure is minimal compared with the height. The wall has obvious flexure 
deformation, which cannot meet the assumption regarding the rigid retaining wall, called the flexible retaining 
wall. The classical earth pressure theories of Coulomb and Rankine cannot accurately predict the earth pressure 
on the flexible retaining wall.

The structural deformation of the retaining wall caused by the excavation of internal support and anchor 
pull system can be classified into three types1–3. The first type is a cantilevered triangle with the most significant 
displacement at the top of the wall. The second type is drum deformation because the upper part of the flexible 
retaining wall is supported. The wall is embedded in the soil, indicating that the displacement of the top and 
bottom remains unchanged. The abdomen of the retaining wall structure protrudes into the foundation pit, and 
the displacement curve is parabolic. The third type of deformation is the combination of the first two. For the 
supporting and anchoring flexible retaining wall, the drum deformation mode bulging into the pit is the most 
typical one, which is also the basis for studying other combined wall movement modes. It is of great significance 
to study the deformation’s behavior, the failure mechanism, and the earth pressure distribution.

The drum deformation mode of the flexible retaining wall is characterized by large deformation in the middle 
and small deformation at both ends. The horizontal displacement of soil is mostly parabolic. The earth pressure 
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on the retaining wall is nonlinear along with the wall’s height, which is affected by the magnitudes of displacement 
and the displacement mode of wall movement. Milligan2 carried out the model test of flexible retaining wall with 
support at the top, studied the relationship between the drum deformation of the wall and the displacement of 
the soil, and the development of sliding surface behind the wall. Lu et al.4 carried out the active earth pressure 
and displacement tests of a cantilever and single anchor flexible retaining wall. They obtained the R-shaped 
distribution of active earth pressure along the anchored retaining wall. Zhang et al.3 presented the relationship 
between the coefficient of earth pressure of sand and the increment ratio of axial and lateral strain based on the 
triaxial test. They deduced the unified expression of displacement and the calculation method of earth pressure 
under any displacement state. Based on the previous experiments and numerical analysis, the calculation method 
of active earth pressure resultant force and its distribution on flexible retaining walls under arbitrary displace-
ment is proposed by Ying et al.5. However, the above earth pressure research does not involve the retaining wall 
adjacent to the outer wall or vertical slope and the soil with limited width.

Under the drum deformation mode, the wall’s top and bottom are constrained by the support and the soil 
layers, respectively. The deformation feature can be seen as the upper wall rotates outward around the top of the 
wall while the lower wall revolves outward around the bottom of the wall6–10. There is a relative displacement 
tendency between the upper and lower soils during the deformation, resulting in the horizontal shearing stress, 
which cannot be ignored. Therefore, the coefficient and distribution of active earth pressure are affected. As a 
result, the soil layer’s deformation and earth pressure distribution near the top and bottom of the wall have RT 
mode and RB mode characteristics.

The existing theoretical research is still insufficient. Based on the relationship between the unit earth pressure 
and the horizontal displacement, the calculation formulas3,11,12 were put forward, but the relative displacement 
was not considered under the drum deformation. The results show that earth pressure distribution is always 
between the static and active states, which can’t reflect the redistribution of earth pressure caused by the drum 
deformation of flexible retaining walls. Ying et al.13 considered the relative displacement of the adjacent depth 
soil layers, but the earth pressure dropped sharply at the wall’s maximum displacement, which was unreasonable.

The deformation of the soil layer near the top and bottom of the retaining wall is limited, and it is impossible 
to reach a limit state in company with the soil layer in the middle abdomen. The rotating angle of the retaining 
wall is slight when in service, which makes the displacement of the soil near the top and bottom of the wall very 
small, and it is not easy to reach the limit state. As a result, the soil shearing strength and friction between wall 
and soil can’t be fully mobilized, and they are actually in a non-limit active state. The magnitude of active earth 
pressure is affected by the drum deformation mode, which results in the redistribution of earth pressure. The 
soil layer’s active earth pressure near the top and bottom of the wall increases due to the soil arching14–16, while 
the active earth pressure of the soil layer in the middle of the wall decreases relatively.

Fathipour et al.17,18 analyzed the lateral earth pressures exerted on retaining walls having an unsaturated back-
fill and backfilled with geosynthetic-reinforced soil strata with finite element limit analysis using second-order 
cone programming. Fathipour et al.19,20 evaluated the modified pseudo-dynamic lateral earth pressures acting 
on retaining structure filled with granular backfill and filled with an anisotropic medium of dry and noncohesive 
material. Mirmoazen et al.21 conducted a detailed numerical study to evaluate the lateral earth pressure acting on 
geosynthetic-reinforced retaining walls with an anisotropic granular backfill subjected to strip footing loadings. 
In the above research, the finite element lower limit analysis coupled with second-order cone programming is 
introduced into the retaining wall structure stability analysis and earth pressure calculation. However, the non-
limit state of soil and soil arching effect is not considered in the earth pressure calculation.

Research on lateral earth pressures exerted on flexible retaining walls with limited granular soil22–25 has 
attracted more and more attention in practical engineering. Therefore, to better study the active earth pressure 
against the flexible retaining wall, the wall movement mode, the actual non-limit active state of the soil layer 
near the top and bottom of the wall, and the soil arching should be taken into account16,26–30.

The soil arch theory is led into this research based on the progressive rupture mechanism in the cohesionless 
sand under drum formation mode. First, the differential level layer method is applied to analyze the partition 
unit. Then, considering the shearing stress and the partial mobilization of shearing strength and wall friction in a 
non-limit state, the distribution of the active earth pressure, the resultant force’s magnitude, and the action point’s 
height are obtained. Finally, the model tests are conducted to verify further the proposed method in the paper.

Analysis model of flexible retaining wall
The retaining wall is close to the outer basement wall or vertical rock slope, and the height of the retaining wall 
is H, as shown in Fig. 1. Cohesionless sand is filled behind the retaining wall, and the narrow width is l = n∙H (n 
is the ratio of width to height).

The middle abdomen of the flexible retaining wall protrudes into the excavation under the top strut’s support 
and the constraint of the embedded end at the bottom, forming a drum deformation. The only rotation occurs 
at the top and bottom of the retaining wall, and its horizontal displacement is assumed to be zero. It is assumed 
that the midpoint H/2 is the place of maximum deformation and horizontal displacement. Because of the limited 
width of retaining sand, the slip plane is cut off by the outer wall or rock slope and cannot fully develop to the 
sand top surface. Thus, the height of the wall is divided into H1 and H2. The sliding surface is assumed to be a 
plane, passing through the bottom of the wall and forming an angle β with the level plane.

Due to the different widths of the limited soil, the intersection point c of slip surface and vertical external wall 
or rock slope may be higher or lower than the maximum horizontal displacement of the midpoint, including 
two cases, as shown in Fig. 1. When H1 ≤ H/2, the soil mass is divided into upper and lower areas with ce as the 
boundary. The area above the ce boundary is zone I, and the area below the ce boundary is divided into zones II, 
III, and IV from top to bottom. The up thin layer at the maximum horizontal displacement is the intermediate 
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transition zone III (Fig. 1a). When the width is minimal, H1 > H/2, the area below the ce boundary is zone IV, 
and the area above the ce boundary is divided into zones I, II, and III from top to bottom. The up thin layer at 
the maximum horizontal displacement is the intermediate transition zone II (Fig. 1b).

Based on the wall friction and the existence of force N, for simplifying the calculation, it is approximately 
considered that the earth pressure distribution on the wall meets the triangular distribution along with the height. 
Therefore, it is the same at the same depth16,31,32. By introducing the parameter m, then:

Ea is the resultant force of active earth pressure acting below the normal, and its direction is δ angle from the 
normal of the back of the wall.

Based on the Coulomb method, the vertical and horizontal equilibrium function on the sliding surface is 
derived.

The extreme value of Ea can be solved ( dEa/dβ = 0 ) to obtain the value of β of the most dangerous sliding 
surface as the soil enters an active limit state. The value of the extreme thrust Ea can be obtained by using Eq. (2)16.

(1)N = mEa =

(

H1

H

)2

Ea.

(2)Ea =
1
2
γ nH2(2− n tan β)

sin δ[1+ (1− n tan β)2] + cos δ cot(β − ϕ)[1− (1− n tan β)2]
.

Figure 1.   Slip surface.
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The active earth pressure coefficient
Firstly, taking the situation shown in Fig. 1a as the research object, the earth pressure coefficient and the soil arch-
ing are analyzed. ce is taken as the boundary line according to the different boundary conditions of the finite soil.

The upper zone I is located between the backs of the retaining wall and the outer wall. In the process of drum 
deformation and ground subsidence, because of friction between two vertical parallel walls, the stress deflection 
occurs due to the soil arch, and the horizontal stress on the retaining wall is no longer minor principal stress. 
Therefore, the horizontal layer unit at depth z (in zone I) is taken for analysis. Each point’s minor principal stress 
trajectories are connected to form a continuous arch curve, as shown in Fig. 2. Although the stress and boundary 
conditions of the retaining soil in the lower zones II, III, and IV are different from those in the upper zone I, the 
vertical and lateral deformation are also limited by frictions (the interface friction between the retaining wall 
and the soil and the soil friction on the failure plane). Therefore, the direction of the principal stress deflects, and 
its magnitude remains unchanged along the arch. Taking the layer unit at depth z (in zones II, III, and IV) for 
analysis shown in Fig. 3, each point’s minor principal stress trajectories on the horizontal unit form a half arch. 
Moreover, the horizontal shearing stress exists on the level unit’s surface objectively, and the shearing stress of 
each point is not equal because of the unequal deflection angle of each point.

The circular arch is generally employed for analysis by many scholars16,26,33,34. Since the circular arch’s calcula-
tion results are close to those of other shapes of arch curves, the circular arch stress trajectory is used to establish 
the calculation model in this paper.

Figure 2.   Trajectory of minor principal stress of zone I.

Figure 3.   Trajectory of minor principal stress in zone I, III, IV.
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After stress deflection occurs, an arched curve with radius r is formed at point f. The center of the circle is 
point O. The vertical stress distribution on the layer unit at depth z is uneven considering the soil arching effect. 
Herein, according to the study by Handy15 and Paik and Salgado14, the lateral active earth pressure coefficient 
Kawn is defined as

where σh is the normal earth pressure on the interface between retaining wall and soil at the depth z, σv  is the 
average erect pressure on the level at the same height.

The stress of point Q on the arch line is expressed as follows.

where σ1 is the major principal stress and θ is the deflection angle between the major principal stress and the 
level at point Q. The deflection angles at point f and g are indicated as:

Considering the symmetry of soil mass in zone I, half of the circular arch trajectory can be taken for analysis. 
The horizontal span Bz is l/2, the deflection angle at point j is θj = π/2, and the average vertical stress along the 
arch in zone I is

In the formula, the curve radius of the minor principal stress arch curve is r = Bz/(cos θf − cos θj) . The lateral 
coefficient of active earth pressure Kawn1 in zone I can be presented from Eqs. (4) and (6),

The mean shearing stress of soil arching line in zone I is

The average shearing stress coefficient k is defined as average shearing stress ratio to average vertical stress 
on the level layer unit, which should be less than tanφ.

Thus, the average shearing stress coefficient k1 of soil in zone I can be given

To the lower soil in zones II, III and IV, the average vertical stress on the track line of minor principal stress 
arching can be expressed as

where, the radius r = Bz/(cos θf − cos θg ) . Similarly, the lateral coefficient of active earth pressure 
Kawn2 = Kawn3 = Kawn4 and the coefficient of average shearing stress k2 = k3 = k4 can be obtained in zones II, III and IV

(3)Kawn =
σh

σv
,

(4)

σvQ =
σ1

1+ sin ϕ
(1− sin ϕ cos 2θ)

σhQ =
σ1

1+ sin ϕ
(1+ sin ϕ cos 2θ)
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sin δ

sin ϕ
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.

(6)σv =

∫ θj

θf

σvQr sin θdθ

Bz
= σ1 −

2 sin ϕ cos2 θf

3(1+ sin ϕ)
σ1.

(7)Kawn1 =
σh

σv
=

3(1+ sin ϕ cos 2θf )

3(1+ sin ϕ)− 2 sin ϕ cos2 θf
.

(8)τ =
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τQr sin θdθ

Bz
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2 sin ϕ(1− sin3 θf )

3(1+ sin ϕ) cos θf
σ1.
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.

(10)k1 =
τ
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=

2 sin ϕ(1− sin3 θf )

3(1+ sin ϕ) cos θf − 2 sin ϕ cos3 θf
.
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σvQr sin θdθ
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2 sin ϕ(cos3 θf − cos3 θg )

3(1+ sin ϕ)(cos θf − cos θg )
σ1,

(12)Kawn2 =
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3(1+ sin ϕ cos 2θf )

3(1+ sin ϕ)− 2 sin ϕ(cos2 θf + cos2 θg + cos θf cos θg )
,
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Suppose the ultimate rupture angle is β = π/4 + φ/2, Kawn1 = Kawn2, k1 = k2. If β = π/4 + φ/2 and δ = 0, Eqs. (7) and 
(12) is able to transform into Kawn1,2 = tan2(π/4 − φ/2), that is Rankine coefficient.

Furthermore, taking the situation shown in Fig. 1b as the research object, the coefficient of earth pressure and 
soil arching are analyzed according to the same method above. Then, we can get the lateral active earth pressure 
coefficients Kawn1, Kawn2, Kawn3, and average shearing stress coefficients k1, k2, k3 in zones I, II, and III.

The coefficient of lateral active earth pressure Kawn4 and average shearing stress k4 in zone IV are obtained.

Parameter value in non‑limit state
The horizontal displacement of the retaining wall is s under the drum movement mode, and the magnitude of 
displacement at the middle point is the largest, which value is smax. Assuming that the horizontal displacement 
required for the soil to enter the full limit state is sa, the area with the displacement s ≥ sa is the entire limit state 
area, where the internal friction angle of the fill and the external wall friction angle are fully mobilized. In this 
paper, the region is defined as the intermediate transition region.

The area with horizontal displacement s < sa of retaining wall is a non-limit state area. In the non-limit state, 
because of the small magnitude of displacement, the soil friction angle φ′ and the wall friction angle δ′ partial 
mobilize that their values are between the initial state values φ0, δ0, and the ultimate state values φ, δ, respec-
tively. Considering that the mobilization of φ′ and δ′ are affected by the magnitude of horizontal displacement 
of the retaining wall, it is assumed that φ′ and δ′ increase linearly with the rise of horizontal displacement, the 
following expression is given by

and

where,

In which,

In general, δ = 2φ/3 and δ0 = φ/2. The variation of φ′ and δ′ along the retaining wall under drum deformation 
mode is shown in Fig. 4.

The height of the intermediate transition zone is set as ∆z = x·H, the soil mass within the height ∆z reaches 
the active limit equilibrium state. x is the ratio of soil layer height entering the limit state along the retaining 
wall. For the first case of H1 ≤ H/2, as shown in Fig. 5a, the depth from the top surface of the transition zone to 
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Figure 4.   φ′ and δ′ along the height of retaining wall.

Figure 5.   Drum deformation displacement mode of flexible retaining wall.
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the fill’s top surface is h = H/2 − ∆z/2. This paper limits the depth h to [H1, H/2], where h tends to H1with ∆z 
increases. When ∆z/2 ≥ H/2 − H1, the original zone II disappears, and the depth of the top surface of the transi-
tion zone is calculated as h = H1. When ∆z → 0, h tends to H/2 and is calculated as h = H/2, the thin transition 
layer shown in Fig. 1a.

For the second case of H1 > H/2, as shown in Fig. 5b, the height from the bottom of the transition zone to the 
top of the fill is set as h′ = H/2 + ∆z/2. In this paper, the depth h′ is limited to [H/2, H1], where h′ tends to H1 with 
∆z increases. When ∆z/2 ≥ H1 − H/2, the original area III disappears, and the depth of the bottom surface of the 
transition zone is calculated as h′ = H1. When ∆z → 0, h′ tends to H/2 and is calculated as h′ = H/2, which is the 
thin transition layer shown in Fig. 1b.

Solution for active earth pressure
The shearing stress on the level unit surface usually is not considered under the translation mode (T) because the 
soil mass moves as a whole, and there is no relative movement between the horizontal soil layers. However, under 
the drum movement mode, the flexible retaining wall can be regarded as the upper retaining wall rotating about 
the top (RT) and the lower retaining wall rotating about the bottom of the wall (RB). Each soil layer produces 
relative motion in the rotation direction with respect to the below layer. Therefore, there must be level shearing 
stress between the upper and lower soil. The distribution of shearing stress is very complex, and it will affect the 
moment balance condition. If the moment equilibrium condition is not involved in the derivation, then the spe-
cific distribution of shear stress is not concerned29,35. Nevertheless, different stress distribution assumptions on the 
horizontal plane will not affect two static equilibrium of force along with the horizontal and vertical directions.

In this paper, the differential level layer method is introduced. According to the relative movement trend of 
the horizontal layer unit of the soil wedge behind the wall, the action direction of the friction shearing stress 
between the level layer units in each zone is determined16,25,35,36. Under the condition of satisfying the balance 
of forces, the active earth pressure differential equation in a non-limit state is established, and then its distribu-
tion is discussed.

Zone I.  The level layer unit in zone I is shown in Fig. 6, and the static equilibrium equations are established.

In which, the second order differentiation has been omitted, σv1 is the vertical stress on the layer unit at depth 
z, and σh1 is the lateral active earth pressure.

τ1 is the horizontal shearing stress on the surface of the layer unit, assuming it is average distribution, it can 
be obtained.

where τw1 is the shearing stress on the interface, and the magnitude of τw1 is:

σn1 is the horizontal lateral pressure on the outer wall at depth z, and τn1 is the shearing stress. τn1 can be 
expressed by

dw1 is the self-weight of the level unit in zone I, and its magnitude is obtained as:

In general, there are

(22)σh1dz − σn1dz − nHdτ1 = 0,

(23)τw1dz + nHdσv1 + τn1dz − dw1 = 0.

(24)σh1 = Kawn1σv1.

(25)τ1 = k1σv1,

(26)τw1 = σh1 tan δ
′
.

(27)τn1 = σn1 tan δ
′
.

(28)dw1 = γ nHdz.

Figure 6.   Forces acting on level units in zone I.
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When z = 0, σv1 = 0 is regarded as the boundary condition of zone I, the first-order linear differential equation 
(Eq. 29) can be solved as follows.

In which

When z = H1, σv1 = D1 can be regarded as the boundary condition of equivalent load on the surface of the 
isolated body in zone II.

Zone II.  On the basis of the static equilibrium conditions of horizontal and vertical directions acting on the 
layer unit (Fig. 7), the equation is established. The second-order differential components are omitted to obtain.

where σv2 is the mean vertical normal stress on the surface of layer unit, and σh2 is the lateral active earth pressure.

τ2 is the level shearing stress on the soil layer unit. It is assumed to be uniformly distributed, and its magnitude 
is expressed as follows:

where τw2 refers to the shearing stress on the interface and its expression is

σn2 is the normal stress distributed uniformly on the rupture surface. τn2 is the shearing stress distributed 
uniformly, the formula is

In which dw2 is the self-weight of level layer element in zone II, and its expression is

By synthesizing the above formula, the first order differential equation is obtained,

in which,

(29)(1− k1 tan δ
′)
dσv1

dz
+

2Kawn1 tan δ
′

nH
σv1 − γ = 0.

(30)σv1 =
γ

B
−

γ

B
e

(

− B
A z

)

.

(31)
A = 1− k1 tan δ

′

B =
2Kawn1 tan δ

′

nH







.

(32)D1 =
γ

B
−

γ

B
e

(

− B
AH1

)

.

(33)σh2dz + τ2dz cot β − dτ2(H − z) cot β − σn2dz + τn2 cot βdz = 0,

(34)τw2dz − cot βσv2dz + (H − z) cot βdσv2 + cot βσn2dz + τn2dz − dw2 = 0,

(35)σh2 = Kawn2σv2.

(36)τ2 = k2σv2,

(37)τw2 = σh2 tan δ
′
.

(38)τn2 = σn2 tan ϕ
′
.

(39)dw2 = γ (H − z) cot βdz.
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− γ = 0

Figure 7.   Forces acting on level units in zone II.
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Equations (40) and (32) are solved to present the following equation.

By substituting Eq. (42) into Eq. (35), the horizontal active earth pressure in zone II is derived.
When z = h, σv2 = D2 is regarded as the boundary condition of equivalent load on zone III.

Zone III.  Zone III is the middle transition layer, in which the shearing strength of the soil is fully mobilized, 
the internal friction angle of fill is φ′ = φ, and the external friction angle between walls and soils is δ′ = δ. There-
fore, the mean vertical compressive stress on the top of layer (z = h) is σv3 = D2, and the mean vertical compressive 
stress at the bottom of the layer is σ′v3 = σv3 + ∆σv3, as shown in Fig. 8. When ∆z is large, the whole isolator in 
zone III is taken as the research object, and the horizontal and vertical static balance equations are established 
as follows:

and

in which, σ
h3

 is the mean lateral horizontal stress.

Thus,

in which,

When z = h, σv3 = D2 is substituted into Eq. (47) as a known loading condition, σ′v3 at the bottom of the layer 
can be obtained. Assuming σ′v3 = D3, it can also be regarded as the equivalent load on the insulator’s top surface 
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Figure 8.   Forces acting on level units in zone III.
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in zone IV. The distribution of σh3 along the height ∆z of the middle transition zone can be approximately con-
sidered as a linear distribution, and its expression is

When ∆z → 0, h = H/2 is taken for calculation, and zone III is a thin transition layer. In accordance with its 
equilibrium conditions, the solution can be obtained.

The mean vertical stress at the bottom of the thin transition level unit is

Therefore, when ∆z → 0, the mean pressure stress at the bottom of the thin transition layer is taken as the 
equivalent load on the insulator’s top surface in zone IV, and the formula is as follows.

Zone IV.  From the static equilibrium conditions of the unit in horizontal and vertical directions (in Fig. 9), 
we can get:

In which, σv4 is the mean direct stress on the layer unit’s surface at depth z, andσh4 is the horizontal active 
earth pressure.

τ4 is the level shearing stress on the surface of the layer unit, assuming a mean distribution, and its expres-
sion is:

where τw4 is the shearing stress on the contact surface, and its expression is:

σn4 is the normal stress and τn4 is the friction shearing stress, which is expressed as:

In which, dw4 is the self-weight of level layer unit in zone IV, which can be expressed as:

By synthesizing the above formula, the first order differential equation can be get,
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(49)σh3 = kawn3

[

D2 + (D2 − D3)
h− z

(H/2+�z/2− h)

]

.

(50)�σv3 =
−2k3σv3

k3 + tan(β − ϕ)
.

(51)σ
′

v3

∣

∣

∣

z=h
= σv3 +�σv3 =

−k3 + tan(β − ϕ)

k3 + tan(β − ϕ)
σv3.

(52)D3|z=h =
−k3 + tan(β − ϕ)

k3 + tan(β − ϕ)
D2.

(53)σh4dz − τ4dz cot β + dτ4(H − z) cot β − σn4dz + τn4 cot βdz = 0,

(54)τw4dz − σv4dz cot β + (H − z) cot βdσv4 + σn4dz cot β + τn4dz − dw4 = 0.
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Figure 9.   Forces acting on level units in zone IV.
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By using the boundary condition, i.e. the mean vertical stress σv4 = D3 on the top of zone IV, we can solve the 
differential Eq. (60) and get

By substituting the above Eq. (62) with Eq. (55), the lateral active earth pressure in zone IV is generated.
For calculating the second case of H1 > H/2, the same method can be used for analysis. Given the length of the 

paper, a detailed derivation is omitted. When z = 0, σv1 = 0 is the boundary condition of zone I, and the vertical 
stress on the surface of the level unit at depth z in zone I is obtained as:

When z = H/2 − ∆z/2, σv1 = D1 is regarded as the equivalent load on the top surface of zone II.

Taking into account the overall static balance of the middle transition layer in zone II, we can get

in which,

Taking σv2 = D1 at depth z = H/2 − ∆z/2 as the known loading conditions, σ′v2 at the bottom of the layer can 
be obtained. Assuming σ′v2 = D2, it can also be regarded as the equivalent load on the top surface of zone III.

Similarly, the distribution of the earth pressure σh2 along the height ∆z of the middle transition zone can be 
considered a linear distribution approximately.

Considering the equivalent load on the top surface of zone III, the vertical stress on the surface of the level 
unit at depth z is

in which,

Then we can take σv3 = D3 at depth z = H1 as the known loading conditions of equivalent load on the top 
surface of zone IV.

The vertical stress in zone IV is
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Resultant force and height of action point
When σh1, σh2, σh3, and σh4 are integrated along with the wall height, the horizontal component Eax of resultant 
force for earth pressure on the whole retaining wall can be obtained.

The expression of resultant force is given by

The height y of the point of application of the resultant force is as follows

In the first case, when ∆z/2 ≥ H/2 − H1, the depth of the top surface of the transition zone is h = H1, and the 
calculation height [H1, h] of zone II is zero. In the calculation formula of Eax and y, the calculation components 
in zone II are zero, and the original zone II is canceled. For the second case, when ∆z/2 ≥ H1 − H/2, the calculated 
height of zone III is zero, and zone III is actually canceled.

When the aspect ratio n is large, the slip plane slides out from the soil’s top surface. In this paper, H1 = 0, σh1 
in zone I is always zero, and the calculation components of zone I in the calculation formula of Eax and y are 
all zero. In fact, the original zone I has been canceled, and this problem has developed into the earth pressure 
problem of infinite soil.

Model test
As shown in Fig. 10, the self-made model is used for the experimental study37–39. The movable baffle on the left 
side of the sandbox is polypropylene plate, the fixed baffle on the right side is steel plate, the front side baffle 
is tempered glass, and the backside baffle is frame steel plate, simulating the flexible retaining wall close to the 
outer wall of the basement. The real object of the test model device is shown in Fig. 11.

Three motors are installed on the outer side of the sand loading box, as shown in Fig. 12. During the test, the 
upper and lower motors do not operate (simulating that the top of the retaining wall is supported and the bottom 
of the retaining wall is embedded). When the middle motor is running, the transmission shaft rotates slowly. 
The center of the movable baffle gradually moves horizontally outward, forming a certain horizontal displace-
ment and realizing the drum-shaped deformation displacement mode. Taking the soil with limited width in the 
test box as the PIV analysis area, the digital camera is used to take photos automatically, and the shooting time 
interval is 1–2 s. Two light sources are placed on both sides of the sandbox to reduce specular reflection. Finally, 
the images are processed by PIV analysis software.

The earth pressure is measured by five CYY9 micro earth pressure gauges arranged on the movable retaining 
wall, with a measuring range of 5 kPa and a size of Ф 22 mm × 13 mm. First, the groove is excavated along the 
vertical centerline of the movable baffle at different depths, and the micro-earth pressure gauges are embedded. 
The groove’s depth is the same as the gauge’s thickness to reduce the influence of the gauges protruding from the 
baffle. Then, a hole is drilled at the groove side to lead out the wire of the earth pressure gauge from the back of 
the wall, as shown in Fig. 13.

Four groups of soil pressure tests were carried out in this model test, and the specific test parameters are 
shown in Table 1. The mechanical parameters of sand samples are cohesion c = 0, internal friction angle φ = 36.5°, 
wall friction angle δ = 24.3°, and unit weight of the tested sand specimen γ = 15 kN/m3.
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Soil deformation analysis.  Taking the limited width as the PIV analysis area, image processing is carried 
out40,41. The deformation displacement diagram of different width sand (n = 0.2, 0.3, 0.4, 0.5, 0.7) under the drum 
movement mode is gained, as shown in Fig. 14.

As shown in Fig. 14, the sliding failure surface is a plane developing upward from the bottom of the movable 
baffle. With the increase of the filled sand’s width, the intersection of the slip plane and fixed baffle moves upward 
until the slip plane slides out from the filled sand’s top surface. When the ratio of width to height increases from 
0.4 to 0.5, the intersection point of the slip plane gradually changes from fixed retaining wall to sand top surface. 
Therefore, it can be judged that the critical ratio of width height ratio of the finite soil in the model test is between 
0.4 and 0.5. When the sand width is greater than the critical width, the retaining soil is considered semi-infinite.

The ultimate fracture surface inclination angle is measured and compared with that calculated on the basis 
of the generalized Coulomb method, as shown in Table 2. It can be seen that the model test results are close 
to the theoretical calculation results in the limited width range. With the increase of aspect ratio, the ultimate 
fracture angle decreases gradually and becomes stable. The experimental analysis shows that the fracture angle 
β approaches to π/4 + φ/2 = 63.25° under the infinite width (width height ratio n = 0.5, 0.7).

Earth pressure test results.  By using the theoretical method in this paper, the distribution of lateral active 
earth pressure with different ratios (n = 0.2, 0.3, 0.4, 0.5) in the model test is calculated, as shown in Fig. 15.

The theoretical calculation solution shows that the active earth pressure in the figure is nonlinear along with 
the height of the wall. The lateral earth pressure reduces with the reduction of ratio within the limited width. 
When the ratio decreases to n = 0.2, the lateral earth pressure decreases significantly. As the limit state region (x 
from 0.1 to 0.5) increases, the lateral earth pressure near the retaining wall’s top and bottom decreases gradually. 
In contrast, the lateral earth pressure in the middle of the retaining wall does not change significantly.

The resultant force increases with the increase of width to height and decreases with the rise of limit state 
area under the same ratio. When the width (reaching and exceeding the critical width) and the limit state region 
increase, the resultant thrust approach to that of Coulomb’s result, which is consistent with the previous study, 
as shown in Fig. 16a. E’ax is obtained by subtracting the prediction and Coulomb’s solution. Figure 16b shows 
the difference at different x.

Figure 17 and Table 3 show the comparison of the theoretical calculation of lateral earth pressure distribu-
tion with the test results. It can be seen from the figure that the initial horizontal displacement of the retaining 
wall is smaller under the same ratio, and the limit state region is also tiny, which is confined to the middle part 
of the wall. The lateral earth pressure on the upper and bottom of the wall is relatively large and highly nonlin-
ear. With the increase of the drum deflection, most central areas enter the active limit state, and the horizontal 
displacement increases while the earth pressure decreases. With the increase of the limit state region (x from 
0.1 to 0.5), the horizontal lateral earth pressure distribution tends to be linearized gradually, and it is close to 
Coulomb’s distribution of finite soil.

The distribution of the earth pressure on the retaining wall calculated theoretically is consistent with that 
of the model test, and the distribution of the horizontal earth pressure in the middle area is concave. The drum 
deformation mode of retaining wall under different aspect ratios can be deemed that the upper part rotates about 
the top of the wall and the lower part rotates about the bottom of the wall. The supporting anchor structure 
restrains the upper part of the retaining wall, and the bottom is controlled by the fixed end, making the upper 

Figure 10.   Construction detail of test box(unit: mm).
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and bottom soil layers fail to reach the limit state completely. They are still in the active middle state, that is the 
non-limit active state, and the shearing strength of the soil is insufficient. Therefore, the earth pressure distribu-
tion of the upper and the bottom measuring points on the retaining wall are greater than Coulomb’s solution to 
the finite soil, while the middle area is entirely in the active limit state, and the earth pressure distribution of the 
intermediate measuring points are very close to the Coulomb’s solution to the finite soil.

Figure 11.   Entity of test box.
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The internal friction angle is an essential factor affecting the active earth pressure. When n = 0.3 and x = 0.2, 
the active earth pressure decreases with the increase of internal friction angle, as shown in Fig. 18. The active 
earth pressure without considering the soil arching is calculated and compared with the theoretical solution in 
this paper, as shown in Fig. 19. When the soil arching is not considered, the active earth pressure acting on the 
upper part of the retaining wall is almost the same as considering the soil arching. However, the earth pressure 

Figure 12.   Drum deformation mode of flexible retaining wall.

Figure 13.   Layout of earth pressure cells (unit: mm).

Table 1.   Parameters of tests.

Number Height/m Width/m Ratio of width to height

1# 0.50 0.10 0.2

2# 0.50 0.15 0.3

3# 0.50 0.20 0.4

4# 0.50 0.25 0.5
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exerted on the middle and lower part of the retaining wall is obviously less than the earth pressure considering 
the soil arching. In particular, the earth pressure in the transition zone decreases obviously.

Verification by comparison
Taking Lu’s model test4 as an example, dry sand is used in the test, γ = 16 kN/m3, φ = 31°, δ = 2φ/3, and the 
height of the flexible retaining wall with a single anchor is 2 m. Thus, the displacement of the wall under each 
excavation condition is typical drum deformation. By the theoretical method in this paper, the lateral earth 
pressure distribution is calculated for soils with infinite width (the ratio of width to height is taken as n = 0.5). 
The distribution of earth pressure at different excavation depths obtained by this method, Ying’s method5, and 
Lu’s test4 is shown in Fig. 20.

The calculated results of the proposed method are close to the calculated results of Ying5 and the measured 
values of the model test by Lu4, and the earth pressure distribution law is the same. The results show that the 
earth pressure on the middle part of the retaining wall decreases with the drum deformation and the horizon-
tal displacement, even less than the Coulomb earth pressure strength. On the other hand, the earth pressure 
strength on the upper and lower part of the retaining wall is greater than Coulomb’s solution due to soils being 
in a non-limit state.

Conclusion

(1)	 Based on the characteristics of the drum deformation mode of the flexible retaining wall close to the outer 
wall of the basement, four zones are divided to establish the mechanical analysis model for the solution of 
the active earth pressure. The analysis model takes account of the relative movement trend of the fill with 
the limited width.

(2)	 The active earth pressure coefficient is obtained using the soil arch theory and considering the horizontal 
shearing stress between differential layers. Considering the drum deformation of the retaining wall and the 
non-limit state of upper and lower soil layers, the linear relationship between the mobilization of internal 
friction angle and external friction angle and the magnitude of displacement is presented, and the differ-
ential layer analysis method is modified.

Figure 14.   Displacement fields of soil for different n (H = 500 mm).

Table 2.   Slip surface inclinations under different n. 

Number Ratio of width to height Test result/(°) Calculation result/(°)

1# 0.2 66.0 64.22

2# 0.3 64.5 63.20

3# 0.4 64.5 62.07

4# 0.5 63.5 60.86

5# 0.7 63.5 60.08
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Figure 15.   Theoretical calculation results under different x.
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(3)	 The model tests are conducted, it is found that the failure angle reduces gradually and becomes stable with 
the increase of the ratio of width to height. When the ratio rises to infinite soil, the failure angle approaches 
π/4 + φ/2.

(4)	 The test results show that the active earth pressure of soils with finite width is nonlinear, and the lateral earth 
pressure reduces with the reduction of the ratio of width to height in the critical width range. Furthermore, 
as the limit state region increases, the resultant force of earth pressure decreases under the same ratio of 
width to height.

(5)	 The earth pressure strength on the upper and bottom parts of the retaining wall is greater than the Cou-
lomb solution for finite soil. The earth pressure strength on the middle part of the retaining wall decreases 
continuously, less than the Coulomb earth pressure strength. As a result, the concave in the middle of the 
distribution curve is close to a linear line, and the lower part of the distribution curve has higher nonlinear-
ity.

(a) Resultant force

(b) Subtraction of prediction and Coulomb’s solution
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Figure 16.   Comparison of theoretical solution and Coulomb’s solution.
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Figure 17.   Comparison of theoretical calculation with experimental results.
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Table 3.   Comparison of theoretical calculation with experimental results and Coulomb’s results.

n Solution

Lateral earth pressure/Pa

z = 0.13 m z = 0.215 m z = 0.3 m z = 0.385 m z = 0.47 m

n = 0.2

Experiment Data 486.0 755.0 795.0 1118 2150

Coulomb’s Solution 332.8 550.3 767.9 985.5 1203

x = 0.5 469.2 665.2 864.3 1084 1743

x = 0.4 475.4 673.3 861.3 1117 1782

x = 0.3 477.5 683.3 858.8 1143 1810

x = 0.2 479.1 696.3 856.7 1161 1830

x = 0.1 480.4 708.7 857.3 1175 1845

n = 0.3

Experiment Data 504.0 620.0 926.0 1028 1700

Coulomb’s Solution 376.1 622.0 867.9 1114 1360

x = 0.5 499.0 752.9 885.9 1027 1561

x = 0.4 500.5 752.0 878.5 1058 1669

x = 0.3 501.9 750.2 864.0 1101 1766

x = 0.2 502.9 746.9 837.3 1147 1852

x = 0.1 503.7 778.2 844.0 1184 1918

n = 0.4

Experiment data 550.0 952.0 856.0 1379 2350

Coulomb’s Solution 397.0 656.5 916.0 1175 1435

x = 0.5 508.1 708.2 908.3 1110 1702

x = 0.4 521.4 730.5 903.5 1115 1785

x = 0.3 522.8 756.5 888.8 1140 1862

x = 0.2 523.8 793.8 851.5 1172 1993

x = 0.1 524.6 837.7 855.5 1206 1998

n = 0.5

Experiment data 610.0 917.0 884.0 1472 2415

Coulomb’s Solution 403.6 667.5 931.4 1196 1459

x = 0.5 555.1 738.6 922.1 1111 1749

x = 0.4 570.6 761.4 912.9 1118 1835

x = 0.3 573.5 789.2 892.4 1143 1914

x = 0.2 575.7 831.2 845.3 1175 1987

x = 0.1 577.2 885.3 849.5 1210 2055
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Figure 18.   Active earth pressure distribution with different internal friction angle.
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Figure 19.   Theoretical calculation results with arching and without arching (n = 0.3).
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Data availability
All data, models, and code generated or used during the study appear in the submitted article.
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Figure 20.   Distributions of horizontal earth pressures.
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