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Normal pregnancy induced glucose metabolic
stress in a longitudinal cohort of healthy women
Novel insights generated from a urine metabolomics study
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Abstract
During normal pregnancy, mothers face a unique physiological challenge in the adaptation of glucosemetabolism in preparation for the
metabolic stress presented by fetal development. However, the responsiblemechanism remains elusive. The purpose of this study is to
investigate the mechanism of the metabolic stress of glucose metabolism in pregnant women using metabolomics method.
A Ultra Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometer-based untargeted metabolomics

study was performed to investigate the dynamic urinary signature of the intermediates of glucose metabolism in a longitudinal cohort
of 232 healthy pregnant women in their first, second, and third trimesters.
Twelve glucose metabolic intermediates were screened out from hundreds of candidate metabolites using partial least squares

discriminant analysis models. These 12 markers were mainly involved in the metabolic pathways of insulin resistance, glycolysis/
gluconeogenesis, tricarboxylic acid cycle, nonabsorbable carbohydrate metabolism, and N-glycan biosynthesis. In particular, L-
acetylcarnitine, a metabolite that is beneficial for the amelioration of insulin resistance, decreased in a time-dependent manner during
normal pregnancy. Moreover, thiamine pyrophosphate, an intermediate product of glycolysis/gluconeogenesis, significantly increased
in the second trimester, and argininosuccinic acid and oxalosuccinic acid, intermediates involved in the tricarboxylic acid cycle,
significantly decreased in the third trimester, suggesting an increased glucose demand in the maternal body during fetal development.
These findings provide novel insight into the normal pregnancy-induced elevation of insulin resistance and glycolysis/

gluconeogenesis, as well as the observed reduction in the aerobic oxidation of glucose.

Abbreviations: ESI = electrospray ionization, FC = fold change, GCDC = glycochenodeoxycholic acid, GDM = gestational
diabetes mellitus, GWAS = genome-wide association studies, KEGG = Kyoto Encyclopedia of Genes and Genomes, PCA =
principal component analysis, PLS-DA = partial least squares discriminant analysis, QC = quality control, RT = retention time, SDSD
= standard deviation step down, UPLC-MS = Ultra Performance Liquid Chromatography Mass Spectrometer, UPLC-QTOFMS =
Ultra Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometer, VIP = variable importance in projection.
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1. Introduction
During pregnancy, mothers face a unique physiological challenge
that requires complex adaptation coordinated by placenta- and
nonplacenta-derived hormones to prepare for the metabolic
stress presented by fetal development and to ensure the accurate
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and adequate shunting of nutrients from themselves to the
fetus.[1–3] Of particular importance during pregnancy is the
maintenance of glucose homeostasis.[3] Glucose metabolism
during normal pregnancy is characterized by an impairment in
insulin sensitivity, an increase in b-cell secretory response and
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b-cell mass, a moderate increase in blood glucose levels following
the ingestion of a meal, and changes in the levels of circulating
free fatty acids, triglycerides, cholesterol, and phospholipids.[1,2]

These changes seem to be a necessary and indispensable
physiological response to meet the energy demand of fetal
development and to provide additional energy storage for labor
and lactation.[1] However, the mechanisms underlying the
adaptive changes in glucose metabolism are not well understood.
“Omic” technologies have been recently recognized as a

promising approach that is capable of providing novel insight
into the pathogenic mechanisms of maternal-fetal medicine.[3–10]

In genome-wide association studies (GWAS), the adaptations in
glucose metabolism associated with the physiological changes in
insulin sensitivity and b-cell functional traits that occur during
normal pregnancy overlap with those observed in nonpregnant
populations and in individuals with type 2 diabetes.[3,11–15]

Genetic loci such as CDK5 Regulatory Subunit Associated
Protein 1-like 1 (CDKAL1), Glucokinase (GCK), Glucokinase
Regulator (GCKR), Hexokinase Domain Containing 1
(HKDC1), and Beta-site APP-Cleaving Enzyme 2 (BACE2)
were found to be associated with glycemic traits identified in
studies using cohorts of pregnant subjects.[3,11–15] However, the
genotypic associations between pregnancy and diabetes are
insufficient to reveal the exact mechanisms underlying the
phenotype of glucose metabolic stress during healthy gestation.
Metabolomics studies, which strongly complement GWAS,
provide a qualitative and quantitative description of the low
molecular mass endogenous metabolites present in a biological
sample such as urine, plasma, or tissue.[16] In addition,
metabolomics studies have confirmed that the higher circulating
concentrations of key metabolites, including branched-chain
amino acids and their metabolites, in patients with type 2 diabetes
and gestational diabetes mellitus (GDM) are associated with
insulin sensitivity, pancreatic b-cell function, and insulin
resistance.[17–19] Although these metabolomics studies contribute
considerably to the understanding of pregnancy complications
associated with glucose metabolism, they allow limited con-
clusions about the physiological adaption of glucose metabolic
stress during normal pregnancy among healthy women.
Driven by previous GWAS results that indicate similarities in

glucose metabolism during normal, healthy pregnancy and in
diabetes and by the relative information gap regarding the
responsible mechanisms, we conducted an Ultra Performance
Liquid Chromatography Quadrupole Time-of-Flight Mass Spec-
trometer (UPLC-QTOFMS)-based untargeted urinemetabolomics
analysis in a longitudinal cohort of 232healthypregnantwomen to
investigate dynamic variations in glucose metabolism-associated
metabolite profiles and metabolic pathways during the course of
normal pregnancy. A partial least squares discriminant analysis
(PLS-DA) combined with a standard deviation step down (SDSD)
method allowed more focus on metabolite concentration than is
possible with false discovery rate (FDR) methods, reduced type II
error rates and improved statistical efficiency.[20]
2. Methods

The participants in this study were selected from the healthy
pregnant women who were treated at the Maternal and Child
HealthHospital ofWuhanCity inChina betweenNovember 2013
and July 2014 (n=286). In the present study, we excluded
participantswhowere lost to follow-up during thewhole course of
pregnancy (n=48) and those with multiple pregnancies (n=4), as
well as those who suffered GDM (n=2). A total of 232 subjects
2

were eventually considered valid for the present study. All
participants provided written informed consent and completed
an individual questionnaire at the time of urine sample collection
for this study. Each subjectwas followedupuntil delivery to ensure
that the women had normal-term pregnancies and healthy babies.
Clinical information was obtained from face-to-face interviews
and obstetrical and neonatal medical records. Subjects, who were
more than 18 years old; had a singleton, intrauterine pregnancy,
and were nondiabetic, were eligible for inclusion in the present
cohort study. A total of 696 urine samples from 232 healthy
subjects were collected at 3 different time points: the first trimester,
the second trimester, and the third trimester. Detailed information
about the demographic characteristics of these subjects is shown in
Supplementary Table S1, http://links.lww.com/MD/C515. The
urine samples were frozen at�80°C until analysis. The number of
freeze–thaw cycles was minimized to reduce the introduced
interference as much as possible. To minimize the possible
interference of system error in the analysis, the UPLC-QTOFMS
tests were randomized by dividing all the testing samples into 3
homogeneous blocks (T1, T2, andT3), each ofwhich had an equal
sample size. The research protocol was approved by the Ethics
Committees of the Tongji Medical College, the Huazhong
University of Science and Technology, and the study hospital.
All experiments were performed in accordance with the principles
expressed in the Declaration of Helsinki or other relevant
guidelines and regulations.
2.1. High throughput metabolic profiling spectral
acquisition
2.1.1. Ultra performance liquid chromatography. Chro-
matographic analysis was performed with an Acquity Ultra
Performance liquid chromatography system (Waters Technologies
[Shanghai] Ltd., China) with anACQUITYUPLCHSST3 column
(2.1�100mm,1.8mm,Waters).Mobile phaseAwas0.1%formic
acid in water (v/v) and mobile phase B was 0.1% formic acid in
methanol (v/v); the flow rate was 0.5 mL/min. The gradient
conditions of the mobile phase in positive and negative mode were
as follows: 0 to 1minute: 1%B; 1 to 3minutes: 1% to 15%B; 3 to
6minutes: 15% to 50%B; 6 to 9minutes: 50% to 95% B; 9 to 10
minutes: 95%B; 10 to 10.1minutes: 95% to 1%B; and 10.1 to 12
minutes: 1% B. The temperature of the column and the
autosampler was maintained at 40 and 4°C, respectively.[21]

2.1.2. Mass spectrometry. A Waters Synapt High-Definition
Time-of-Flight Mass Spectrometry system (Waters) equipped
with an electrospray ionization (ESI) source operating in positive
and negative mode was connected to the UPLC system and used
in this study. The capillary voltage was 3.2 and 2.4kV in the
positive and negative ionization modes, respectively. The
desolvation temperature was 350°C, the sampling cone voltage
was 40 V, the extraction cone voltage was 4.0 V, the source
temperature was 120°C, the cone gas flow was 25 L/h, and the
desolvation gas flow was 900 L/h. To ensure accurate mass
measurement, the mass was corrected with leucine-enkephalin
during acquisition to generate a reference ion at m/z 556.2771 Da
([M+H]+) in positive ionmode andm/z 554.2615Da ([M�H]�)
in negative ion mode before the instrument was used.

2.1.3. Quality control, data analysis, and metabolite identifi-
cation. The quality control (QC) method was applied to evaluate
the repeatability of the metabolomics method. An equal volume
of 10mL of each tested urine sample was mixed thoroughly to
prepare the pooled QC samples. At the beginning and the end of
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each batch of Ultra Performance Liquid Chromatography Mass
Spectrometer (UPLC-MS) analysis, 5 QC samples were injected,
and then 1 QC sample was tested at a regular interval of every 10
samples.[21] If the coefficient of variationwas more than 20%, the
variables were deleted. The acquired UPLC-MS data were
analyzed in MassLynx V4.1 software (Waters). The 3-dimen-
sional matrix of the ion intensities, retention time (RT), and m/z
value was constructed for each metabolite feature.
The unsupervised data analysis method of principal compo-

nent analysis (PCA) was performed on all the samples to evaluate
the robustness of the metabolic profiling platform. PLS-DA was
used to analyze the difference between the sample groups. In this
study, unit variance scaling was applied to avoid the mask effect.
Variables with a variable importance in projection (VIP) value>1
were screened out for further statistical testing.
A decision tree algorithm was used to select the statistical

significance test for the variables screened out by PLS-DA.[22]

Compared with FDR methods, the SDSD method allowed more
focus on information about the metabolite concentration. This
method was introduced in this study to reduce the rate of type II
errors and to improve the statistical efficiency.[20] Variables that
passed the SDSD test and had a VIP>1 were considered potential
markers in the next step of metabolite identification.
Several ion adducts, including [M �H]�, [M+HCOO]�, [2M

� H]�, [M+H]+, [M+NH4]
+, [M+Na]+, [M+K]+, [2M+H]+,

[2M+H+K]2+, and [2M+H+Na]2+, were present in both
positive and negative mode high-resolution ESI. These adducts
make the identification of metabolites difficult because the
accurate calculation and comparison of each type of adduct is
very time-consuming. To rapidly identify a metabolite, we used
software that was developed for batch processing of automatic
putative identification by matching the measured m/z data list
with a reference m/z data list derived from the HMDB
database.[23] The key metabolites were further confirmed by
the comparison of their fragmentation patterns and structural
information with those obtained from the HMDB, METLIN, or
MassBank databases.

2.1.4. Data visualization and biomarker network analysis.
The relative concentration of glucose metabolic intermediates in
the corresponding trimesters of pregnancy for each subject was
further scaled to a value between 0 and 1 by a “for” loop
statement in R (R Core Team (2015). R: A language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria: https://www.R-project.
org/). Heat maps with a clustering tree were also created in R.
Detailed chemical and biological information about the signifi-
cant metabolites from the comparison between the different
trimesters of pregnancy was retrieved online at “https://pubchem.
ncbi.nlm.nih.gov/” and “http://www.kegg.jp/.” The network
software MetaMapp (http://metamapp.fiehnlab.ucdavis.edu./
homePage) was used to generate node and edge data for the
metabolic network with the Cytoscape software.[24]
3. Results

By using the UPLC-QTOFMS analysis protocol and subsequent
processes, more than 3000 exact mass RT pairs were detected in
the positive ion mode and negative ion mode. The PCA results
showed that the QC samples were well clustered in the score plots
(Supplementary Fig. S1, http://links.lww.com/MD/C515), indi-
cating the absence of obvious drifts in the UPLC-QTOFMS
platform in the present study.Moreover, as shown in the PLS-DA
3

score plots (Figs. 1A, B and 2A, B), there were obvious
distinctions between the second trimester (T2) and the first
trimester (T1), as well as between the third trimester (T3) and the
second trimester (T2), in both ion modes. The fit of the PLS-DA
model was assessed by the values of R2Y and Q2 in the cross-
validation, with the former term indicating the goodness of fit and
the latter indicating the goodness of prediction. In the positive ion
mode, the cross-validation values of R2Y and Q2 were 0.901 and
0.861, respectively, in the comparison between T2 and T1 and
were 0.918 and 0.867, respectively, in the comparison between
T3 and T2. In the negative ion mode, the cross-validation values
of R2Y and Q2 were 0.851 and 0.813, respectively, in the
comparison between T2 and T1 and were 0.652 and 0.607,
respectively, in the comparison between T3 and T2. To further
validate whether the PLS-DA models were overfitted, 999
permutation tests were performed in the present study. As
shown in the permutation test plots (Figs. 1C, D and 2C, D), the
intercepts for the PLS-DA models did not achieve the threshold
for overfitting (R2Y>0.4, Q2Y>0.05), indicating that the PLS-
DA models in this study were established effectively.
When the condition of VIP>1 was applied, 667 metabolites

were putatively identified in the positive ion mode, and 425
metabolites were putatively identified in the negative ion mode.
These metabolites were mainly involved in the metabolism of
glucose, amino acids, and nucleosides. Supplementary Tables S2,
http://links.lww.com/MD/C515, and S3, http://links.lww.com/
MD/C515, show the top 50 metabolites in positive ion mode and
negative ion mode ranked by VIP value. After SDSD correction,
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, and mass spectrum/mass spectrum (MS/MS) fragment
pattern validation, we found that 8 glucose metabolic inter-
mediates significantly changed between the second trimester (T2)
and the first trimester (T1) and that 8 glucose metabolic
intermediates significantly changed between the third trimester
(T3) and T2 (Tables 1 and 2). Supplementary Table S4, http://
links.lww.com/MD/C515, shows the normal pregnancy-related
markers involved in glucose metabolism that were identified in
the urine of healthy pregnant women.
3.1. Maternal urinary metabolites involved in glucose
metabolism

The dynamic change in and the intersection at different time
points for these glucose metabolic intermediates are shown in
Fig. 3. As shown in Fig. 3A, 4 overlapping metabolites and 4
exclusive metabolites were screened out for T2 versus T1 and T3
versus T2, respectively. In this study, L-acetylcarnitine showed a
time-dependent decrease, while glycochenodeoxycholic acid
(GCDC) 3-glucuronide showed a time-dependent increase,
during the course of pregnancy; 2-phenylethanol glucuronide
was significantly increased in T2 but was decreased in T3; 6-
dehydrotestosterone glucuronide was significantly decreased in
T2 but was increased in T3; 3 metabolites (1,4-beta-D-glucan, D-
glucuronic acid 1-phosphate, and dolichol phosphate) were
decreased significantly in T2 and were maintained at a low level
in T3; 3 metabolites (galactosylglycerol, argininosuccinic acid,
and oxalosuccinic acid) did not show a remarkable change in T2
but were significantly decreased in T3; 2-keto-glutaramic acid did
not show a remarkable change in T2 but was significantly
increased in T3; and thiamine pyrophosphate increased signifi-
cantly in T2 and was maintained at a high level in T3 (Fig. 3B).
The relative concentrations of the metabolites that were

significantly changed in each subject were further visualized with

https://www.r-project.org/
https://www.r-project.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.kegg.jp/
http://metamapp.fiehnlab.ucdavis.edu./homePage
http://metamapp.fiehnlab.ucdavis.edu./homePage
http://links.lww.com/MD/C515
http://links.lww.com/MD/C515
http://links.lww.com/MD/C515
http://links.lww.com/MD/C515
http://links.lww.com/MD/C515
http://links.lww.com/MD/C515
http://www.md-journal.com


Figure 1. Differentiation of urine metabolic profiles from healthy pregnant women obtained in positive ion mode using PLS-DA models. (A) PLS-DA analysis
between the first trimester and the second trimester. (B) PLS-DA analysis between the second trimester and the third trimester. (C) 999 permutation test for the
PLS-DA model of the comparison between the first trimester and the second trimester. (D) 999 permutation test for the PLS-DA model of the comparison between
the second trimester and the third trimester. t[1], t[2], and t[3] denote the first component, the second component, and the third component, respectively. T1, T2,
and T3 denote the first trimester, the second trimester, and the third trimester, respectively. PLS-DA = partial least squares discriminant analysis.
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a heat map (Fig. 4). The metabolite concentrations were
visualized with a red-to-green color gradient. Red represented
low-abundance metabolites, green represented high-abundance
metabolites and black represented moderate-abundance metab-
olites. From the heat map, the changing trends in the
corresponding metabolites in the different groups could be easily
observed simultaneously.

3.2. Network reconstruction for normal pregnancy-
induced glucose metabolic changes

“Biochemistry” refers to the conversion of chemically similar
compounds by catalytic enzymes, which makes it seem logical to
associate all compounds directly by their chemical similarity;
thus, clusters of chemically similar compounds should then
resemble biochemical modules.[25] Under this background, we
calculated the chemical similarity matrix for the studied
metabolites using the PubChem database and found that the
metabolites that had high similarity weremost likely derived from
the same biochemical pathway.[25]

In addition to the chemical similarity information, we also
retrieved the biochemical information about the studied
metabolites from the KEGG pathway database. Of the 4
overlapping metabolites, L-acetylcarnitine was involved in insulin
resistance (KEGG map ID: map04931), and the other 3
4

metabolites (2-phenylethanol glucuronide, 6-dehydrotestoster-
one glucuronide, and GCDC 3-glucuronide) were involved in
pentose and glucuronate interconversions (KEGG map ID:
map00040). Of the 4 exclusive metabolites in the T2 versus
T1 comparison, 1,4-beta-D-glucan was involved in carbohydrate
digestion and absorption (KEGG map ID: map04973), thiamine
pyrophosphate was involved in glycolysis/gluconeogenesis
(KEGG map ID: map00010), D-glucuronic acid 1-phosphate
was involved in pentose and glucuronate interconversions
(KEGG map ID: map00040), and dolichol phosphate was
involved in N-glycan synthesis (KEGG map ID: map00510). Of
the 4 exclusive metabolites in the T3 versus T2 comparison,
galactosylglycerol was involved in galactose metabolism (KEGG
map ID: map00052), argininosuccinic acid and oxalosuccinic
acid were involved in the citrate cycle (tricarboxylic acid cycle
[TCA cycle], KEGG map ID: map00020), and 2-keto-glutaramic
acid was involved in glycogenic amino acid metabolism (KEGG
map ID: map00250).
In this study, to better visualize the differences in metabolic

regulation induced by normal pregnancy, we applied a
biochemical visualization approach using MetaMapp and
Cytoscape to present metabolic network graphs that included
all the known biochemical reactions and the chemical structure
information.[25,26] In Figs. 5 and 6, the intermediates of glucose
metabolism are denoted by colored nodes (the red nodes



Figure 2. Differentiation of urine metabolic profiles from healthy pregnant women obtained in negative ion mode using PLS-DA models. (A) PLS-DA analysis
between the first trimester and the second trimester. (B) PLS-DA analysis between the second trimester and the third trimester. (C) 999 permutation test for the
PLS-DA model of the comparison between the first trimester and the second trimester. (D) 999 permutation test for the PLS-DA model of the comparison between
the second trimester and the third trimester. t[1], t[2], and t[3] denote the first component, the second component, and the third component, respectively. T1, T2,
and T3 denote the first trimester, the second trimester, and the third trimester, respectively. PLS-DA = partial least squares discriminant analysis.
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represent the increased metabolites, while the green nodes
represent the decreased metabolites), and the node size represents
the degree of change of the corresponding metabolite. The nodes
representing the metabolites that were significantly changed but
not involved in glucose metabolism during normal pregnancy are
shown in gray, making up the overall background of the
metabolic maps. As shown in the metabolic network maps (Figs.
5 and 6), the intermediates of glucose metabolism clustered into
different biochemical modules, and there was a significant
difference in the clustering between T2 and T1 and between T3
Table 1

Significantly changed metabolites involved in glucose metabolism (T

Primary ID Retention time, min Mass HMDB ID

3.89_242.0808 3.89 242.0808 HMDB00201
6.02_299.1155 6.02 299.1155 HMDB10350
6.11_571.1227 6.11 571.1227 HMDB06944
8.91_485.2165 8.91 485.2165 HMDB10337
3.03_445.0331 3.03 445.0331 HMDB01372
3.84_312.9758 3.84 312.9758 HMDB06329
6.20_626.3522 6.20 626.3522 HMDB02579
6.66_607.3490 6.66 607.3490 HMDB06353

VIP = variable importance in projection.
∗
Standard deviation step down-adjusted P value.

† Fold change (FC) was calculated from the ratio of the arithmetic mean values of peak intensity in each grou
relative group, while FC with a value <1.00 indicated that the concentration of certain metabolite was

5

and T2, which both demonstrated that the features of glucose
metabolic regulation changed significantly during normal
pregnancy and provided novel clues in the investigation of the
mechanism of pregnancy-related glucose metabolic stress.

4. Discussion

To ensure a continuous supply of nutrients and substrates for
fetal development as well as additional energy stores for labor
and lactation, the maternal body experiences obvious metabolic
2 vs T1).

Metabolite name P
∗

FC† VIP

L-acetylcarnitine <5.16�10�6 0.51 2.7
2-Phenylethanol glucuronide <3.40�10�6 3.74 2.3
1,4-beta-D-glucan <1.48�10�5 0.10 2.3
6-Dehydrotestosterone glucuronide <9.34�10�6 0.35 2.2
Thiamine pyrophosphate <2.78�10�5 6.85 1.8
D-glucuronic acid 1-phosphate <7.54�10�6 0.29 1.8
Glycochenodeoxycholic acid 3-glucuronide <1.08�10�5 3.30 1.6
Dolichol phosphate <1.26�10�5 0.40 1.3

p. FC with a value>1.00 indicated that the concentration of certain metabolite was up-regulated in the
down-regulated in the relative group.

http://www.md-journal.com


Figure 3. Metabolite change trends and overlap for significantly changedmetabolites in different trimesters. (A) Venn diagram of the overlap of significantly changed
metabolites involved in glucosemetabolism in different trimesters. Four overlappedmetabolites and 4 exclusivemetabolites were screened out for T2 versus T1 and
T3 versus T2, respectively. The overlapped metabolites were L-acetylcarnitine, 2-phenylethanol glucuronide, 6-dehydrotestosterone glucuronide, and
glycochenodeoxycholic acid 3-glucuronide. The exclusive metabolites for T2 versus T1 were 1,4-beta-D-glucan, thiamine pyrophosphate, D-glucuronic acid 1-
phosphate, and dolichol phosphate. The exclusive metabolites for T3 versus T2 were galactosylglycerol, argininosuccinic acid, 2-keto-glutaramic acid, and
oxalosuccinic acid. (B) Relative dynamic trend of significantly changed metabolites. T1, T2, and T3 denote the first trimester, the second trimester, and the third
trimester, respectively.

Table 2

Significantly changed metabolites involved in glucose metabolism (T3 vs T2).

Primary ID Retention time, min Mass HMDB ID Metabolite name P
∗

FC† VIP

3.90_242.0815 3.90 242.0815 HMDB00201 L-acetylcarnitine <1.54�10�5 0.61 1.9
6.37_507.1879 6.37 507.1879 HMDB06790 Galactosylglycerol <6.43�10�5 0.17 1.8
8.92_485.2155 8.92 485.2155 HMDB10337 6-Dehydrotestosterone glucuronide <3.41�10�6 1.47 1.6
6.04_579.2367 6.04 579.2367 HMDB00052 Argininosuccinic acid <3.42�10�4 0.24 1.5
6.02_299.1148 6.02 299.1148 HMDB10350 2-Phenylethanol glucuronide <7.84�10�6 0.48 1.5
0.65_144.0309 0.65 144.0309 HMDB01552 2-Keto-glutaramic acid <5.60�10�6 1.63 1.4
6.21_626.3530 6.21 626.3530 HMDB02579 Glycochenodeoxycholic acid 3-glucuronide <1.49�10�5 3.50 1.3
1.09_189.0044 1.09 189.0044 HMDB03974 Oxalosuccinic acid <1.19�10�5 0.53 1.3

VIP = variable importance in projection.
∗
Standard deviation step down-adjusted P value.

† Fold change (FC) was calculated from the ratio of the arithmetic mean values of each group. FC with a value>1.00 indicated that the concentration of certain metabolite was up-regulated in the relative group,
while FC with a value <1.00 indicated that the concentration of certain metabolite was down-regulated in the relative group.

Wang et al. Medicine (2018) 97:40 Medicine
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Figure 4. Heat map of the relative concentration of significantly changed metabolites involved in glucose metabolism in different trimesters. T1, T2, and T3 denote
the first trimester, the second trimester, and the third trimester, respectively. (a) l-Acetylcarnitine; (b) 2-phenylethanol glucuronide; (c) 1,4-beta-D-glucan; (d) 6-
dehydrotestosterone glucuronide; (e) thiamine pyrophosphate; (f) D-glucuronic acid 1-phosphate; (g) glycochenodeoxycholic acid 3-glucuronide; (h) dolichol
phosphate; (i) galactosylglycerol; (J) argininosuccinic acid; (k) 2-keto-glutaramic acid; (l) oxalosuccinic acid.

Wang et al. Medicine (2018) 97:40 www.md-journal.com
stress during normal pregnancy. An important advantage of
urine metabolites is that they represent the final state of
metabolism, while the metabolites in the blood most likely
continue to participate in metabolism. The urine metabolomics
7

approach of the present study, combined with the relatively large
longitudinal cohort design, the more sensitive analytical
platform, and the keen focus on the terminal products of glucose
metabolism, may provide a critical characterization of glucose

http://www.md-journal.com


Figure 5. Glucose metabolic network generated from the significantly changed metabolites in the second trimester (compared with the first trimester). The
chemical similarity and KEGG biochemical interpretation of the intermediates involved in glucose metabolism were integrated into the network visualization in
Cytoscape using MetaMapp software. The red nodes denote the significantly elevated metabolites involved in glucose metabolism, the green nodes denote the
significantly reduced metabolites involved in glucose metabolism, and the gray nodes denote the metabolites which were significantly changed in this study but not
involved in glucosemetabolism. The size of the colored nodes is coded by the corresponding fold change (FC) value. The network edges among themetabolites are
defined by the thresholds of similarity scores (Tanimoto coefficients>0.5). The nodes clustered closely have similar chemical structures and biochemical reaction
modules.
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metabolic stress during the progression of gestation. In this study,
the urine metabolites that were most altered, along with their
related metabolic pathways, were investigated in a longitudinal
cohort of healthy women.
Glucose metabolism varies due to a significant difference in the

level of maternal insulin sensitivity,[27,28] and progressive insulin
resistance is considered an underlying driver for many of the
observed metabolic adaptations during normal pregnancy.[10]L-
acetylcarnitine is important in facilitating the movement of
acetyl-CoA into the mitochondrial matrix to allow long-chain
fatty acid oxidation, maintain energetic balance, and provide
unique neuroprotective, neuromodulatory, and neurotrophic
properties.[29] Previous studies showed that L-acetylcarnitine was
beneficial by downregulating the level of insulin resistance in
insulin-resistant conditions, including obesity,[30] diabetes,[31]

and human immunodeficiency virus.[32] The relative concentra-
8

tion of L-acetylcarnitine was found to decline progressively
during pregnancy (fold change [FC]=0.51, T2 vs T1; FC=0.61,
T3 vs T2), which may be related to the decline in insulin
sensitivity during the course of normal pregnancy.
Glucuronidation, which is catalyzed by UDP glucuronyltrans-

ferase, a mammalian superfamily of phase II metabolizing
enzymes expressed in a variety of organs and tissues, including
the human liver and placenta,[33,34] contributes to the renal
excretion of poisonous materials, drugs, or other substances by
increasing their water solubility. In this study, 4 glucuronides (D-
glucuronic acid 1-phosphate, 6-dehydrotestosterone glucuro-
nide, 2-phenylethanol glucuronide, and GCDC 3-glucuronide)
were screened out in the second trimester, and 3 (6-dehydrotes-
tosterone glucuronide, 2-phenylethanol glucuronide, and GCDC
3-glucuronide) were screened out in the third trimester, as the
metabolites most altered during the course of normal pregnancy.



Figure 6. Glucose metabolic network generated from the significantly changed metabolites in the third trimester (compared with the second trimester). The
chemical similarity and KEGG biochemical interpretation of the intermediates involved in glucose metabolism were integrated into the network visualization in
Cytoscape using the MetaMapp software. The red nodes denote the significantly elevated metabolites involved in glucose metabolism, the green nodes denote the
significantly reduced metabolites involved in glucose metabolism, and the gray nodes denote the metabolites which were significantly changed in this study but not
involved in glucosemetabolism. The size of the colored nodes is coded by the corresponding fold change (FC) value. The network edges among themetabolites are
defined by the thresholds of similarity scores (Tanimoto coefficients>0.5). The nodes clustered closely have similar chemical structures and biochemical reaction
modules.
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This finding indicated a substantial alteration in the metabolic
pathway between UDP-D-glucuronate and D-glucuronate. Inter-
estingly, 2-phenylethanol glucuronide, a waste product that is
excreted by the kidney and is related to type 2 diabetes,[35] was
also screened out in the present longitudinal healthy pregnant
cohort. Its concentration significantly increased in the second
trimester (FC=3.74, T2 vs T1) but significantly decreased in the
third trimester (FC=0.48, T3 vs T2), a pattern that may improve
our understanding of pregnancy-induced abnormal glucose
metabolism and may provide a valuable clue for further studies.
GCDC, a metabolite of bile acids, was believed to cause
hepatocellular necrosis and apoptosis in part by inducing the
mitochondrial permeability transition and the mitochondrial
generation of oxidative radicals.[36] In this study, the concentra-
9

tion of GCDC 3-glucuronide, a glucuronide of GCDC,
progressively increased as pregnancy progressed (FC=3.3, T2
vs T1; FC=3.5, T3 vs T2), which may be explained by the
adaptive protection of the maternal body from liver injury by
increasing the excretion of GCDC.
Before the 3rd month of pregnancy, the level of fasting

plasma glucose remains constant in the maternal body.
Thereafter, the plasma glucose level decreases by 10 to 15
mg/dL as the plasma insulin concentration increases twofold.[1]

Under this condition, the endogenous production of glucose is
almost completely accounted for by gluconeogenesis and is
enhanced by 16% to 30%.[1,28] In this study, the concentration
of thiamine pyrophosphate, an intermediate involved in
glycolysis/gluconeogenesis, was found to be increased 6.85-
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fold (FC=6.85, T2 vs T1) in the second trimester. Furthermore,
the concentration of 2-keto-glutaramic acid, an intermediate
involved in glycogenic amino acid (alanine) metabolism, was
increased 1.63-fold (FC=1.63, T3 vs T2) in the third trimester;
this increase may be due to the normal pregnancy-induced
enhancement of gluconeogenesis.
The concentrations of both oxalosuccinic acid, an intermediate

in the TCA cycle, and argininosuccinic acid, a precursor of fumaric
acid, were decreased in the third trimester, suggesting a possible
reduction in demand for the TCA cycle, a change that probably
results because the aerobic oxidation of glucose is reduced to
ensure an adequate glucose supply for fetal development during
late pregnancy. The concentration of galactosylglycerol, an
intermediate involved in galactose metabolism, did not change
remarkably in the second trimester but significantly decreased in
the third trimester, a pattern that can be explained by the rapidly
increased demand for this metabolite during fetal development.
1,4-Beta-D-glucan, a polymer of glucose molecules involved in
nonabsorbable carbohydrate metabolism, was detected in this
study and its concentration showed a trend of significant decrease
in the second trimester (FC=0.1, T2 vsT1), indicating a significant
decrease in cellulose and other nonabsorbable carbohydrates as
pregnancy progressed. However, further evidence is needed to
validate this hypothesis.
The UPLC-QTOFMS-based untargeted metabolomics analysis

also revealed pregnancy-induced changes in N-glycosylation,
which is one of the most important means of the posttranslational
modification of proteins and has complex biological functions in
processes including tumorigenesis,[37] the immune re-
sponse,[38,39] and cell communication.[40] Pregnancy-related N-
glycosylation has been examined in a few studies.[41–45] In this
study, the concentration of dolichol phosphate, an intermediate
involved in N-glycan biosynthesis, decreased significantly in the
second trimester and was maintained at a low level in the third
trimester, which may indicate that normal pregnancy induced a
considerable inhibition of N-glycosylation.
This study has some limitations. First, the results from this

study are only applicable to pregnant women, limiting the results
from being applied to the entire female population. In a future
study, wewill include a cohort of control subjects to acquire more
data about the differences between the nonpregnant cohort and
the pregnant cohort. Second, the content of the metabolites was
not quantified absolutely, but the relative quantification
accurately reflects the trends of the changes in the metabolites.
Third, the changes in the physiological parameters of the kidney
were not fully taken into account in the analysis of the alteration
of urine metabolites during pregnancy.
5. Conclusion

This work employed a UPLC-QTOFMS approach to determine
the dynamic changes in glucose metabolism-associated inter-
mediates among a large cohort of healthy women in different
trimesters of pregnancy. Twelve metabolites related to glucose
metabolism were identified, and their variations throughout
pregnancy were followed, thus providing a relatively detailed
dynamic signature of glucose metabolism during normal
pregnancy. Within the discovered variations, metabolites in the
metabolic networks of insulin resistance, pentose and glucuro-
nate interconversion, glycolysis/gluconeogenesis, TCA cycle,
nonabsorbable carbohydrate metabolism, and N-glycan biosyn-
thesis were comprehensively observed in connection with normal
pregnancy. This normal pregnancy-related glucose metabolic
10
profile as well as the pathway information might help in the
exploration of the complex mechanisms underlying physiological
metabolic stress and might have the potential to allow the
generation of a novel hypothesis about glucose metabolism. In
turn, such a hypothesis could provide an ideal base for a large-
scale epidemiological study of women who subsequently develop
pregnancy-related metabolic abnormalities, for example, gesta-
tional diabetes.
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