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Abstract

Background

Adeno associated virus (AAV) is well known for its ability to deliver transgenes to retina and

to mediate improvements in animal models and patients with inherited retinal disease. Al-

though the field is less advanced, there is growing interest in AAV’s ability to target cells of

the anterior segment. The purpose of our study was to fully articulate a reliable and repro-

ducible method for injecting the anterior chamber (AC) of mice and rats and to investigate

the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-comple-

mentary (sc) genomes in the anterior segment of the eye.

Methodology/Principle Findings

AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was

punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux

an air bubble was created in the AC. scAAVs expressing GFP were injected and transduc-

tion was evaluated by immunohistochemistry. Both parent serotype and capsid modifica-

tions affected expression. scAAV2- based vectors mediated efficient GFP-signal in the

corneal endothelium, ciliary non-pigmented epithelium (NPE), iris and chamber angle in-

cluding trabecular meshwork, with scAAV2(Y444F) and scAAV2(triple) being the most

efficient.

Conclusions/Significance

This is the first study to semi quantitatively evaluate transduction of anterior segment tis-

sues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced

corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than

scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly en-

hanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations
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was not directly proportional to transduction efficiency, however, suggesting that proteoso-

mal avoidance alone may not be sufficient. These results are applicable to the development

of targeted, gene-based strategies to investigate pathological processes of the anterior seg-

ment and may be applied toward the development of gene-based therapies for glaucoma

and acquired or inherited corneal anomalies.

Introduction
Adeno associated virus (AAV)- mediated gene delivery has been used successfully to improve
vision in animal models of inherited retinal disease and its safety/efficacy has also been proven
in clinical trials [1–8]. In addition, AAV has been used to create animal models and investigate
pathological mechanisms of ocular diseases e.g. in optic neuropathy [9] or age-related macular
degeneration [10]. While transduction of the outer and inner retina is achievable via subretinal
and intravitreal injection of AAV, respectively [11–13], these injection routes are not capable
of, or at best, ill-suited for transducing tissues of the anterior segment. While the field is less ad-
vanced, there is a growing interest in targeting tissues like the trabecular meshwork (TM),
which plays a role in the pathophysiology of glaucoma (reviewed in [14–17], and corneal lay-
ers, which can be affected by genetically determined non-inflammatory corneal dystrophies
(reviewed in [18, 19]). Among others, targets of interest within the TM include pro-fribrotic
and microfibril associated genes such transforming growth factor- beta (TGFB), connective tis-
sue growth factor (CTGF), fibronectin (FN), bone morphogenic protein (BMP) and tissue
transglutaminase (tTG) [15, 20–31]. Targets of interest in the cornea include carbohydrate sul-
fotransferase 6 (CHST6), keratin 3 (KRT3), keratin 12 (KRT12), a FYVE finger containing
phosphoinositide kinase (PIK5K3), sodium bicarbonate transporter-like protein (SLC4A11),
tumor associated calcium signal transducer 2 (TACSTD2), transforming growth factor, beta in-
duced, 68 kDA (TGFBI) and UbiA prenyltransferase domain-containing protein 1 (UBIAD1)
[18, 19]. Gene delivery to these tissues will require both a reliable injection technique and vec-
tors that can efficiently transduce target cells in vivo. While other vectors have successfully
been used to transduce these tissues [31–49], AAV is the preferred platform due to its inherent
lack of immunogenicity, persistent transgene expression, ease of use (very rapid and facile clon-
ing of vector constructs relative to other vector platforms) and clinical relevance in the eye.

Different AC (intracameral) injection methods have been described for delivering AAV in
cynomolgus macaques, rats and mice [50–52]. Due to their small size and shallow anterior
chambers, AC injections in mouse eyes are more challenging [52]. Gene delivery to outflow
pathways via AC injection is preferred to intravitreal injection given the relatively small volume
of the former. AC injection allows direct access to target tissues like TM and cornea with rela-
tively little dilution effect (mouse AC volume is ~3 μl, mouse vitreous volume is ~10 μl) [53].
To date, all reports of AAV-mediated transduction of TM or cornea have focused on unmodi-
fied, first generation serotypes AAV1-AAV9 [49, 51, 54–58]. With the goal of targeting trans-
gene expression to these tissues, we chose to focus on two ‘parent’ capsid serotypes, AAV2 and
AAV8, as each has previously demonstrated utility for targeting TM and cornea, respectively
[49, 51, 54, 57]. AAV2 transduces TM cells in vitro, organoculture [54], and TM in rat and
non-human primate after intracameral injection [51]. The primary receptor for AAV2 is
heparan sulfate proteoglycan (HSPG) [59, 60]. An abundance of HSPGs are found in the extra-
cellular matrix and basement membranes of the TM, as is AAV2’s co-receptor αVβ5 integrin
[61]. HSPGs are also present in cornea [62]. Conversely, AAV8 does not bind HSPG [63].
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However, studies show that this serotype efficiently transduces corneal stroma [27,29]. Thus,
our selection was based on known AAV receptor biology and glycan footprints in target
tissues.

The purpose of the current study was twofold. First, we aimed to investigate whether capsid
mutated AAV vectors delivered via AC injection could efficiently transduce tissues of the ante-
rior segment including TM and cornea. Our standard AAV vector vehicle (BSS supplemented
with Tween 20) is low viscosity. We purposefully avoided using a high viscosity vehicle for in-
jection because such ‘gels’ are composed of glycosaminoglycans (GAGs), which are the very
substrates that AAV capsid’s bind. Due to the low viscosity of injection solution and the small
size/shallow anterior chamber in rodents, the propensity for vector reflux during injection was
high. Our second aim, therefore, was to describe an anterior chamber injection method that
was well tolerated and gave generally reproducible results in mice and rats with the goal of
providing sufficient methodological detail for any labs interested in attempting similar
experiments.

Methods

Experimental Animals
To establish the injection procedure and to investigate transduction profiles, male and female
C57BL/6 mice and Sprague Dawley rats were used. All animal procedures were approved by
the Institutional Animal Care and Use Committee on the Ethics of Animal Experiments of the
University of Florida, Gainesville (IACUC Protocol # 201101103) and were carried out in strict
accordance with the recommendations of the Association for Research in Vision and Ophthal-
mology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research and
the Guidelines for the Care and Use of Laboratory Animals of the National Institutes of Health.
To ameliorate any pain or distress during ocular injections, rodents were anesthetized with
intraperitoneal injection of ketamine/xylazine at a mixture of ketamine 80–120 mg/kg, xylazine
10–15 mg/kg. Rodents were humanely sacrificed by sedation first with ketamine/xylazine (as
outlined above) followed by cervical dislocation in accordance with the University of Florida
IACUC guidelines.

AAV-Vector Construction and Production
All scAAV serotypes and mutants contain the ubiquitous, truncated chimeric CMV-chicken
β-actin (smCBA) promoter [64] driving the green fluorescent protein (GFP) reporter cDNA.
AAV2 and AAV8 capsid mutants were generated by directed mutagenesis of highly conserved
surface-exposed tyrosine and threonine residues with the QuickChange Multi Site-Directed
Mutagenesis Kit (Agilent Technologies, CA 200514) as previously described[65–67]. Selected
tyrosine and threonine residues were mutated to phenylalanine (Y−F) or valine (T−V), respec-
tively. A summary of mutated residues and vector nomenclature are described in Table 1.

Table 1. AAV vectors and titers.

Construct AAV Serotype Titer (vg/mL)

sc-smCBA-hGFP AAV2 ~2x1012

sc-smCBA-hGFP AAV2(Y444F) ~9x1011

sc-smCBA-hGFP AAV2(Y444+500+730) (aka "AAV2(triple)") ~3x1012

sc-smCBA-hGFP AAV2(Y252+272+444+500+700+704+730F) (a.k.a. "AAV2(septuple)") ~2x1012

sc-smCBA-hGFP AAV8(Y733F) ~2x1012

doi:10.1371/journal.pone.0128759.t001
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scAAV vector preparations were performed by the 3-plasmid, co-transfection method ac-
cording to methods described in detail previously [68–70]. Briefly, a calcium phosphate precip-
itation transfection was set up by mixing 500 μg: of vector plasmid “sc-trs-SB-smCBA-hGFP”,
650 μg of plasmid coding for AAV2 ‘rep’ and the variant specific ‘cap’ and 1550 μg of helper
plasmid “pXX6” containing Adenovirus helper genes, respectively (Table 1). scAAV vector
was titered for DNase-resistant vector genomes by quantitative real-time PCR against a known
standard. Resulting titers are contained in Table 1.

Anterior Chamber Injections. Anterior Chamber Injections
AC injections were performed in C57BL/6 mice (injection volume 1 μl; age ~5 weeks; The Jack-
son Laboratory, Maine, USA) and Sprague Dawley rats (injection volume 2 μl; age ~12 weeks,
Harlan Laboratories, USA). Mice (n = 35) and rats (n = 35) were anesthetized with a mixture
of 100 mg/kg ketamine, 20 mg/kg xylazine and saline. Pupils were dilated with 1% atropine sul-
fate (Akorn, IL, USA) and 2.5% phenylephrine hydrochloride (Akorn, IL, USA). One drop of
0.5% proparacaine hydrochloride (Alcon, TX, USA) was applied to the cornea as a topical anes-
thetic. Animals were positioned slightly lateral and placed under a surgical microscope (Nikon
SMZ800 fitted with Olympus Z4040Zoom camera). Hypromellose ophthalmic demulcent solu-
tion 2.5% (Gonak; Acorn, IL, USA) was applied onto the cornea to improve visibility when ma-
nipulating in the AC. Cornea was punctured with a 33-gauge needle (beveled 25° angle,
3-sharpening, with bevel up) just anterior of the iridocorneal angle. Care was taken not to dis-
turb the iris or the lens (Fig 1). With a beveled 33-gauge needle we slowly injected approxi-
mately 200 nl air through the same puncture site at a rate of 30 nl/s. The needle was kept in
position until the air bubble was fully formed and then slowly removed to facilitate gentle
movement of the air bubble towards the puncture site (Fig 1B). When the bevel of the needle
was close to the puncture site, it was pulled out quickly to keep the bubble at the puncture site.

Fig 1. Injection procedure in mice. (A) The cornea is punctured closely anterior to the iridocorneal angle.
(B) Before vector administration, an air bubble is created to seal the puncture site. (C-D) scAAV or vehicle
dyed with fluorescein is injected. The air bubble seals the puncture site and reflux is minimized. The air
bubble is absorbed within 24 hrs.

doi:10.1371/journal.pone.0128759.g001
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Then, scAAV vectors expressing GFP under the constitutive small CMV-chicken β-actin
(smCBA) promoter or vehicle control (BSS with 0.014% Tween-20) were injected via the same
puncture site with the intraocular injection kit (WPI, Sarasota, USA) connected to a beveled,
33 gauge needle using a precision micropump (WPI, Sarasota, USA) (Fig 1C, Table 2). Fluo-
rescein was added to each injection solution to visualize injections. To help the virus to diffuse
away from the needle, it was infused slowly (30 nl/s in mice, 45 nl/s in rats). Before the needle
was removed, it was held in position for 1 min. and care was taken to keep the air bubble at the
puncture site in order to prevent reflux of vector/vehicle control. In some cases, repositioning
of the air bubble was necessary to ensure a good seal. Neomycin, polymyxin B sulfate and dexa-
methasone ointment (Alcon, TX, USA) were applied to the eye after the procedure. Animals
were placed on absorbent paper atop a 37°C heating plate for recovery and were then returned
to their cages.

Immunohistochemistry
Eyes from scAAV-treated or mock-injected mice/rats were enucleated 4 weeks post-injection
and fixed in 4% paraformaldehyde (PFA) for 1 to 2 hrs. Before the eyes were rinsed in 1xPBS
(overnight) and soaked in 30% sucrose in 1xPBS (at least 12 hrs.) they were separated slightly
anterior of the equator into the anterior and the posterior segment and the lens was carefully
removed. Then, the divided eyes were immersed in OCT (Tissue Tek OCT 4583: Sakura Fine-
tek USA, Inc., Torrance, CA), quick frozen in a bath of dry ice/ethanol and stored at -20°C
until sectioning. Per eye, eight 10 micron cross sections in different planes were obtained by
moving through tissue in a lateral to medial direction. For immunohistochemistry, all samples
were prepared in parallel and processed identically. The sections from the anterior part of the
eye were permeated and blocked with TBS containing 1% BSA, 0.1% Triton-X100 and species-
matched normal serum for 1 hr. at room temperature (RT). To enhance the endogenous GFP-
expression signal, sections were incubated with rabbit polyclonal GFP antibody [71] (1:1000,
generously provided by Dr. Clay Smith, University of Florida) over night at 4°C. Alexa
488-conjugated secondary antibody (1:1000; Life Technologies, Germany) was applied for 1 hr.
at RT. Nuclei were counterstained with 4',6-diamidino-2-phenylindole (DAPI) (1:2000; Merck,
Austria). Between each incubation step and after DAPI application, washing steps of 3 x 5 min.
were performed. The slides were mounted in TBS-Glycerin pH 8.6 and analyzed by confocal
microsopy (LSM 710, Zeiss, Germany). In a subset of animals GFP and Thrombospondin-1
(TSP-1) double-labeling was performed to identify TM structures. TSP-1 is a matricellular pro-
tein (= extracellular protein modulating cell function and regulating cell surface and matrix

Table 2. Experimental groups of titer-matched scAAV-injected andmock-injected eyes.

Group AAV Serotype n

1 AAV2 5

2 AAV2(Y444F) 5

3 AAV2(triple) 5

4 AAV2(septuple) 5

5 AAV8(Y733F) 5

6 vehicle control 5

7 no injection 5

A sample size of 5 eyes per group was analyzed by immunohistochemistry for GFP-expression. The

experimental protocol was performed in C57BL/6 mice and Sprague Dawley rats.

doi:10.1371/journal.pone.0128759.t002
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interaction [72, 73]) that is produced and secreted by TM cells and is described to be present in
the juxtacanalicular TM region [20, 74] and throughout the TM [75]. It was thus used as a
marker to distinguish TM structures from others in the anterior chamber angle. Sections were
incubated with mouse monoclonal TSP-1 antibody (clone A6.1 1:50; Thermo Fisher Scientific
Inc., USA) and subsequently with an Alexa 555-conjugated secondary antibody.

Results

A Reliable Method for AC Injection in Rodent
A correctly positioned air bubble minimized reflux after AC injection of AAV contained within
a low viscosity storage buffer (BSS +Tween 20) (Fig 1). The air bubble was absorbed within 24
hrs. and did not harm the ocular tissues. No signs of inflammation were observed after injec-
tion. Although care was taken to avoid any irritation of ocular tissues, we assume that the cor-
nea of 1 mouse and 1 rat eye (in total 18 rats and 18 mice were injected; 3 animals of each
species served as untreated control) may have been disturbed during the injection procedure,
thus leading to inadvertent intrastromal delivery of AAV vectors and transduction of corneal
stromal keratinocytes.

scAAV2-based Vectors Efficiently Transduce Tissues of the Anterior
Segment
At four weeks post injection, eyes injected with scAAV2-based vectors exhibited GFP expres-
sion in the corneal endothelium, the ciliary non-pigmented epithelium (NPE), the iris and the
chamber angle including the TM (Fig 2and Fig 3). Localization and semiquantitative evalua-
tion of the GFP-signal in injected eyes are summarized in Table 3. For the semiquantitation,
we used a grading system based on the presence of GFP-positive cells/structures in the anterior
segment and the distribution of GFP-signal. Similar grading systems have previously been used
to evaluate viral vector-mediated transduction of ocular tissues, including AAV [76, 77]. Four
scores were defined: (1) no immunopositivity (-), (2) isolated positive cells/structures (-/+), (3)
isolated to mosaic-like immunopositivity of cells/structures (+) and (4) mosaic-like to almost
homogenous immunopositivtiy (++). The overall score was based on analysis of eight, 10 mi-
cron sections per eye by three independent examiners. Representative sections were chosen for
illustration. The data show that scAAV2(Y444F) and scAAV2(triple) were highly efficient in
transducing tissues of the anterior segment, whereas scAAV2 and scAAV2(septuple) showed
only low efficiency. scAAV2(Y444F) and scAAV2(triple) had titers of ~9 x 1011 and ~3 x 1012,
respectively (Tables 1 and 3). It is possible that the slightly higher transduction efficiency ob-
served with the triple vs. the single mutant resulted from the former being injected at a higher
dose. In one out of five scAAV2(triple)- (Fig 4A and Fig 4B) and scAAV8(Y733F)- (Fig 4C
and Fig 4D) injected eyes, GFP expression was detected in corneal stromal keratinocytes, a re-
sult likely owed to inadvertent intrastromal delivery. scAAV2(triple)-mediated GFP expression
was more robust than that of scAAV8(Y733F). However, in general, GFP expression was ab-
sent from rodent eyes injected with scAAV8(Y733F). Depending on the scAAV variant used,
the GFP-expression pattern ranged from isolated cells/structures to mosaic-like and homoge-
nous (Fig 2and Fig 3). GFP was absent from both mock- injected (vehicle only) and uninjected
eyes. Co-staining with TSP-1 in rat indicates that scAAV2(Y444F) and scAAV2(triple) trans-
duced the TM structures (Fig 5). Both scAAV2(Y444F) and scAAV2(triple) transduced NPE
of mice and rats very effectively. In contrast, scAAV2 and scAAV2(septuple) transduced only
mouse NPE indicating that species differences may exist. No GFP-expression was present in
the NPE of scAAV8(Y733F)- injected animals. Transduction of iris also appeared partly
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dependent on the species (Table 3). Corneal endothelium of mice and rats was effectively
transduced by scAAV2(triple), whereas scAAV2(Y444F) only transduced corneal endothelium
in mice efficiently.

Discussion
In this study, we established the transduction profiles of enhanced, capsid- mutated AAV vec-
tors carrying self-complementary genomes following AC injection in mouse and rat. All previ-
ous reports of AAV-mediated transduction of AC tissues such as TM or corneal stroma have
focused on unmodified, first generation serotypes AAV1-AAV9 [49, 51, 54–58]. However, the
AAV vector toolkit is rapidly expanding and by combining knowledge of AAV capsid se-
quences with the structures available for these serotypes [78–83] (and unpublished data), it is
now possible to delineate determinants of vector function (both intracellular and extracellular)
and to rationally design vectors with desired biological properties [12, 84, 85]. For example, the
three dimensional structure of AAV2 was used to identify capsid surface tyrosine, threonine,
and serine residues, reported to promote ubiquitination and subsequent proteosomal degrada-
tion [67, 86]. Substitution of these residues significantly increased transduction efficiency and
kinetics relative to unmodified virus in various tissues [65, 67, 87–89]. This approach was re-
cently extended to the mutagenesis of lysine residues, which are directly ubiquitinated [86]. We
have shown that, when subretinally delivered, Y-F mutants can restore function and preserve
structure in multiple mouse models of retinal disease including the GC1KO and GCDKO
mouse models of Leber congenital amaurosis-1 and the otherwise refractory rd10mouse

Fig 2. GFP expression in scAAV-injectedmouse eyes. In A-D, representative sections of the region around the chamber angle are shown. The small
inserts illustrate the cornea, the iris and the NPE. Nuclei are stained with DAPI. Arrows indicate GFP signals in the cornea, the iris, the chamber angle, the
ciliary body and/or the NPE. Arrowheads mark the region of the TM.

doi:10.1371/journal.pone.0128759.g002
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Fig 3. GFP expression in scAAV-injected rat eyes. In A-D, representative sections of the region around the chamber angle are shown. The small inserts
illustrate the cornea, the iris and the NPE. Nuclei are stained with DAPI. Arrows indicate GFP signals in the cornea, the iris, the chamber angle and/or the
NPE. Arrowheads mark the region of the TM.

doi:10.1371/journal.pone.0128759.g003

Table 3. Localization of the GFP signal in the anterior section of eyes injected with similar titers of scAAVs.

Vector C57BL/6 Mice (Injection Vol 1 μL) Sprague Dawley Rats (Injection Vol 2 μL)

G
ro
up

1 scAAV2 WT~2x1012 cornea—NPE + chamber angle + iris - cornea—NPE—chamber angle + iris +

G
ro
up

2 scAAV2(Y444F) ~9x1011 cornea + NPE ++ chamber angle ++ iris+ cornea—NPE ++ chamber angle ++ iris +

G
ro
up

3 scAAV2(triple) ~3x1012 cornea ++*NPE ++ chamber angle ++ iris + cornea ++*NPE ++ chamber angle ++ iris +

G
ro
up

4 scAAV(septuple) ~2x1012 cornea—NPE-/+ chamber angle—iris - cornea—NPE—chamber angle-/+ iris-/+

G
ro
up

5 scAAV8(Y733F) ~2x1012 cornea -**NPE—chamber angle—iris-/+ cornea -**NPE—chamber angle—iris -

The transduction efficiency (grading:-,-/+, +, ++) is based on the intensity and distribution of the GFP signal in tissues of the anterior section. Unless

otherwise noted (see asterisks) the term cornea represents GFP-expression in the corneal endothelium.

* One out of five showed GFP-positivity in the corneal stroma in addition to the corneal endothelium.

** One out of five showed GFP-positivity in the corneal stroma.

doi:10.1371/journal.pone.0128759.t003
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model of autosomal recessive retinitis pigmentosa [90–92]. We chose to test similar AAV cap-
sid variants for their ability to effectively transduce tissues in the anterior chamber such as TM
and cornea. Because previous reports suggest that self-complimentary genomes are a

Fig 4. Corneas of scAAV2(triple)- and scAAV8(Y733F)- injected animals.GFP expression was detected in (A) scAAV(triple) and (B) scAAV8(Y733F)-
injected mouse as well as in (C) scAAV2(triple)- and (D) scAAV8(Y733F)- injected rat corneas. Arrows indicate GFP- positive keratinocytes.

doi:10.1371/journal.pone.0128759.g004
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requirement for TM transduction, we focused here only on scAAV vectors. Their ability to by-
pass rate-limiting second-strand DNA synthesis to obtain the transcriptionally active AAV ge-
nome results in earlier onset of transgene expression and thus a more rapid readout [93].

In previous studies, unmodified AAV2 and AAV8 vectors proved capable of targeting TM
(intracameral injection) and cornea (intrastromal injection), respectively [49, 51, 54, 57]. This
is likely owed to their respective receptor biology and the glycan footprint in target tissues.
AAV2 binds HSPG, a proteoglycan abundant in TM and present in the cornea [59, 60].
AAV2’s co-receptor, αVβ5 integrin is also found in the extracellular matrix of TM [61]. Con-
versely, AAV8 does not bind HSPG [63]. It is not surprising, therefore, that scAAV2(Y444F)
and scAAV2(triple) vectors mediated relatively high levels of GFP expression in mouse and rat
TM. Localization of AAV-mediated GFP signal in the TM was demonstrated by double-label-
ing with TSP-1 in rats. A previous study in rat [51] showed that AC-injected scAAV2 contain-
ing GFP driven by the human enhanced cytomegalovirus (CMV) promoter resulted in efficient
transgene expression only after a period of 2.5 months. In contrast, our results show that
scAAV2(Y444F)- and scAAV2(triple)- mediated GFP expression is robust by 4 weeks post-in-
jection. As we did not evaluate transduction beyond 4 weeks we cannot determine conclusively
whether scAAV2(Y-F) mutants simply lead to faster onset of expression. However, we note in

Fig 5. Co-staining of GFP (green, arrows) and TSP-1 (red, arrowheads) in chamber angle of injected rat eyes. (A) scAAV2(Y444F) and (B) scAAV2
(triple) mediate efficient transgene expression in the region of the trabecular meshwork. Nuclei are stained with DAPI. Asterisk indicates Schlemm‘s canal.

doi:10.1371/journal.pone.0128759.g005
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other ocular tissues (i.e. retinal ganglion cells, photoreceptors and retinal pigment epithelium),
AAV2(Y-F) vectors consistently promote higher levels of transgene expression, for which early
onset is the lead indicator [12, 13, 89, 94]. In our study we utilized the AAV8 capsid mutant
(Y733F). While a direct comparison to unmodified AAV8 was not performed, existing data
suggests that addition of the Y733F mutation does not result in changes of tropism [13]. We
would therefor expect that un-modified scAAV8 vectors would lead to the same transduction
pattern observed in this study.

An open question is whether efficient TM transduction relies on the use of self-complimen-
tary genomes. Previously, Borras and colleagues found that co-infection of scAAV and recom-
binant Adenovirus with E1 and E3 deleted (rAdΔE1/E3) led to efficient transduction of TM
[54]. They determined that single stranded AAV infection reduced expression of genes associ-
ated with DNA synthesis in the TM, which was reversed by the addition of rAdΔE1/E3. Use of
scAAV vectors would overcome this rate limiting step and were hence tested. Interestingly, it
has been shown that co-infection of AAV with empty Adenovirus capsid results in increased
nuclear translocation of AAV [95]. Mechanistically, this is the same rationale for enhancement
by the AAV(Y-F) variants [96]. It remains to be seen if these enhanced AAV2 capsid variants
can overcome the need for utilization of a self-complementary gene cassette. This is of interest,
as the canine model of spontaneous primary open angle glaucoma (POAG beagle), is associated
with a mutation in the metalloproteinase ADAMTS10, which has a cDNA of 3312 bases, too
large to be accommodated by scAAV vectors [97].

In addition to defining the transduction profile of scAAV2- and scAAV8- based capsid vari-
ants after AC injection, we also describe in detail a reliable AC injection technique for injecting
low viscosity material in in both rat and mouse. This technique minimizes reflux, a common
hurdle faced when delivering vector to this shallow chamber, and is reproducible, as evidenced
by the repeatability of transduction by the efficient scAAV2 variants. Coupled with the diversi-
ty of genetically modified mouse strains, this approach will aid in elucidating biological pro-
cesses of the anterior segment. Additionally, it impacts the development of gene-based
therapies for the treatment of glaucoma and corneal disease/injury.
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