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INTRODUCTION 
 

Malignant rhabdoid tumor of the kidney (RTK) is a rare 

and highly lethal malignancy that primarily affected 

infants and young children [1]. Previous studies have 

reported that 10–15% of patients with RTKs had 

primary central nervous system (CNS) disease, which is 

currently designated as atypical teratoid-rhabdoid 

tumors [2]. The morbidity associated with RTK is 

extremely rare, accounting for about 2% of renal tumors 

in children. The prognosis of RTK patients remains to 

be extremely poor, with an overall 5-year survival rate 

of no more than 20% to 25% [3–5]. The main obstacle 

to improve the survival rate of patients with RTK might 

be due to poor understanding of the biological 

characteristic and regulatory mechanisms that underlie 

this fatal disease. 

 

Recently, increasing evidence has shown that immune 

system dysfunction might play a crucial role in 

tumorigenesis and progression of cancer [6]. Several 

studies have proved the association between 
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ABSTRACT 
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Immune system dysfunction is significantly correlated with tumor initiation and progression. 
Methods: We integrated and analyzed the expression profiles of immune-related genes (IRGs) in 65 RTK 
patients based on the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) 
database. Prognostic related IRGs in RTK patients were analyzed using univariate and multivariate analysis, 
based on which a prognostic model with IRGs was constructed. Correlation analysis between the risk score of 
our model and tumor-infiltrating cell were also investigated. 
Results: Twenty two IRGs were significantly associated with the clinical outcomes of RTK patients. Gene 
ontology (GO) analysis revealed that inflammatory pathways were most frequently implicated in RTK. A 
prognostic model was constructed using 7 IRGs (MMP9, SERPINA3, FAM19A5, CCR9, PLAUR, IL1R2, PRKCG), 
which were independent prognostic indices that could differentiate patients based on their survival outcomes. 
Furthermore, the risk scores from our prognostic model was positively associated with cancer-associated 
fibroblasts (CAFs). 
Conclusions: We screened seven IRGs of clinical significance to distinguish patients with different survival 
outcomes. This may enhance our understanding of the immune microenvironment of RTK and could use to 
design individualized treatments for RTK patients. 
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programmed death-1 (PD-1) or cytotoxic T-lymphocyte 

associated antigen 4 (CTLA-4) polymorphisms and the 

immune escape of cancer. Immune checkpoint 

inhibitors (ICIs), such as pembrolizumab and 

nivolumab, have shown apparent efficacy in reducing 

tumor growth. This is mainly done by interfering with 

PD-1 or programmed death ligand-1 (PD-L1) 

interaction, thereby limiting the immune escape of 

cancer cells [7]. Also, certain ICIs have been shown to 

greatly improve the prognosis of patients [8–11]. 

However, only a small subset of patients responds to 

these therapies. Therefore, it is urgent to screen patients 

who are sensitive to immunotherapy [9]. 

 

Accumulating studies have suggested that immune-

related genes (IRGs) showed association with the 

efficacy of immunotherapy and the prognosis of patients 

[10]. According to a previous study, high OX-40 

expression in tumor immune infiltrates indicated a 

favorable prognosis in patients with non-small cell lung 

cancer [11]. Zhang et al. have reported that PKD1 is 

significantly overexpressed in the tissues and remarkably 

associated with dismal prognosis in osteosarcoma [12]. 

Ryu et al. have found that the expression of p16 showed 

association with tumor immune microenvironment and 

had favorable prognosis of head and neck squamous cell 

carcinoma [13]. Besides, Bai et al. have revealed that the 

expression of BRAF V600E showed positive association 

with PD-L1/PD-1 in papillary thyroid carcinoma (PTC) 

samples, suggesting that immunotherapies that target PD-

L1/PD-1 might be effective in PTC patients with BRAF 

V600E mutation [14]. However, there are only few 

studies that focused on the roles of IRGs in RTK [15]. 

Therefore, in this study, the Therapeutically Applicable 

Research To Generate Effective Treatments (TARGET) 

database were searched to examine the relationships of 

multiple immune genes with the prognosis of RTK, and 

aimed to construct a new prognostic model of RTK with 

IRGs, verifying the validity of this model in RTK 

patients based on TARGET-RTK cohort. 

 

RESULTS 
 

DEGs from RTK and normal controls  

 

In this study, 7002 DEGs (3927 up-regulated genes and 

3075 down-regulated genes) were found in the RTK 

samples when compared with normal control samples. 

They had a | log FC ≥ 1 and a false discovery rate 

(FDR) < 0.05. The heatmap and volcano diagrams of all 

DEGs are shown in Figure 1A, 1C. 

 

Identification of DEIRGs 

 

A total of 478 DEIRGs, including 254 up-regulated IRGs 

and 224 down-regulated IRGs, were extracted from the 

DEGs. The heatmap and volcano diagrams of all 

DEIRGs were shown in Figure 1B, 1D. As expected, the 

GO analysis revealed that inflammatory pathways were 

the most frequently implicated ones, and the receptor-

ligand activity, cytokine activity, and cytokine receptor 

binding, growth factor activity, and cytokine receptor 

activity were the most frequent biological processes in 

RTK (Figure 2A). Based on the KEGG pathways 

analysis, our results demonstrated that DEIRGs were 

particularly enriched in cytokine receptor interactions of 

signaling pathways (p< 0.001), (Figure 2B). 

 

Identification of prognostic DEIRGs 

 

As RTK is a lethal disease, monitoring the disease 

outcomes is important for clinical management. So,  

the molecular biomarkers that could serve as viable 

prognostic indicators were identified. After univariate 

Cox regression analysis, 22 DEIRGs were shown to  

be significantly associated with the OS of RTK patients 

in the TARGERT cohort (p< 0.05), (Table 1). 

 

TF (transcription factor) regulatory network 

 

To explore the potential regulatory mechanisms that 

correspond to the clinical significance of DEIRGs, the 

correlation between TFs and PIGRs (prognostic related 

immune genes) was analyzed. Firstly, the mRNA levels 

of TFs in RTK samples and normal controls were 

analyzed. A total of 131 differentially expressed TFs 

were identified between the two tissue types (FDR < 

0.05, |log2 FC| > 1). Next, the correlations between the 

mRNA levels of the 131 TFs and the 22 PDEIRGs, 

with a correlation coefficient > 0.4 and a p-value < 0.01 

as the cut-off values were identified (Figure 3A, 3B). A 

total of 73 TFs were shown to be significantly 

associated with the abnormal expression of PIRGs (P< 

0.01). To better visualize the regulatory relationships, a 

TF-based regulatory network was constructed using the 

Cytoscape software Figure 3C. Among these, the three 

transcription factors including HNF4A, FOSL2, and 

GATA4 interacted with multiple immune-related 

genes. 

 

Construction of immune-related genes prognostic 

model for RTK 

 

Multivariate Cox regression analysis identified 7 genes 

that showed significant association with the clinical 

outcomes (Table 2), which were used to construct a 

prognostic model to separate the RTK patients into two 

groups with discrete clinical outcomes. The formula 

was as follows: 

 
[Expression level of MMP9 *(-0.32924)] + [Expression 

level of SERPINA3 
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Figure 1. Differentially expressed genes and IRGs in RTK. (A) Heat-map of significant DEGs in RTK. The color from green to red 

represents the progression from low expression to high expression. (B) Heatmap of significant differentially expressed immune-related genes 
in RTK. Red represents higher expression while green represents lower expression. (C) Volcano plot of differentially expressed genes. The red 
dots in the plot represents up-regulated genes and green dots represents down-regulated genes with statistical significance. Black dots 
represent no DEGs. (D) Volcano plot of differentially expressed immune-related genes in RTK. Colored dots represent differentially expressed 
immune-related genes and black dots represent no differentially expressed immune-related genes. Abbreviations: GO, Gene Ontology. IRGs, 
immune-related genes. DEGs, differentially expressed genes. 
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* (-0.13156)] + [Expression level of FAM19A5 * (-

0.46497)] + [Expression level of CCR9 * (-0.40906)] 

+[Expression level of PLAUR * 0.603828] + 

[Expression level of IL1R2 * 0.476825]+ [Expression 

level of PRKCG * 0.365902]. 

 

The median value of the risk scores was used as the 

cutoff value to divide patients in the TARGET-RTK 

cohort into high-risk group (n =28) and low-risk group 

(n = 30). As shown in Figure 4A, the number of deaths 

was significantly greater while the OS was shorter in 

high-risk cases when compared to the low-risk group 

(p< 0.001). The 1-year OS rate in the high-risk group of 

TARGET-RTK cohort was 16.5%, while the 

corresponding rate for that of the low-risk group was 

79.2%. The area under the ROC (AUC) value for the 

prognostic model was 0.915, which suggested an 

excellent potential for the prognostic model based on 

PIRGs in monitoring the survival (Figure 4B). The risk 

scores of the patients in the TARGET-RTK cohort were 

ranked and then their distribution was analyzed (Figure 

4C). The survival status of each patient in the 

TARGET-RTK cohort was marked on the dot plot in 

Figure 4D, showing the heatmap of the expression 

patterns of the risk genes in the two prognostic groups 

(Figure 4E). 

 

Independent prognostic value of the risk model in 

the TARGET-RTK cohort 

 

To explore whether the prognostic model acts as an 

independent prognostic index in RTK patients, 

univariate and multivariate Cox regression analyses 

were performed to assess the effectiveness of this 

model. As expected, univariate analyses indicated that 

the variables of the prognostic model and clinical stage 

showed significant association with the prognosis of 

RTK patients (Figure 5). Multivariate analysis revealed 

that the prognostic model was independently associated 

with the OS in the TARGET-RTK cohort (p< 0.001), 

(Figure 6). These results indicated that the prognostic 

model could be used independently for predicting the 

prognosis of RTK patients. Consistent with the clinical 

observation, the clinical-stage also acts as an 

independent prognostic indicator for RTK in multi-

variate analysis (p< 0.05). 

 

Clinical utility of the prognostic model 

 

To validate the clinical utility of our model in predicting 

the progression of RTK, the relationships were analyzed 

between our model (the risk score and risk genes) and 

clinical and demographic characteristics (age, gender, 

stage). The expression of MMP9 was lower in the 

advanced stage cases, while the risk scores were 

significantly higher in the advanced stage cases and 

female patients (Figure 7), and no difference was 

observed in other variables. 

 

Tumor-infiltrating cell 

 

To verify whether our prognostic index model could 

reflect the status of the tumor immune micro-

environment in RTK patients, the relationships between 

the risk score and tumor-infiltrating cells in the 

TARGET-RTK cohort were analyzed. There were fewer 

B cells, CD4+ T cells, CD8+ T cells, and endothelial 

cells in the tumor samples, while cancer-associated 

fibroblasts (CAFs) and macrophages were more in the 

tumor samples than in the normal controls (Figure 8). 

Furthermore, correlation analysis showed that the risk 

score was positively associated with CAFs, and no 

difference was observed between the risk score and 

other infiltrating cells (Figure 9). 

 

 
 

Figure 2. GO analysis and KEGG pathways of IRGs. (A) GO analysis of differentially expressed IRG. (B) KEGG pathways of IRGs. 
Abbreviations: GO, Gene Ontology. KEGG, Kyoto Encyclopedia of Genes and Genomes. IRGs, immune-related genes. 
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Table 1. Univariate regression analyses of prognostic IRGs for overall survival. 

Gene HR(95%CI) P 

PLAUR 1.637(1.183-1.922) 0.001113 

NR0B2 1.30(1.076-1.538) 0.001467 

GHR 1.379(1.056-1.679) 0.003304 

SERPINA3 1.192(1.0045-1.316) 0.004133 

GFAP 1.217 (1.145-1.362) 0.005889 

HRG 1.170(1.098-1.236) 0.006228 

PRKCG 1.204(1.123-1.301) 0.011821 

IL1R 1.275(1.034-1.413) 0.012937 

OXT 1.278(1.091-1.386) 0.016251 

TRBV6-5 0.838(0.273-0.903) 0.017914 

ANGPTL6 1.249(1.074-1.373) 0.018051 

CCR9 0.792(0.376-0.895) 0.020727 

S100A14 1.161(1.063-1.317) 0.022779 

PLTP 1.655(1.176-1.803) 0.029601 

FCN2 1.201(1.026-1.415) 0.03082 

F2RL1 1.148(1.005-1.227) 0.03488 

MMP9 0.865(0.212-0.987) 0.036752 

AZGP1 1.149(1.101-1.237) 0.039613 

ARTN 1.284(1.078-1.382) 0.042109 

DEFB1 1.122(1.002-1.207) 0.048537 

AVP 1.436(1.014-1.566) 0.049212 

FAM19A5 0.814(0.348-0.893) 0.04268 

Abbreviations: IRGs, immune-related genes. HR, hazard ratio. CI, confidence interval. 

 

DISCUSSION 
 

In the present study, integrated analysis of the 

TARGET-RTK cohort was conducted and the results 

revealed that 478 IRGs showed aberrant expression in 

RTK patients when compared to normal controls. Next, 

univariate and multivariate COX regression analyses 

were performed to explore the PIRGs, and the results 

showed that a total of seven PIRGs were used to 

construct an independent prognostic model. As 

expected, compared with the low-risk group, the 

number of deaths in the high-risk group was 

significantly greater, and the OS time was shorter. 

Furthermore, the expression profiles of tumor-

infiltrating cells in RTK were analyzed. The results 

showed that there were more CAFs and macrophages in 

the tumor tissues than in the normal controls, while B 

cells, CD4+T cells, CD8+T, and endothelial cells were 

fewer than normal controls. Also, the relationship 

between the risk score and tumor-infiltrating cells was 

explored, and our results showed that the risk score was 

positively correlated with infiltrating CAFs. 

 

Cancer research has uncovered it as a disease that 

involves a succession of alterations to the genome [16]. 

Our study explored the alterations to reveal the 

relationship between immunogenomic profiles and 

immune microenvironment and to uncover the potential 

clinical implications. GO analysis and KEGG indicated 

that these altered IRGs were mainly involved in cytokine-

cytokine receptor interactions, MAPK, and PI3K-Akt 
signaling pathways. Previous studies have revealed that 

cytokine and their receptors actively participate in 

various types of cancers, including RTK [17, 18]. Some 

of these cytokines have been demonstrated to exert anti-

tumor or tumor-promoting effects on rhabdoid tumor cell 

lines [18]. As such, these altered IRGs might serve as 

diagnostic markers or therapeutic targets for RTK. 

However, comprehensive and an in-depth exploration 

with regard to the role of these IRGs in RTK is needed. 

The results of KEGG analysis indicated that PI3K-Akt 

and MAPK signaling pathways were active in RTK, 

which were consistent with that of the previous studies 

[19, 20]. We hypothesized that inhibitors of PI3K-Akt 
and MAPK signaling pathways might be effective in 

RTK. Experiments and clinical trials are needed to 

further verify this conjecture. 
 

Previous studies have revealed that TFs play an 

important role in the development and differentiation of 
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Figure 3. TF-based regulatory network. (A) Heat map of differentially expressed TFs. The green to red spectrum indicates low to high TF 

expression. (B) Volcano plot of TFs. The green dots represent down-regulated TFs, the red dots represent up-regulated TFs and the black dots 
represent TFs that were not significantly and differentially expressed. (C) Regulatory network of TFs and PIRGs; the green nodes represent 
PIRGs with hazard ratios of <1 (p < 0.05), the red nodes represent PIRGs with hazard ratios of >1 (p < 0.05), the yellow nodes represent TFs 
that were correlated with PIRGs in terms of their mRNA levels (correlation coefficient > 0.4 and p < 0.01), and the red lines indicate positive 
regulatory relationships. Abbreviations: TF, transcription factor. PIRGs, prognostic immune-related genes. 
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Table 2. Multivariate regression analyses of prognostic IRGs for overall survival. 

Gene Coef HR(95%CI) P 

MMP9 -0.32924 0.719(0.622-0.816) 0.000691 

SERPINA3 -0.13156 0.876(0.795-0.958) 0.106496 

FAM19A5 -0.46497 0.628(0.493-0.763) 0.000571 

CCR9 -0.40906 0.664(0.561-0.766) 6.56E-05 

PLAUR 0.603828 1.829(1.638-2.019) 0.001552 

IL1R2 0.476825 1.610(1.467-1.754) 0.000907 

PRKCG 0.365902 1.441(1.337-1.546) 0.000457 

Abbreviations: IRGs, immune-related genes. HR, hazard ratio. CI, confidence interval. 
Coef, coefficient. 

 

immune cells and immune response by regulating IRGs 

[21, 22]. In our study, 73 TFs in the transcription factor 

network interacted with PIRG, indicating that these 

PIRGs might be regulated by these 73 TFs in RTK. 

Among these, three TFs including HNF4A, FOSL2, and 

GATA4 interacted with multiple IRGs. Increasing 

studies have demonstrated that HNF4A, FOSL2, and 

GATA4 showed aberrant expression in various 

malignant tumors, playing a role in promoting or 

inhibiting malignancies [8, 23–25], and our study 

results were consistent with these studies. We 

hypothesized that the abnormal expression of these 

three TFs might be crucial for the development and 

progression of RTK. However, there might exist other 

underlying regulatory mechanisms that are independent 

of these TFs. The molecular regulatory mechanism of 

these IRGs requires further research. 

 

Previous studies analyzing the prognostic factors are 

limited because of the low incidence of RTK. 

Tomlinson G et al. have found that young age at 

diagnosis showed association with dismal survival of 

RTK patients [5]. However, little is known about the 

clinical importance of IRGs in RTK. In the present 

study, 7 IRGs that were closely associated with the 

clinical outcomes of children with RTK were found, 

and a prognostic model was constructed by using these 

to accurately discriminate between patients with 

different survival outcomes. Moreover, the risk scores 

from our prognostic model were significantly higher in 

advanced stage cases and female patients. It is well 

known that the prognosis of RTK patients with 

advanced-stage remained very poor, and our results 

were consistent with the clinical observation [26]. 

However, multivariate Cox regression analysis 

indicated that gender was not an independent prognostic 

factor. This inconsistency might be attributed to the 

small sample size. Based on our research, we 
hypothesized that this model could be applied to 

identify high-risk RTK patients, enabling early, 

intensive interventions and regular monitoring of 

disease recurrence to improve the prognosis of patients. 

Moreover, as revealed in the previous studies that 

tumor-infiltrating immune cells are important 

determinants of the prognosis and response to therapy 

[27, 28]. Our results indicated that ICIs might be 

effective for low-risk RTK patients based on our model. 

The comprehensive and integrated analyses of IRGs in 

RTK deepens our understanding with regard to their 

clinical significance and illuminates the underlying 

regulatory mechanism of these IRGs. There were 

several advantages in our study over other reports. 

Firstly, the ImmPort database used in this study was a 

specialized immunology database, allowing us to 

analyze as many IRGs as possible. Secondly, although 

previous studies have demonstrated that IRGs could be 

applied to predict the prognosis of patients with cancer, 

this is the first study to our knowledge that used such a 

great number of samples to comprehensively explore 

the clinical importance of IRGs in RTK patients. 

Thirdly, the novel immune-related prognostic model 

exhibited a prominent performance for predicting the 

OS based on the TARGET database. To our knowledge, 

this is the first prognostic model developed for RTK 

patients. 

 

Studies have revealed that regulation of tumor immune 

microenvironment plays a crucial role in tumor 

progression and metastasis [29, 30]. To characterize the 

tumor immune microenvironment status, tumor-

infiltrating immune cells were investigated. There were 

more CAFs and macrophages, but fewer B cells, CD4+T 

cells, CD8+T cells, and endothelial cells in the tumor 

tissues than normal controls. In addition to the 

difference in the number of tumor-infiltrating cells, the 

relationships between tumor-infiltrating cells and risk 

scores were further evaluated. Also, CAFs in the tumor 

stroma were found to be positively correlated with  

risk score, but no difference was observed between the 
risk score and other infiltrating cells. This might be due 

to relatively high content of CAFs and fewer tumor-

infiltrating cells in RTK tissues. Many studies have 
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Figure 4. Prognostic analysis of the TARGET-RTK cohort. (A) Kaplan-Meier curve analysis of the high-risk and low-risk groups.  

(B) Survival-dependent receiver operating characteristic (ROC) curve validation of the prognostic value of the prognostic index. (C) Dot plot of 
the risk score. Vertical and horizontal axes represent risk score and RTK samples, ranked by increasing risk score. Red and green colors 
represent high-and low-risk cases, respectively. (D) Dot plot of survival. Vertical and horizontal axes represent the survival times and RTK 
samples, ranked by increasing risk score. Red and green colors represent dead and living RTK cases, respectively. (E) Heat map of the 
expression levels of the seven genes. Vertical and horizontal axes represent genes and RTK samples, ranked by increasing risk score. Genes 
with higher, lower, and same expression levels are shown in red, green, and black, respectively. Color bars at the top of the heat map 
represent sample types, with pink and blue indicating low- and high-risk score samples, respectively. Abbreviation: RTK, rhabdoid tumor of 
kidney. 
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Figure 5. Univariate Cox regression analyses in the entire TARGET cohort. 

 

 
 

Figure 6. Multivariate Cox regression analyses in the entire TARGET cohort. 

 

 
 

Figure 7. The relationships between immune-based prognostic model and clinical and demographic characteristics. (A) The 

relationships between the expression of MMP9 and stage. (B) The relationships between the risk scores and gender. (C) The relationships 
between the risk scores and stage. 
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Figure 8. Analysis of different tumor-infiltrating cells in the TARGET-RTK cohort. (A) Violin plot comparing the proportions of TICs 

between normal and RTK samples. Horizontal and vertical axes represent TICs and relative percentages. Blue and red colors represent normal 
and tumor samples, respectively. Data were assessed by Wilcoxon rank-sum test. (B) Heat map of different TICs in the TARGET-RTK cohort. 
Abbreviation: TIC, tumor-infiltrating cell. 
 

 
 

Figure 9. Analysis of the correlation between the risk score and tumor-infiltrating cells in the TARGET-RTK cohort. (A) B cells; 

(B) endothelial cells; (C) Macrophages. (D) CD4+ T cells. (E) CD8+ T cells. (F) CAFs. Abbreviation: CAFs, carcinoma-associated fibroblasts. 
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suggested a prominent functional role of CAFs in cancer 

progression and metastasis over the past few years. 

CAFs in tumor microenvironment induce angiogenesis 

by secreting CAF derived stromal cell-derived factor 1 

and recruiting bone marrow-derived endothelial cells to 

promote tumor growth [31, 32]. CAFs prompted 

epithelial to mesenchymal transition (EMT) and 

invasiveness of adjacent cancer cells by producing 

ECM-degrading proteases such as the MMPs [33]. CAFs 

promoted immunosuppressive TME, which is conducive 

to the immune escape of tumor cells [34]. Our result 

revealed that CAFs might play a tumor-promoting role 

in RTK, and this was consistent with the function of 

CAFs in other tumors [35, 36]. However, the specific 

role and regulatory mechanism of CAFs in RTK should 

be further confirmed by experiments. 

 

Admittedly, our study also had some limitations. Firstly, 

the number of RTK tissue samples in the TARGET 

cohort was relatively small, which might in turn cause 

selection bias. Secondly, transcriptomic analysis could 

not reflect the global alterations of immune status. 

Thirdly, the prognostic model we constructed was not 

validated in the prospective clinical trials. Additionally, 

the reliability of IRGs identified requires further 

validation in both in vivo and in vitro experiments. 

 

In conclusion, a prognostic model using 7 IRGs that 

showed significant correlation with clinical outcomes 

was constructed. The risk score acts as an independent 

prognostic index that could distinguish patients  

with different survival outcomes, and this could be 

applied to predict patients who were sensitive to 

immunotherapy. 

 

MATERIALS AND METHODS 
 

Database 

 

The required original data were obtained from TARGET 

(https://ocg.cancer.gov/programs/target) database. A total 

of 77 samples were screened, which included 65 tissues 

from RTK patient and 12 samples of normal kidney 

tissues. All data were processed using the R software 

(https://www.r-project.org/) and normalized using the 

limma package. 

 

Analysis of differentially expressed genes (DEGs) by 

R software 

 

DEGs were identified using the limma package [37]. 

The absolute value of | log2 fold change (FC) | was set 

to >1, and the cutoff value was adjusted to a P-value of 

< 0.05, which was considered to be statistically 

significant. The FDR and P values were screened to 

obtain all DEGs. The ggplot2 and the heatmap package 

were used to plot volcano diagrams and heatmap of 

DEGs, respectively. 

 

Identification of differential expression of immune-

related genes (DEIRGs) 

 

A total of 2498 IRGs were retrieved from the ImmPort 

database (https://www.immport.org/home) [38]. The 

DEIRGs were obtained from the DEGs using the R 

software. The absolute value of | log2 fold change (FC) | 

was set to >1, and the P-value was adjusted to <0.05 as 

cut-offs for filtering the DEIRGs. The ggplot2 and the 

heatmap package were used to plot the heatmap and 

volcano diagrams of the DEIRGs, respectively. 

 

Univariate and multivariate analysis of the DEIRGs 

 

To explore the prognostic significance of each DEIRG, 

univariate Cox analysis was conducted to screen the 

IRGs with a significant prognostic value (P< 0.05) as 

the candidates of individual risk score. A multivariate 

Cox analysis was performed to identify robust IRGs (P< 

0.05), showing association with the overall survival 

(OS) to build the IRGs prognostic model. The forest 

map was drawn with ggplot2 package. 

 

Molecular characteristics of prognostic immune-

related genes (PIRGs) 

 

DEIRGs that showed significantly relation to the OS of 

RTK patients were regarded as PIRGs. It is well known 

that the transcription factors (TFs) act as important 

biological regulators of gene function in response to 

various internal and external stimuli. To better 

understand the regulatory mechanism of these immune 

genes, it is necessary to identify some TFs in patients 

with RTK that have the potential ability to regulate these 

PIRGs. Cistrome Cancer is a comprehensive resource for 

predicting the targets and enhancer profiles of TFs in 

cancers. This database contains a total of 318 TFs, and 

these are considered as a precious resource for 

experimental and computational cancer biology research. 

After that, clinically relevant TFs were extracted to 

construct the regulatory network of clinically relevant 

IRGs and potential TFs. 

 
Generation of individual risk score  

 

To assess the risk in each patient, a new prognostic model 

based on the expression data by multiplying with the Cox 

regression coefficient was constructed. The prognostic 

model was used to measure the prognostic risk of each 

patient with RTK, and the median risk score of the cohort 

was used as the cut-off value to divide all RTK patients 

into two groups: the high and low-risk groups. High-risk 

score indicates a poor prognosis in RTK patients.  

https://ocg.cancer.gov/programs/target
https://www.r-project.org/
https://www.immport.org/home


 

www.aging-us.com 5472 AGING 

Analysis of tumor-infiltrating cell 

 

EPIC is an online database that is designed to estimate 

the proportion of immune and cancer cells from  

bulk tumor gene expression data (https://gfellerlab. 

shinyapps.io/EPIC_1-1/) [39]. After analyzing the 

immune infiltrating cells, including B cells, CAFs, 

CD4+ T cells, CD8+T cells, endothelial, macrophages, 

and natural killer (NK) cells, the correlation between 

the risk score and tumor-infiltrating cells was analyzed 

by the R software. 

 

Statistical analysis 

 

The R software cluster Profiler package was used to 

perform GO analysis for identifying the biological 

themes among the gene clusters. The Kyoto 

Encyclopedia of Genes and Genomes (KEGG) was used 

to screen the pathway enrichment of IRGs using the 

cluster Profiler package. The survival ROC R software 

package was used to calculate the AUC of the survival 

ROC curve to measure the performance of the 

prognostic model. The differences among the clinical 

parameters were tested using independent t-tests. R 

software was used to perform all statistical analyses, and 

p< 0.05 was considered to be statistically significant.  
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