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MicroRNAs are essential post-
transcriptional regulators. Many

animal microRNAs are clustered in the
genome, and it has been shown that
clustered microRNAs may be transcribed
as a single transcript. Polycistronic
microRNAs are often members of the
same family, suggesting a role of tandem
duplication in the emergence of clusters.
The mir-2 microRNA family is the
largest in Drosophila melanogaster, with
8 members that are mostly clustered in
the genome. Previous studies suggest that
the copy number and genomic distri-
bution of mir-2 family members has
been subject to significant change during
evolution. The effects of such changes
on their function are still unknown. Here
we study the evolution of function in the
mir-2 family. Our analyses show that,
in spite of the change in number and
organization among invertebrates, most
mir-2 loci produce very similar mature
microRNA products. Multiple mature
miR-2 sequences are predicted to target
genes involved in neural development
in Drosophila. These targeting properties
are conserved in the distant species
Caenorhabditis elegans. Duplication
followed by functional diversification is
frequent during protein-coding gene
evolution. However, our results suggest
that the production of microRNA clusters
by gene duplication rarely involves func-
tional changes. This pattern of functional
redundancy among clustered paralogous
microRNAs reflects birth-and-death
evolutionary dynamics. However, we
identified a small number of mir-2
sequences in Drosophila that may have
undergone functional shifts associated
with genomic rearrangements. There-
fore, redundancy in microRNA families
may facilitate the acquisition of novel
functional features.

Introduction

MicroRNAs, crucial regulators of gene
expression at the post-transcriptional
level, are often clustered in the genome.1

According to miRBase,2 more than a
quarter of both Drosophila and human
microRNAs are less than 10 kb away
from other microRNAs. These clustered
microRNAs are often co-expressed, sug-
gesting that they are produced from a
single transcript.3-6 The majority of
microRNA clusters contain members of
the same family, indicating a major role
of tandem duplication in cluster forma-
tion.7-9 In the case of protein-coding
genes, duplication is acknowledged as the
main source of functional innovation,
since duplicates are free to diversify in
their functions.10 Similarly, duplicated
microRNAs may acquire new targets and
therefore novel functions. However,
microRNAs processed from the same
transcript are linked by their expression
pattern, imposing a functional constraint
on their evolutionary diversification.
Whether microRNA tandem duplications
facilitate the emergence of new functions
or generate redundant products remains
to be explored.

Mir-2 is the largest microRNA family
in Drosophila melanogaster and one of the
first to be discovered.11-13 The mir-2
family has 8 members in the D. melano-
gaster genome (mir-2a-1, mir-2a-2, mir-
2b-1, mir-2b-2, mir-2c, mir-13a, mir-13b-1
and mir-13b-2), six of which are organized
in two clusters.14 In most other studied
insects, there are five mir-2 sequences
encoded by a single transcript (see ref. 15
and references therein). Caenorhabditis
elegans has only one mir-2 sequence.12,13

Here we study the mir-2 family to
investigate the impact of microRNA family
expansions on functional diversification.
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We combine comparative genomics with
expression data analyses and functional
annotation of predicted targets to com-
pare the functional features of mir-2
sequences. Our results will help us to
understand the role of tandem microRNA
duplications in the evolution of gene
regulation.

Results

Mir-2 is a conserved microRNA family in
invertebrates. In order to characterize mir-2
family members, we performed comprehen-
sive sequence similarity searches against
multiple sequenced organisms (seeMaterials
and Methods). We detected mir-2 hairpin
precursor sequences in many invertebrates
(Fig. 1A; File S1) but none in vertebrate
species. The 3' arm of the hairpin is
highly conserved, although the many
changes in the 5' arm are fully consistent
with the precursor hairpin structure
(Fig. 1A). The gene copy number is
highly variable among species (from one
in C. elegans to eight in D.melanogaster)

suggesting that the mir-2 content of each
lineage is the product of multiple birth-
and-death events.

Since mir-2 sequences are short and
very similar, their genomic contexts can
improve our ability to annotate and
explore their evolutionary origins. The
genomic organization of mir-2 family
members across phyla (Fig. 2) suggests
that the ancestral mir-2 microRNA was
clustered with mir-71, an evolutionarily
unrelated microRNA. Mir-71 itself is
found in protostomes, but also in cepha-
lochordates, hemichordates and echino-
derms.16,17 The origin of mir-71 therefore
pre-dates the split of protostomes and
deuterostomes, although it has been lost
in chordates. Mir-2 arose later, most likely
before the last common ancestor of pro-
tostomes. Although mir-71 and mir-2 are
still linked in most species, mir-71 has
been lost independently in two dipteran
lineages. The expansion of the mir-2
family by tandem duplication and deletion
has generated mir-2 clusters of different
lengths in different species. The mir-13

subfamily has a conserved characteristic
one-nucleotide deletion in its 3' arm
(Fig. 1A), indicating that these sequences
originated from duplicated mir-2 locus in
the common ancestor of insects. Com-
bined analysis of sequence conservation
and cluster structure (Figs. 1A and 2)
suggests that the ancestral insect cluster
split in two in the Drosophila lineage, with
subsequent additional duplications. As a
consequence, different mir-2 copies in
Drosophila are under the transcriptional
control of different regulatory sequences.

Functional conservation and redund-
ancy of mir-2 products. The pattern of
sequence conservation in the mir-2 family
sequences shown in Figure 1 suggests that
the dominant mature microRNA is pro-
duced from the 3' arm of mir-2 precursors.
Our re-analysis of deep-sequencing data
from D. melanogaster, Tribolium castaneum
and C. elegans confirms that the 3' arm
is highly expressed compared with the
5' arm in most mir-2 family members
(File S2). Deep-sequencing analyses from
honeybee and silkworm also reveal the

Figure 1. Sequence conservation in the mir-2 family. (A) The alignment of mir-2 precursor sequences in representative genomes, shadowed by sequence
conservation (visualized using Ralee42), where darker tones reflect higher conservation. Structure of the consensus sequence is shown below
the alignment in dot-bracket annotation. The open white box over the alignment indicates the canonical mature product, with the seed sequence
highlighted (black). (B) Consensus structure of the mir-2 precursor in invertebrates, colored with VARNA43 according to sequence conservation.
The canonical and non-canonical mature products produced by some mir-2 precursors are also indicated.
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same expression pattern.18,19 We observe
that most mir-2 sequences conserve the
location of the Drosha and Dicer cleavage
sites. This position determines the first
nucleotides of the microRNA, and hence
the seed sequence. The seed is defined as
nucleotides 2 to 7 of a mature microRNA,

and it is crucial for transcript targeting.20

Since sequence conservation is very high in
the 3' arms, seed sequences are the same
for all mir-2 family products in which the
Dicer cleavage site is conserved (Fig. 1).

Functional shifts in mir-2 products.
Deep sequencing data from Drosophila

suggest that the 3' arm of mir-2a produces
two alternative mature products, in con-
trast to the majority of mir-2 family
members. Each accounts for a significant
proportion of the reads produced by
mir-2a loci (47% and 28%), and they
are offset from one another by 2 nucleo-
tides. The first of these products (the
5'-most) is processed identically to the
conserved mature sequence produced
from the majority of mir-2 family mem-
bers, termed the ‘canonical’ product here
(Fig. 1B). The second is offset by 2
nucleotides in the 3' direction, and
is termed the ’non-canonical’ product
(Fig. 1B). Both of these products map
exactly to two alternative hairpin pre-
cursors called mir-2a-1 and mir-2a-2,
suggesting that both products could
potentially be made from either locus.
However, the 5' arms of these two hairpins
are not identical in sequence, and there-
fore reads mapping to the 5' arms can be
assigned to one or other hairpin. It has
been previously reported that the charac-
teristic pattern of two nucleotide overhang
at the 3-prime ends of mature microRNA
duplexes allows the assignment of reads
from the 3' arm to one or other hairpin,
even though the 3' arm sequences are
identical.14,21,22 This approach predicts
that the non-canonical mature sequence,
offset by 2 nucleotides, is produced over-
whelmingly from the mir-2a-2 locus,
whereas mir-2a-1 is processed identically
to the other mir-2 family members.
Analysis of deep sequencing data from
an RNA immunoprecipitation (RIP-seq)
of Argonaute proteins shows that both
canonical and non-canonical mature pro-
ducts are loaded into the RNA induced
silencing complex (RISC),23 and are
therefore likely to be functional. The seed
sequences of canonical and non-canonical
mature microRNAs are offset, and hence
differ in sequence, suggesting that they
regulate different targets. Drosophila
mir-2c also produces an offset, non-
canonical, mature product. However this
microRNA is expressed at a very low level
and is not found in the AGO RIP-seq
data set.22,23 Our data show that a signi-
ficant fraction of non-canonical mir-2
products are also expressed from mir-2
loci in T. castaneum (File S2) and in the
honeybee Apis mellifera (data not shown).

Figure 2. Copy distribution of mir-2 sequences. Phylogenetic tree of invertebrate species and
genomic organization of mir-2 sequences. Divergence times were extracted from ref. 47.
Black arrows depict mir-2 family members, and white arrow mir-71 sequences. Arrows linked by
the same straight line indicate microRNAs linked in the genome by less than 10 kb.
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However, the strategy described above
cannot be applied to assign reads to a
single locus.

Unlike other mir-2 members, the mir-
2a-2 precursor produces approximately
equal amounts of mature sequences from
each arm of the hairpin.21,22 Nevertheless,
mature sequences derived from the 5' arm
are not observed in AGO RIP-seq experi-
ments22,23 and are not, therefore, predicted
to be loaded into the RISC complex. This
further supports a dominant role of the
mature sequence from the 3' arm across
the mir-2 family.

Mir-2 products are likely to target
neural genes. We have shown that mature
products from mir-2 loci are highly con-
served and are likely to have the same
targeting properties. Do mir-2 sequences
therefore conserve their targets throughout
evolution? We address this question by
comparing the targets of D.melanogaster
and C. elegans miR-2 mature sequences.
We used the canonical seed method20 to
predict transcripts whose 3'UTR are
targeted by all miR-2 family members
in D. melanogaster and the only miR-2
sequence in C. elegans (see Methods). All
but two miR-2 sequences in Drosophila
have identical seeds and therefore identi-
cal predicted target sets (Fig. 1A).The
two microRNAs with different targets
were miR-2a-2 and miR-2c, which are
offset with respect to the canonical mir-2
products (Fig. 1B).

We mapped Gene Ontology terms to
the predicted targets of miR-2 family
members, and analyzed the set of terms
that were statistically enriched in the
targeted gene set (see Materials and
Methods). We focused on terms within
the ‘Developmental process’ category,
which is particularly informative for
development and tissue specificity.24 We
detected 675 genes targeted by Drosophila
the miR-2 canonical sequence, and 979
for the functional Caenorhabditis miR-2
product. For both Drosophila and Caenor-
habditis, we observed an enrichment in
genes involved in neural development
(Table 1). We therefore predict a role for
mir-2 in neural function. Indeed, expres-
sion data from deep-sequencing analyses
in Drosophila indicate that mir-2 pro-
ducts are highly expressed in adult heads.14

We also studied the targets of the non-

canonical products from miR-2a-2 and
miR-2c in Drosophila. Both miR-2a-2
and miR-2c are predicted to target 286
genes. In these cases, we did not find any

significantly enriched functional classes
(not shown).

The seed model for microRNA targets
predicts that offset mature products from

Table 1. Top 20 enriched GO terms in the developmental process category

Species Enriched GO term # genes1 q-value2

Drosophila multicellular organismal development 121 0.0000

nervous system development 67 0.0000

central nervous system development 25 0.0000

sensory organ development 37 0.0000

anatomical structure morphogenesis 91 0.0000

organ morphogenesis 48 0.0000

neurogenesis 54 0.0000

cell differentiation 84 0.0000

neuron differentiation 46 0.0000

developmental process 129 0.0000

cell fate commitment 31 0.0000

organ development 79 0.0000

generation of neurons 53 0.0000

system development 106 0.0000

anatomical structure development 123 0.0000

cellular developmental process 85 0.0000

brain development 16 0.0011

eye development 30 0.0022

neuron development 38 0.0023

regionalization 37 0.0023

Caenorhabditis cellular component morphogenesis 38 0.0047

anatomical structure morphogenesis 112 0.0062

neurogenesis 22 0.0164

generation of neurons 22 0.0164

neuron development 20 0.0165

cell morphogenesis 22 0.0167

neuron differentiation 21 0.0167

muscle structure development 23 0.0187

muscle organ development 6 0.0191

nervous system development 22 0.0204

neuron projection morphogenesis 18 0.0209

organ morphogenesis 10 0.0226

axonal fasciculation 11 0.0232

neuron projection development 18 0.0233

anatomical structure formation involved in morphogenesis 25 0.0238

cell projection morphogenesis 19 0.0245

syncytium formation by plasma membrane fusion 3 0.0334

syncytium formation 3 0.0334

cell part morphogenesis 19 0.0347

neuron recognition 11 0.0356

1Number of genes with predicted canonical seed targets (see Methods) annotated to a GO term;
2q-value is the p-value corrected for a false discovery rate of 0.05 (ref. 46)
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the mir-2a-1 and mir-2a-2 loci will target
different sites. However, it is well estab-
lished that sequence complementarity
outside the seed motif is important (and
perhaps even sometimes sufficient) for
target recognition (reviewed in ref. 25).
To explore whether offset microRNAs
with the same nucleotide sequence may
have different targeting properties, we
predicted targets with a different tool,
miRanda, which places less weight on the
microRNA seed and accounts more fully
for the hybridization energy between the
microRNA and the target.26 In this
particular case, Drosophila miR-2a-1 is
predicted to target 553 transcripts, and
miR-2a-2 putatively binds to 788, with
368 targeted genes common to both. The
overlap of target genes is greater than
expected by chance (p = 0.008, see
Materials and Methods). This suggests
that, although the seed shifting between
miR-2a-1 and miR-2a-2 may induce
functional changes, the two microRNAs
likely conserve partially redundant target-
ing properties.

Discussion

The evolutionary history of microRNA
families is characterized by frequent dupli-
cations, losses and rearrangements.7,8,27,28

Here we describe the evolution of the
largest conserved insect microRNA family:
mir-2. We showed that this family is
widely represented in invertebrates, and
the copy number and genomic distribu-
tion varies greatly between species. Deep-
sequencing data reveal that all mir-2 family
members produce their dominant mature
microRNAs from the 3' arm, whose
sequence is highly conserved (Fig. 1).
Moreover, most mir-2 precursors have
the same Dicer cleavage site, thus produc-
ing functional mature miR-2 sequences
with the same seed region and predicted
targets. According to the available deep-
sequencing data, most mir-2 loci within
the same species produce redundant pro-
ducts. In Drosophila, antisense-mediated
inactivation of mir-2 sequences shows
that multiple mir-2 loci have similar (if
not identical) functions.29,30

It is well-established that pairs of
protein-coding loci resulting from gene
duplication rapidly diverge in their

sequence and/or expression pattern, since
functional redundancy is generally a
transient situation.10 Duplication has
been also proposed as a mechanism of
microRNA functional diversification,14

although there is no direct evidence of
this pattern so far. The mir-2 family
suggests that microRNA families may
tolerate a situation of functional redund-
ancy in the longer term, as multiple
almost identical copies are present in
each invertebrate genome. One possible
explanation is that mir-2 products are
required at high levels and local tandem
duplications produce a net increase in
the expression level. This is supported by
a previous observation that increased
expression levels are associated with an
increase in microRNA copy number.31

On the other hand, the presence of
redundant mir-2 paralogs might reflect
essentiality (see discussion in ref. 29).
Functional redundancy in clustered para-
logous microRNAs has been previously
reported, and may simply reflect high
turnover and birth-and-death evolutionary
dynamics.8,27,28 These processes will gener-
ate clusters of very similar sequences, and
account for the copy number differences
between different species.32 The data
strongly suggest that mir-2 family evolu-
tion is dominated by high turnover and
birth-and-death dynamics mostly driven
by random drift.

Clustered paralogous microRNAs are
evolutionarily constrained since their
expression pattern is linked. However,
mir-2 family members in the Drosophila
genus are located in two clusters and
two single loci. This decoupling of their
regulatory sequences may have facilitated
functional changes. Indeed, we observe
that the identical 3' arms of the mir-2a-1
and mir-2a-2 hairpin precursors produce
different offset mature sequences, which
we call here canonical and non-canonical
miR-2 products (Fig. 1B). This phenome-
non is called “seed shifting,” and has been
described to induce functional changes
between orthologous microRNAs.15,17

Experiments in Drosophila suggest that
mir-2 products are expressed in brain and
have (at least partially) redundant func-
tions.29,30 However, in situ hybridizations
show that the three clusters mir-2b-2~mir-
2a-2~mir-2a-1, mir-2c~mir-13a~mir-13b-1

and mir-13b-2 have different spatial
expression patterns during early develop-
ment.33 We suggest that genomic reorga-
nizations breaking the linkage between
mir-2 loci in Drosophila triggered a sub-
functionalization event.34 Interestingly,
in the flatworm Schistosoma mansoni we
observe a duplication of the entire ancest-
ral mir-2 cluster (Fig. 2 and ref. 35). The
functional analysis of the mir-2 family in
this parasitic species might shed light on
the evolutionary dynamics of clustered
microRNAs.

Mir-2 loci are highly expressed in adult
heads in Drosophila22 and in neurons in
Caenorhabditis.36 We show that the pre-
dicted targets of mir-2 microRNAs in
both Drosophila and Caenorhabditis are
significantly enriched for transcripts with
neural development functions (Table 1).
Mir-2 has also been found to be highly
expressed in heads of Bombyx mori.37

Antisense-mediated inactivation of mir-2
in Drosophila produces embryos with
defects in head and posterior abdominal
segments.30 Mir-2 has been shown to
specifically target the pro-apoptotic genes
rpr, grim and skl.29 Strikingly, these three
genes are involved in the selective death
by apoptosis of neuroblasts during the
normal development of the nervous sys-
tem.38 By targeting these pro-apoptotic
genes, mir-2 can act as an anti-apoptotic
factor in neurons. Indeed, the repression of
rpr and grim by ABD-B prevent apoptosis
in neural cells.39 In the light of these data,
we speculate that mir-2 microRNAs have
a fundamental role in neuron survival
during development and adulthood.

Finally, we note that early works asso-
ciate mir-6 and mir-11 sequences with the
mir-2 family because they have identical
(or very similar) seed sequences (e.g.,
ref. 29). However, there is no evidence
of an evolutionary relationship between
these three families. Moreover, mir-6 and
mir-11 have a distinct expression pattern
from mir-2, so functional overlap among
these families is unlikely.29,30,33 We
strongly encourage the use of the family
name mir-2 to represent only mir-2/
mir-13 sequences.

In summary, the mir-2 family is
an invertebrate-specific family of micro-
RNAs probably involved in neural deve-
lopment and maintenance. The number
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and genomic organization of mir-2 loci
varies greatly between species, although
the function of paralogous microRNAs is
most often redundant. The retention of
redundant sequences may be facilitated
by the co-transcription of clustered micro-
RNAs. In Drosophila, the ancestral mir-2
cluster has split into multiple independent
transcripts, decoupling the transcriptional
regulation among mir-2 loci. In this species
we find evidence of potential functional
shifts of some mir-2 family members.

Materials and Methods

We retrieved all mir-2 precursor sequences
from miRBase2 (version 17) and used
BLAST40 (w = 4, r = 2, q = -3) to search
for homologous sequences in multiple
genomes from NCBI (www.ncbi.nlm.
nih.gov/genome): Drosophila melanogaster,
D. virilis, D.willistoni. D. pseudoobscura,
Aedes aegypti, Anopheles gambiae, Acyrtho-
siphon pisum, Bombyx mori, Apis mellifera,
Tribolium castaneum, Capitella teleta,
Daphnia pulex, Caenorhabditis elegans,
Gallus gallus, Mus musculus and Homo
sapiens. We aligned the putative micro-
RNA hairpin sequences with CMfinder41

(n = 5, m = 30, M= 100), chose the output
alignment that best reflects the microRNA
hairpin pairing, and manually refined the
alignment using RALEE.42 The consensus
sequence of the alignment was built by
taking the most abundant base for each

column. All columns with more than 60%
gaps were excluded. VARNA 3.743 was
used to visualize the consensus microRNA
structure.

Small RNA libraries, with accession
numbers GSE7448 (D.melanogaster),
GSE15169 (C. elegans) and GSE26036
(T. castaneum), were retrieved from the
GEO database (www.ncbi.nlm.nih.gov/
geo/). Reads were mapped to the reference
genomes using a sequential trimming
approach15 with the SeqTrimMap tool44

using default parameters, and microRNAs
were detected as described previously.15

Briefly, predicted hairpin structures within
the genome with reads mapped to both
arms were first extracted. We only further
considered high-quality predictions after
careful visual inspection.

To identify potential targets of mir-2
sequences, we first extracted 3'UTR
sequences from ENSEMBL (v. 62) via
Biomart45 for D.melanogaster and
C. elegans. Only the longest isoforms were
considered. We then detected canonical
seed targets in these 3'UTRs.20 Additional
target predictions were performed with
miRanda,26 using default parameters. The
significance of the observed overlap of
targets between dme-miR-2a-1 and dme-
miR-2a-2 was assessed as follows: first, we
calculate the target list overlap between
both products (number of genes with
common targets divided by the total
number of targeted genes); then, we

calculated the target list overlap between
1000 pairs of randomly selected micro-
RNA products in D.melanogaster; finally,
the associated p-value is estimated as the
proportion of random overlap measures
equal or greater than the actual overlap
value. In order to detect functional
categories enriched in genes targeted by
mir-2 products, we analyzed the annota-
tion of transcripts with putative mir-2
target sites in Gene Ontology with HT-
GOMiner.46 We used a false discovery
rate of 0.05, and focused specifically on
enriched terms inside the “developmental
process” GO class.
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