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Post-translational modifications (PTMs) regulate protein
behavior through modulation of protein-protein interac-
tions, enzymatic activity, and protein stability essential in
the translation of genotype to phenotype in eukaryotes.
Currently, less than 4% of all eukaryotic PTMs are re-
ported to have biological function - a statistic that contin-
ues to decrease with an increasing rate of PTM detection.
Previously, we developed SAPH-ire (Structural Analysis of
PTM Hotspots) - a method for the prioritization of PTM
function potential that has been used effectively to reveal
novel PTM regulatory elements in discrete protein families
(Dewhurst et al., 2015). Here, we apply SAPH-ire to the set
of eukaryotic protein families containing experimental
PTM and 3D structure data - capturing 1,325 protein fam-
ilies with 50,839 unique PTM sites organized into 31,747
modified alignment positions (MAPs), of which 2010
(�6%) possess known biological function. Here, we show
that using an artificial neural network model (SAPH-ire
NN) trained to identify MAP hotspots with biological func-
tion results in prediction outcomes that far surpass the
use of single hotspot features, including nearest neighbor
PTM clustering methods. We find the greatest enhance-
ment in prediction for positions with PTM counts of five or
less, which represent 98% of all MAPs in the eukaryotic
proteome and 90% of all MAPs found to have biological
function. Analysis of the top 1092 MAP hotspots revealed
267 of truly unknown function (containing 5443 distinct
PTMs). Of these, 165 hotspots could be mapped to human
KEGG pathways for normal and/or disease physiology.
Many high-ranking hotspots were also found to be dis-
ease-associated pathogenic sites of amino acid substitu-
tion despite the lack of observable PTM in the human

protein family member. Taken together, these experi-
ments demonstrate that the functional relevance of a PTM
can be predicted very effectively by neural network mod-
els, revealing a large but testable body of potential regu-
latory elements that impact hundreds of different biolog-
ical processes important in eukaryotic biology and human
health. Molecular & Cellular Proteomics 15: 10.1074/
mcp.M116.062331, 3513–3528, 2016.

Since the discovery of phosphorylation in 1954 (1), post-
translational modifications (PTMs)1 have emerged as a broad
class of protein feature that expand the functional proteome in
eukaryotes. Improvements in the detection of PTMs by mass
spectrometry have resulted in an exponential increase in our
knowledge of the number and type of PTMs that make up the
landscape of a modified eukaryotic proteome. As a result, the
rate at which PTMs are discovered now far surpasses the rate
at which they can be experimentally tested for biological
function - a characteristic that is specific for each PTM and
likely not equivalent between all PTMs that have been ob-
served (2–4). Thus, effective methods of prioritization are
essential for quantifying the likelihood of a site to be regula-
tory and/or impactful on biological function, which we refer to
as the function potential of a PTM.

Several unique features have been identified as predictors
of biological impact for any given PTM - the determination of
which relies on placing each PTM in the context of a multiple
sequence alignment for a discrete protein or domain family,
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which we refer to as a Modified Alignment Position (MAP). For
example, MAPs that are evolutionarily well conserved are
more likely to exhibit biological function (3, 4). Similarly, func-
tional PTMs are more commonly found within MAPs that
exhibit a higher PTM observation frequency, are dynamic with
respect to biological condition, located at protein interaction
interfaces, and more solvent-accessible within a folded pro-
tein structure (5–7). Although efforts to elucidate the features
associated with functional PTMs are relatively longstanding,
few if any have established an integrative approach to quan-
titatively prioritize the function potential of PTMs beyond the
use of single features.

Previous evidence from our lab first demonstrated that
multiple feature integration can improve functional prioritiza-
tion. To accomplish this, we built Structural Analysis of PTM
Hotspots (SAPH-ire)—an algorithm through which multiple
predictors of PTM function are integrated to produce a single,
quantitative function potential (FP) score that rank orders
each hotspot within or between protein families (6) (Fig. 1).
Previously, we used SAPH-ire to predict novel PTM regulatory
elements in G protein families—including heterotrimeric G
proteins—for which we discovered and experimentally con-
firmed a novel PTM regulatory element that is critical for cell
signaling (6, 8). We propose that similar analysis of PTMs
across the entire eukaryotic proteome is likely to result in the
discovery of several novel regulatory elements that have yet to
be realized.

Here we apply SAPH-ire to protein families for which PTMs
and protein structure are currently available, resulting in func-
tion potential prediction for 50,839 experimental PTM sites
distributed across 31,747 MAPs. Using a neural network
model (SAPH-ire NN) trained to predict the identity of embed-
ded known-function MAPs, we derived a probability score
that allows rank ordering for the likelihood of function for all
MAPs including those with unknown function. We show that
the SAPH-ire NN model significantly outperforms all other
single or multi-feature predictive models and exhibits a pro-
portional increase in predictive power for known function
hotspots that have been more frequently studied (and there-
fore published). Using a strictly conservative probability
threshold, we characterized the top-ranked 1092 MAPs cor-
responding to “function potential hotspots,” revealing 267
with truly unknown function - a striking fraction of which are
also found mutated in human disease irrespective of whether
the human protein, specifically, contains an observed PTM.

EXPERIMENTAL PROCEDURES

Assembly of the SAPH-ire Data Set—The SAPH-ire method is
described in detail elsewhere and provided the foundation for studies
conducted here (6). Briefly, an internal MySQL database (Oracle
Corp.) was created to house all PTM, sequence and structural data
utilized for this study, wherein UniProt identifiers (UIDs) associated
with 213,022 experimentally observed PTM sites retrieved from
dbPTM3 were stored (9). Putative PTM sites were excluded from the
analysis. Each identifier was then cross-referenced with x-ray crys-

tallographic protein structures harbored in the Protein Data Bank
(PDB) (10). We limited our structural data to x-ray crystallography
resolved molecules because of the higher resolution and ease of
molecular coordinate segregation as compared with nuclear mag-
netic resonance (NMR) resolved structures. This aggregate dataset
was then further reduced to eliminate redundancy, resulting in a final
set of UIDs. The sequence of each UID was then clustered into
families according to InterPro “family” and “superfamily” classifica-
tions utilizing the more inclusive groupings to maximize input PTM
data. Multi-FASTA files were generated for each family and subse-
quently aligned using the MUSCLE algorithm under default parame-
ters (11). For SAPH-ire analysis, each family requires a minimum of
one PTM observation and one associated crystal structure. Individual
family size was determined by available data with membership rang-
ing from 2 to 360 proteins. The final input set was comprised of 1,325
families containing 13,267 unique proteins (from 1080 distinct eukary-
otic organisms), for which there are 50,839 distinct PTMs coalesced
into 31,747 MAPs.

Acquisition and Processing of Structural Inputs from the PDB—To
meet the goal of including only high-quality, well-defined structures,
we applied several filters to structural data obtained from the PDB.
The PDB contains structures for many small peptide sequences
which lack folding required for the tertiary and quaternary structures
of the mature, functional proteins we aim to examine. Additionally,
because of the lack of neighboring residues in three-dimensional
space, the solvent accessibility for these residues are artificially in-
flated and can thereby impact family-relative ranking of PTM
hotspots. We included only molecular structures with greater than 50
residues resolved by x-ray crystallography, which excluded only
5.3% of available crystal structures in the SAPH-ire data set. The
distribution of resolved residues across all crystal structures in the
PDB exhibits a natural trough at the 50 residue cutoff. In order to limit
the impact of noncanonical sequences, we extracted the resolved
sequence of amino acids from each PDB file and aligned each sep-
arately with the canonical sequence in UniProt. Any molecular struc-
ture with gaps in their aligned sequences—indicative of a noncanoni-
cal sequence—were excluded from this analysis. This filter effectively
eliminates all chimeric and insertion sequences from the input set. We
then used the POPS algorithm to calculate the solvent accessible
surface area (SASA) for each computationally segregated chain (12).
Consequently, structures that lack sufficient resolution for SASA cal-
culation via POPS were excluded from the input data. The set of
crystal structures used for analysis includes 49,685 unique molecular
structures. To identify residues located at protein-protein interfaces
(PPI), we cross-referenced each PTM with ProtInDB (13).

In several cases, regions of intrinsic structural disorder have been
shown to act as regulatory elements and are often targets of modifi-
cation (14–16). To account for the importance of these unresolved
sites, we used measures of intrinsic disorder defined by the IUPred
application (17). Specifically, in cases where a residue was structur-
ally unresolved and is predicted to be intrinsically disordered, a max-
imal SASA value observed for the available structure is assigned as
the effective SASA. In cases where the residue is not resolved in the
crystal structure, but is predicted to adopt an ordered structure, no
SASA value is incorporated from that specific protein/residue. Within
the 31,747 MAPs analyzed here, 9428 occurred at positions of intrin-
sic disorder.

Definition of “Function Potential Hotspots” Identified by SAPH-
ire—MAPs with SAPH-ire NN probability scores of 0.196 or greater
were labeled as “function potential hotspots”. This cutoff was derived
from the frequency distribution of MAPs with known-function source
counts of 11� (KFSC �11). Hotspots with �35% probability score
were surveyed for additional sources of known function as well as
association with KEGG pathway maps. Importantly, our usage of the
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term “hotspot” is based entirely on the trained neural network model
that integrates multiple MAP features—including those that harbor at
least one biologically functional PTM site (Fig. 1A). This treatment is
altogether different from previous descriptions of PTM hotspots that
rely on identifying nonrandom spatial PTM clusters with respect to a
single protein sequence and without reference to known-function
PTMs (5, 18).

PTM Coincidence Analysis—MAPs for which more than one type of
PTM has been observed were analyzed in isolation. Within this set,
the number of coincidences between every possible pair of PTMs was
tabulated as well as the number of observations and the relative
percentage for each PTM in the entire coincident network. These
values were organized into a network diagram of PTM coincidence
using Cytoscape software (19), where each variable is plotted as
edge thickness, node diameter, and node color, respectively. Fre-
quency distributions for the coincidence count were then plotted with
respect to the relative edge count. Coincident PTMs that are outliers
in each distribution were highlighted using outlier box plots repre-
senting coincident PTMs that occur at a frequency greater than
expected by the normal distribution (after normalizing for the fre-
quency of node occurrences in the network). Relative edge count is
calculated as ratio of the number of edges relative to the sum of the
node occurrences (i.e. number of PTM observations; node diameter)
in the coincident network scaled for ease of visualization. By using
relative edge count, coincident PTMs can be compared directly with-
out bias toward PTMs that are more frequently observed in general
(e.g. phosphorylation and ubiquitination). A similar analysis was con-
ducted to estimate the types of PTM coincidence that remain after
zero-gap penalty alignment of the same protein families.

Logistic Regression, Neural Network Modeling, and Statistical
Analysis—The comprehensive set of 31,747 MAPs in the SAPH-ire
data set were analyzed and graphically displayed using JMP Pro 12
software (SAS, Inc.) and are available for download as an excel
spreadsheet (supplemental data). The predictive power of individual
features—PTM count, solvent accessible surface area (SASA), PTM
residue conservation, protein-protein interface residence (PPI), neigh-
bor count, neighboring known count—was estimated by nominal
logistic regression analysis comparing feature values with respect to
the functional state of each MAP. Any MAP harboring at least 1
biologically functional PTM (i.e. a known-function MAP) was desig-
nated “1,” whereas unknown-function MAPs were designated as “0.”
To determine the predictive power, probabilistic models were ana-
lyzed by ROC curve analysis and AUC metrics. Chi-Squared hypoth-
esis testing was used for AUC model comparisons. Neural network
models were generated using a fully connected network architecture
with a single hidden layer and hyperbolic tangent (tanH) transfer
function wherein 33% of the data was subjected to random holdback
for validation testing of the trained model. Individual predictors/inputs
included PTM count, SASA, PTM residue conservation (described in
(6)), PPI, number of neighboring MAPs within � 2 alignment positions
(i.e. neighbor count, NC), and number of neighboring MAPs with
known biological function not including the position in question (a.k.a.
neighbor known count, NKC). The comparison of model performance
with respect to PTM count threshold was determined by excluding
the data from positions beyond each threshold. Thus, a PTM count
threshold of 3 corresponds to all MAPs with PTM count ranging from
1 to 3. Known-function source counts (KFSC) correspond to the
number of literature references (curated by PhosphoSite Plus) that
experimentally demonstrate biological functionality of the PTM. Ref-
erences were then filtered to exclude sources that lacked specific
experimental evidence of functional impact (e.g. mass spectrometric
PTM identification articles). The observed enrichment of MAPs above
different scoring thresholds (0.1, 0.196, 0.35, 0.5) was also calculated

with respect to enrichment expected by random chance (supplemen-
tal Fig. S4, S8).

KEGG Pathway and Human Gene Mutation Analysis—The com-
plete list of UIDs for U4-type (truly unknown) unknown-function po-
sitions � 35% probability were used to query the freely accessible
KEGG human pathway database using KEGG mapper freeware
(http://www.genome.jp/kegg/pathway.html) (20). The resulting path-
way data was cross-referenced with the SAPH-ire dataset to evaluate
function potential hotspots for each pathway.

Human disease-associated amino acid substitutions were col-
lected from the publically available version of the Human Gene Mu-
tation (HGMD) or NCBI ClinVar databases (21, 22). The UID, native
position, amino acid substitution, and disease relationship of each
mutation was related to the SAPH-ire data set through either UID
native position (for Type-1 coincidence) or family alignment position
(for Type-2 coincidence) to identify mutations overlapping with PTM
sites or hotspots, respectively.

RESULTS

The SAPH-ire Data Set: PTMs and Protein Structure—As of
the submission date of this manuscript, the collection of ex-
perimentally verified eukaryotic data available from dbPTM
included 213,022 eukaryotic PTMs (referred to hear as the
comprehensive PTM data set) that we coalesced into 85,443
MAPs distributed across 4813 protein families. Of these,
50,839 (�24%) PTMs, 31,747 (�37%) MAPs, and 1325
(�28%) protein families can be analyzed by SAPH-ire, which
requires experimental nonchimeric structures and experimen-
tal PTM data (the SAPH-ire data set) (Fig. 1D; see methods)
(9). Within the SAPH-ire data set a total of 63 distinct types of
PTM have been observed experimentally (Fig. 2A), with phos-
phorylation (61% of all data), ubiquitination (11%), acetylation
(9%), and N-glycosylation (5%) representing the most abun-
dant modifications. Although phosphorylation in the SAPH-ire
dataset is slightly under-represented relative to the compre-
hensive PTM data set, sites of acetylation, N-glycosylation,
and ubiquitylation are over-represented by as much as 85%
(Fig. 2A).

We determined whether the distribution of specific PTM
types across primary structure might reveal distinguishing
characteristics by normalizing the position of each modifica-
tion site relative to the total length of the modified protein (Fig.
2B). Within the comprehensive dataset, the N- and C-terminal
ends of proteins harbor the greatest number of PTMs com-
pared with residues that are internal, for which PTMs are
uniformly distributed (Fig. 2B, top). PTM sites found at either
terminus are also more frequently disordered, on average,
compared with internal sites which exhibit evenly distributed
disorder tendencies. For the most part, frequently observed
PTMs are widely distributed across protein primary structure,
with the exception of acetylation, which is more N-terminally
distributed because of a high proportion of identified N-ter-
minal acetylation sites (23, 24). Only a few PTMs that are
frequently observed (�1000 observations) were also found to
exhibit a narrow primary structure distribution, some of which
can be explained by the nature of their functional role. For
example, myristoylation, which is a cotranslational modifica-
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tion necessary for membrane anchoring, is observed almost
exclusively at the N terminus, whereas prenylation, another
membrane-anchoring modification that requires proteolytic
cleavage at CAAX box motifs, exhibits an extreme C-terminal
distribution. Additional high frequency PTMs that exhibit nar-
row primary structure distributions include Gamma-carboxy-
glutamic acid (Gla), which is almost exclusively found within
the first 10–15% of the primary structure. Not surprisingly, Gla
modifications are restricted to GLA domains, where the fold
structure promotes interaction with vitamin K-dependent car-
boxylases (25, 26). Proper protein folding of the GLA domain
requires the free N terminus, and thus, the domain and the
modification are never found in other regions of the protein

(27). Taken together, these results suggest that the positional
distribution of most PTMs from N- to C terminus, with only a
few exceptions, is largely uniform.

PTM Type Coincidence in a Single Alignment Position Iden-
tifies Coregulatory PTMs—Because of the PTM type-agnostic
nature of SAPH-ire, the coincidence of different PTM types
within a single MAP can be evaluated. PTM coincidence is of
particular interest as it may reveal protein structures/regions
that serve as evolutionarily conserved substrates for multiple
types of enzyme. PTM coincidence may also reveal cases in
which the identity of a regulatory PTM has shifted—represent-
ing PTM plasticity within a position. Within the SAPH-ire data
set, we found that 2023 MAPs (6.6%) harbor more than one
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FIG. 1. Schematic diagram of SAPH-ire. A, A theoretical segment of the multiple sequence alignment for a protein family (IPR000276; G
protein-coupled receptor, rhodopsin-like) used here for illustrating the concept of SAPH-ire. Circled amino acid residues represent PTM sites
experimentally observed on respective protein family members. Circle and arrow color represents the PTM observation frequency at each
aligned position, called a MAP (modified alignment position), where green indicates 1 observation, blue for 2, orange for 3, and red for 5 or
more. B, Cartoon rendering of bovine rhodopsin (P02699, RHO; PDB 2PED, chain A) showing side chains with projected PTM hotspots colored
according to the number of observations within the family at each position aligned with the structural sequence. PDB coordinate data from the
structurally projected PTM hotspots is used for calculation of solvent accessible surface area (SASA) and determination of protein interface
residence (PPI). C, Hotspot features derived from the sequence and structural data are extracted for each protein family, where each hotspot
corresponds to a precise family alignment position containing at least one PTM observation. D, Comparison of the comprehensive and
SAPH-ire datasets representing all known experimental PTM data versus PTM data included in this study, respectively. E, Values calculated
and derived from extracted hotspot features are analyzed by logistic regression or neural network models to produce probability scores for
each hotspot.
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PTM type. Of these, 1810 (89.5%) contained 2 PTM types,
181 (8.9%) contained 3, 26 (1.3%) contained 4, and 6 (0.3%)
contained 5 different PTM types (Fig. 3A). The breadth of
coincident observations was visualized in a coincidence
network reflecting the relative frequency of pairwise coinci-
dence for each participating PTM (Fig. 3B). More than half of
all nodes in the coincident network (14 out of 27) corre-
spond to PTM types that are more frequently coincident
with other types of PTM based on their occurrence in the

total SAPH-ire data set (Fig. 3B, orange and red nodes).
Coincidence within a MAP is most commonly observed for
the PTMs of lysine and arginine—sumoylation, neddylation,
and methylation on lysine, and methylation and citrulination
on arginine (Fig. 3B).

The coincidence of two different PTM types may be ex-
plained by a multitude of possibilities, which we analyzed in
turn. Naturally, coincidence is more common for residues that
can undergo different types of PTM (typical coincidence),
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such as ubiquitylation, acetylation, and sumoylation of lysine,
which explains 23/63 (36.5%) of all edges in the network (Fig.
3C). Comparatively, the remaining 40 atypical coincident
edges are lower in overall average frequency, but also reveal

outliers of interest, including phosphorylation/ubiquitination
and phosphorylation/acetylation edges (Fig. 3C). Consistent
with this observation, phosphorylation, ubiquitylation, and
acetylation have been shown previously to be cooperative
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and coregulatory PTMs that control protein fate in vivo (5, 28,
29). Additional atypical coincident PTMs include phosphory-
lation/S-nitrosylation as well as N-glycosylation/proteolytic
cleavage, phosphorylation, or disulfide bond formation. Thus,
phosphorylation/ubiquitination and phosphorylation/acetyla-
tion coincidence, although abnormally abundant, are not the
only forms of abundant PTM coincidence in eukaryotes.

We also evaluated PTM coincidence in the context of res-
idue solvent accessibility and intrinsic disorder to determine if
increased accessibility or disorder correlates with greater co-
incidence. To answer this question, we analyzed the fre-
quency distribution of disorder tendency for the modified
residues contained within each coincident position, corre-
sponding to 6510 nonredundant disorder tendency values
captured from 2023 coincident MAPs. The vast majority of the
PTMs found in coincident MAPs (�70%) occur on structurally
ordered residues, consistent with the proportion of residues
that are spatially resolved in crystal structures for the coinci-
dent and SAPH-ire datasets (supplemental Fig. S1A, total).
Coincident positions harboring two or three different types of
PTM reflect similar distributions of intrinsic disorder tendency.
However, this trend reverses for positions harboring four and
five different types of PTM, which represent 6% (396/6,510) of
all coincident PTMs (supplemental Fig. S1A). We conclude
that solvent accessibility and intrinsic disorder, alone cannot
explain the majority of coincident PTM types observed in the
SAPH-ire dataset. Furthermore, positions in which coinci-
dence exceeds 3 PTM types are extraordinarily rare and occur
predominantly at sites that are intrinsically disordered.

Intrinsic disorder is common at the N- and C-terminal ends
of proteins, regions that are also often difficult to align by
sequence. To evaluate whether atypical PTM type coinci-
dence was the result of multiple sequence alignment as op-
posed to evolutionary PTM plasticity, we performed zero gap-
penalty multiple sequence alignment with just those families
containing coincident PTMs. Eliminating the alignment gap
penalty ensures that residue alignment is maximized at the
cost of accumulating inserted gaps in the alignment se-
quence. Such alignments would largely disfavor the occur-
rence of coincident PTMs unless they were tightly constrained
by neighboring residues, and in these cases would suggest
that coincidence is not simply because of strict sequence
alignment constraints. Surprisingly, we found an expanded
set of atypical PTM coincidence outlying the normal distribu-
tion (Fig. 3D). These include phosphorylation and N-glycosy-
lation or S-nitrosylation, as well as O-linked glycosylation and
hydroxylation. Of these, all forms of atypical, zero gap-penalty
coincidence except phosphorylation/acetylation and O-gly-
cosylation/hydroxylation occur predominantly at sites that are
structurally ordered and cannot be explained by an overabun-
dant occurrence at sites of intrinsic disorder (supplemental
Fig. S1B). Manual inspection of the zero gap-penalty align-
ments for each set of coincident PTM types revealed that
many could be explained by the nature of the alignment

and/or the PTMs observed within the family. For example, in
zero gap-penalty alignments, a subset of more closely related
members might harbor the observed PTM site whereas the
remaining members have lost the PTM site altogether. Only a
few cases could be found in which the sequence alignment
could not provide an adequate explanation of coincidence
(data not shown). Under these few circumstances, the reten-
tion of coincidence in a zero gap-penalty alignment suggests
that cooperative coregulatory mechanisms aside from phos-
phorylation and ubiquitylation or phosphorylation and acety-
lation may also exist. We conclude that the coincidence of
different PTM types within a single alignment position is re-
flective of coregulatory function. Furthermore, PTM plasticity
as reflected by atypical PTM coincidence is rare within the
subset of protein families that can be linked to a crystal
structure.

The SAPH-ire Neural Network Model is a Robust Predictor
of Functional PTM Hotspots—As described above, several
unique MAP features are moderately predictive of function. To
quantify the degree to which individual MAP features are
predictive, we established logistic regression models with two
nominal outcome classes: known and unknown function. In
the SAPH-ire data set, 2010 MAPs harbor at least one PTM
that has been experimentally demonstrated to have an impact
on a biological process/protein function based on the Phos-
phoSite Plus database of PTM function (30). In contrast,
29,737 positions with unknown function correspond to any
MAP that is not associated with sites contained in Phospho-
Site Plus.

ROC curves and AUC metrics are ideal for evaluating the
quality of different predictive models in cases where output
probabilities need not be calibrated for outright prediction of
class membership, where the classes are highly imbalanced
(i.e. high number of one class versus another), and where rank
ordering is the desired output (31). Consequently, ROC-AUC
metrics can be used to estimate how effective a classifier (i.e.
MAP feature) separates the outcome classes—known versus
unknown function in this case. Good predictive models exhibit
large AUC values (0.75 to 1.00) corresponding to higher rates
of true positive compared with false positive prediction,
whereas poor predictive models exhibit AUC values close to
0.5, corresponding to predictive power that is no better than
random selection of known and unknown classes. Consistent
with our previous results, we found that residue SASA and
neighboring known count exhibit moderate predictive power
for biological function (Fig. 4A; supplemental Fig. S2) (6). In
comparison, the logistic regression model based on neighbor
count, PTM residue conservation, and PPI is only slightly
better than would be expected by random chance, whereas
the model based on PTM count is a significantly more effec-
tive predictor, as illustrated by ROC-AUC analysis (Fig. 4A,
supplemental Fig. S2).

Next, we compared single-feature logistic regression mod-
els with an artificial neural network (NN) model that integrates
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multiple hotspot features. Artificial neural networks utilize a
machine-learning approach that effectively enables the inte-
gration of multiple regression models, each of which is trans-
formed by a scaling factor (weight), that is optimized through
iterative computation to maximize the correct assignment of
the classes (i.e. assigning high probability to known-function

MAPs) and minimize penalties associated with false predic-
tion (32). We utilized a hyperbolic tangent (tanH) neural net-
work model for prediction of MAPs with known function,
whereby a randomly selected set of positions corresponding
to 33% of the data set was held back as a validation dataset
(see methods). Screening through several different network
structures and combinations of input features, we settled on a
fully connected neural network model with 6 feature variables
feeding a single hidden layer containing 3 nodes (supplemen-
tal Fig. S2). Input features included PTM count, SASA, PTM
residue conservation, PPI, count of neighboring positions
(neighbor count) within a � 2-residue window, and count of
neighboring known-function positions within a � 2-residue
window. In contrast to single-feature regression models, the
neural network model significantly outperformed all other
models tested, including PTM count (AUCPC � 0.697 versus
AUCANN � 0.773, X2 � 218.97; p 		 2E-11) as well as the
rationally-derived model (RD) (AUCRD � 0.653 versus AUCANN �

0.773, X2 � 417.89; p 		 2E-11), (Fig. 4A, supplemental Fig. S2).
Although PTM count is the most effective single predictive

feature, it also exhibits a wide range of values across MAPs
with known function. Therefore, we evaluated each model
across a range of PTM counts. Logistic regression models
that are based on PTM count alone will necessarily fail to
correctly classify positions with PTM count � 1, which is
problematic considering that 782 positions with known func-
tion (or �39% of all known-function MAPs in the SAPH-ire
dataset) have an observed PTM count of 1. Moreover, the vast
majority (�98%) of all MAPs (known or unknown) contain 5 or
fewer PTM observations. Indeed, we found the PC logistic
regression model performs progressively worse as a predictor
of biological function for MAPs containing less than six PTMs,
and is no better than random chance for hotspots with a
single PTM (Fig. 4B). In contrast, the SAPH-ire NN model,
which relies on the integration of several MAP features, im-
proves the function potential prediction for MAPs, including
those with low PTM count (AUC � 0.67). Thus, PTM count
alone is ineffective as a predictor of biological function for the
vast majority of MAPs. We conclude that the SAPH-ire NN
model is a robust predictor of known-functional PTM
hotspots.

The Predictive Power of the SAPH-ire Neural Network
Model Increases Proportionally With the Confidence in Known
Biological Function—MAPs for which there is experimental
evidence of biological function are classified as “known” with
as few as one source of published evidence. In the models
developed here, we classified MAPs as either having known
function (known function � 1) or unknown function (known
function � 0), without including evidence of source count. In
many cases, PTMs with well-established functional effects
contain several sources of reference that independently cor-
roborate the function experimentally. For example, several
publications demonstrate the impact of lysine acetylation
sites in histone proteins (33), or specific sites of phosphory-
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lation in the tumor suppressor p53 (34), or activating phos-
phorylation of mitogen-activated protein kinases (35). Re-
stated, PTMs with a high number of experimental sources
result from the scientific community repeatedly confirming the
function of a particular PTM, thereby increasing confidence in
its classification as functional. Thus, the source count of
known-function MAPs is proportional to the confidence in
their classification as biologically functional.

We compared the count of unique sources for each known-
function MAP within the SAPH-ire data set. Source counts for
known function range between 1 and 68 unique references
(supplemental data), which we grouped into six bins (KFSC 1,
2, 3, 4, 5–10, and 11�). We evaluated source count as a
response relative to SAPH-ire NN probability scores using
ordinal logistic fit models and ROC-AUC analysis (Fig. 5A).
Known-function MAPs with a single source count were
predicted very effectively (AUCSC � 1 � 0.774). Analysis of
known-function MAPs with higher source count showed a
continuous increase in ROC-AUC metric, reaching greater
than 0.9 for hotspots with as few as 3 sources of supporting
literature (Fig. 5A).

We conservatively defined function potential hotspots as
MAPs with probability scores of 0.196, which we defined by
the probability score above which 90% of all MAPs with KFSC
�11 are included (supplemental Fig. S3). Using this strict
cutoff, we identify 3230 function potential hotspots, 2357 of
which have unknown function (Fig. 5B and 5C). Plotting each
MAP with respect to protein family and probability score
further shows that the increasing probability score for known
function high source-count MAPs is largely family independ-
ent (Fig. 5C). Moreover, by comparing the enrichment ob-
served versus expected by random chance occurrence at
each KFSC level, we find that the NN model performs be-
tween 5 and 340 times better than would be expected by
random chance alone (supplemental Fig. S4A, S8B). Because
known function source count was not included as a feature
during model generation, these data demonstrate that the
SAPH-ire NN model is effective for identifying functional
MAPs and predicting the degree to which they may have a
biological impact.

Previous reports have described PTM hotspots in domain
families as regions that are densely modified above what
would be expected by random distribution of PTMs across
the length of a given protein sequence (5, 18). In principle,
such methods are intended to identify nonrandom PTM neigh-
bors along the length of a protein sequence with the under-
lying hypothesis that highly enriched clusters are more likely
to correspond to functional hotspots. Although altogether
different from SAPH-ire, each method relies to some degree
on the relationship of a given PTM site or MAP to its neigh-
boring sites or positions. To evaluate the dependence of
SAPH-ire NN output probabilities on nearest neighboring
MAPs, we evaluated the distribution of individual known-
function MAPs with respect to input features and probability

score. As expected, the ranking of MAPs by SAPH-ire NN,
although benefiting from inclusion of several features, is
largely independent of any one feature (Fig. 5D, supplemental
Fig. S4B). Furthermore, known-function MAPs exhibit a broad
range and combination of feature values, not one of which is
a perfect predictor for PTM biological function. Thus, predic-
tion of PTM hotspot function potential requires consideration
of several features for a given PTM site, which can be eluci-
dated by neural network models.

Function Potential Hotspots are Found in Several Patho-
physiological Human Pathways and Overlap With Disease-
linked Mutations—We conducted a detailed analysis of the
highest ranking function potential hotspots above 35% (1092
total MAPs), of which 468 and 624 were originally classified
(during NN model development) as having known and un-
known function, respectively (supplemental Fig. S5A). Of par-
ticular interest within this subset are the hotspots of unknown
function, comprised of 5443 unique PTMs. Function potential
hotspots with unknown-function are comprised of multiple
sub-classes of PTM that were cryptic during SAPH-ire NN
model development (see methods). Therefore, we classified
each hotspot that was originally defined as unknown (by the
PhosphoSite Plus database). Restated, these hotspots were
labeled as having unknown function during NN model devel-
opment (supplemental Fig. S5B). The categories include: (U1)
hotspots that are biologically functional or likely functional
based on published experimental evidence, but had not yet
been curated in the PhosphoSite Plus database at the time of
this study; (U2) hotspots that have been reported as having no
biological function (a rare circumstance given that negative
results are often left unreported and virtually impossible to
prove outright); (U3) hotspots whose function has not yet
been tested experimentally but can be assumed to be func-
tional based on proximity to nearby known-function hotspots
from the PhosphoSite Plus database; and (U4) hotspots
whose functional impact is truly unknown. Using this classi-
fication scheme, we organized each of the 624 unknown-
function hotspots into one of the 4 classes. Using manual
literature searching methods, we identified 50 U1-type
hotspots that are known to have function but were not con-
tained within the public version of the PSP database at the
time of this publication (Fig. 6). We split the U1 class into two
groups: Function-A and Function-B, to delineate between
PTMs with very clear evidence of biological function and
PTMs for which the evidence for function was consequential
rather than direct, respectively. We also included as known
those PTMs that could be catalyzed by specific enzymes.
Three hundred eight hotspots were proximal to a known
function hotspot (U3), which we refer to as “known-by-
neighbor.” The remaining 267 (43%) unknown-function
hotspots were labeled as truly unknown (U4), and corre-
spond to PTMs that have yet to be studied for functional
impact, are located in a structural region that has not been
investigated for PTM-dependent regulation, but have a high

Predicting the Biological Impact of PTMs

Molecular & Cellular Proteomics 15.11 3521

http://www.mcponline.org/cgi/content/full/M116.062331/DC1
http://www.mcponline.org/cgi/content/full/M116.062331/DC1
http://www.mcponline.org/cgi/content/full/M116.062331/DC1
http://www.mcponline.org/cgi/content/full/M116.062331/DC1
http://www.mcponline.org/cgi/content/full/M116.062331/DC1
http://www.mcponline.org/cgi/content/full/M116.062331/DC1
http://www.mcponline.org/cgi/content/full/M116.062331/DC1


probability of being functionally important based on SAPH-
ire NN predictions.

To investigate the breadth of biological functions covered
by the U4-type hotspots above 0.35 probability score, we

deconvoluted each hotspot into its component proteins, des-
ignated by UniProt Identifiers (UID) (supplemental data). The
list of UIDs was used to query the human KEGG pathway
database (20), resulting in the association of 211 human pro-
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teins from 165 hotspots comprised of 873 PTMs (PTM count;
not all human) (supplemental Fig. S6). In order to highlight
pathways enriched in hotspots with high function potential
that are also frequently observed, we organized each pathway
in terms of mean and maximum hotspot probability as well as
PTM count (Fig. 7A and supplemental Fig. S7). Surprisingly,
four highly enriched pathways shared involvement in cardiac
function and cardiomyopathy (hsa04260, hsa05414, hsa05410,
and hsa05412) (Fig. 7A). Within these four pathways, we
observed 9 unique hotspots from 5 protein families containing
61 experimentally observed eukaryotic PTMs, 16 of which
have been specifically observed on the human protein in-
volved in the pathway (as opposed to another protein family
member) (Fig. 7B).

In the absence of experimental evidence for PTM function-
ality in these cases, we opted to survey each of the nine
pathway-specific hotspots/proteins for evidence of mutation
in human disease. We queried the publically available version
of the Human Gene Mutation Database (HGMD) as well as the
Clinvar database available through NCBI using the UID-PTM
site data from each hotspot (21, 22). We found that six out of
the nine human proteins and five out of nine hotspots were
associated with substitution mutations that are either causal
or consequential with a variety of cardiac and other human
diseases (22, 36–42). In all but two cases, the mutation was
found to occur precisely at the PTM site and in the remaining
two cases, is located at the �1 position relative to the hotspot
(Fig. 7C). Taken together, these results suggested that func-
tion potential hotspots predicted by SAPH-ire NN to be bio-
logically important for protein function, might also be impor-
tant in disease etiology.

Human Disease-Linked Pathogenic Mutations Are Enriched
In Function Potential Hotspots Identified By SAPH-ire NN—To

further investigate the coincidence of disease-linked human
mutations and function potential hotspots, we joined the com-
prehensive set of ClinVar substitution-causing SNPs to the
SAPH-ire data set (supplemental data). Out of the 31,747
MAPs and 24,951 mutations, we found 1732 could be
matched based on shared alignment position (supplemental
Fig. S8A). We next evaluated the enrichment of SNP-coinci-
dent MAPs relative to the expected frequency by chance
observation at different thresholds of SAPH-ire NN probability
score. The relative enrichment of SNP-coincident MAPs was
nearly two times the enrichment expected by random chance
for MAPs above a 0.5 score threshold and decreased to near
1 (no enrichment) at a score threshold of 0.1 (Fig. 8A, supple-
mental Fig. S8C).

Within the set of 1732 SNP-coincident MAPs, 338 were
distinctly designated as benign or likely benign whereas 667
were designated as pathogenic or likely pathogenic. When
comparing the enrichment of SNP-coincident hotspots
(�0.196 probability score) relative random expectation, we
found that pathogenic hotspots increased proportionally with
increasing probability score, whereas benign hotspot enrich-
ment decreased with increasing score threshold (Fig. 8B,
supplemental Fig. S8D). Therefore, the observation of patho-
genic SNP-coincident MAPs is greater than expected by ran-
dom chance and increases with SAPH-ire NN probability
score.

We sought to distinguish cases where pathogenic substi-
tution was observed at a PTM site in the human protein
(Type-1 coincidence) from cases where the substitution was
not a PTM site for the human protein but was nevertheless
located within a MAP corresponding to a function potential
hotspot (Type-2 coincidence). In Type-1 coincidence there is
direct experimental evidence of modification that may be
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disrupted by the disease mutation. In Type-2 coincidence,
evidence for modification of the normal human site that is
mutated in disease has not yet been observed but the site is
predicted to be important based on evidence from other
protein family members. We found that Type-2 hotspot coin-
cidence was 3-fold more abundant than Type-1 coincidence
(Fig. 8C, 8D). In many cases, the SNP-coincident hotspots
exhibit known function for the PTM, which may in some cases
contribute to the mechanism of disease. We also found 31
hotspots of truly unknown function (U4) that correspond to
pathogenic disease-linked mutations in a wide variety of hu-
man proteins (supplemental data). In most cases (22/31), the
hotspots are Type-2, which means they would go undetected
if only the specific human mutated protein were analyzed for
coincident PTM. Taken together, these data suggest that
considerable improvement in relating disease-specific muta-
tions to protein structure/function can be achieved through
the use of function potential hotspot prioritization methods
such as SAPH-ire NN.

DISCUSSION

The need for computational tools intended to convert big
data into meaningful information has never been more essen-
tial. Post-translational modifications represent one of many
forms of emerging big data sets for which this need has
remained largely unfulfilled despite an exponential increase in
data. We have attempted to address this issue for the subset
of PTMs that can be projected onto 3-dimensional protein
structures using SAPH-ire (Structural Analysis of PTM
Hotspots) and neural network modeling. We have demon-
strated that the SAPH-ire NN model is strongly predictive for

modified alignment positions that have well documented ev-
idence of biological function, significantly outperforming other
previously demonstrated function potential predictors. Be-
cause of the universality of the predictive features used in the
SAPH-ire NN model, MAPs lacking any evidence of biological
function are also subject to analysis, scoring, and therefore
rank ordering with respect to all other PTMs. Consequently,
unknown function MAPs that harbor feature characteristics
similar to known function MAPs become readily apparent and
represent putative regulatory elements that can be experi-
mentally targeted to better understand cell behavior and dis-
ease in the context of protein mechanism and disregulation.

SAPH-ire NN: Distinction from Other PTM Hotspot Mod-
els—Several aspects distinguish SAPH-ire NN from other
previously described methods. First, SAPH-ire NN, unlike
other methods of hotspot characterization, does not define
hotspots based on the identification of nonrandom clusters of
PTM along the length of a protein sequence. Although non-
random PTM clusters do reveal regions of higher PTM density
in a domain or domain family, they will in many cases not be
associated with functionality. Indeed, we have shown that
many if not most functional PTMs do not have neighboring
PTMs and that nearest neighbor features are not strongly
predictive for functionality (Fig. 4, 5 and supplemental Fig.
S4). Second, SAPH-ire NN retains hotspot integrity for single
alignment positions rather than clustering PTM data within
a � 2-residue window. As a result, SAPH-ire predictions are
based on a precise structural location with well-defined sol-
vent accessible surface area (SASA) for each hotspot, which
can be further compared independently between hotspots.
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Importantly, SAPH-ire NN does not lose the context provided
by neighboring alignment positions, but rather, retains this
data by incorporating nearest neighbor features into the neu-
ral network model. Third, SAPH-ire NN produces a single
score for each hotspot, which enables direct comparison of
individual hotspots within or between families. In contrast,
strategies that employ a residue range window are confined
by sequence context that may be restricted to a specific
protein family. This is particularly useful for ranking PTM
hotspots within a functional protein complex (e.g. the hetero-
trimeric G protein complex), and also identifying multiple po-
sitions of potential combinatorial regulation that may occur on
separate proteins in the complex. Fourth, SAPH-ire NN is
PTM type-agnostic. Rather than focusing on the features of a
single PTM type such as phosphorylation, SAPH-ire is an-
chored by protein structure/function relationships and pre-
sumes that the same structure in two different proteins may
be important as a modification target (i.e. target for different

types of PTM within a family) as opposed to a phosphorylation
target specifically (for example). Consequently, SAPH-ire pro-
vides a means to survey cases in which multiple different PTM
types are observed on similar structures within a single pro-
tein family (i.e. PTM plasticity), but also enables improved
functional prediction for MAPs in which very few of any one
type of PTM has been observed. Thus, SAPH-ire NN provides
valuable predictive information for lower frequency PTMs,
unlike phosphorylation or ubiquitination. In summary, we sub-
mit that the benefits of a PTM type-agnostic and quantitative
prediction method that places PTMs in the context of protein
structure without also enforcing artificial clustering of PTMs
across multiple alignment positions (e.g. �2 residue windows)
provides several advantages for PTM function potential
analysis.

Possible Improvements to SAPH-ire NN Through the Incor-
poration of Additional Features—We have shown that the
incorporation of six distinct MAP features in the SAPH-ire NN
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model results in better predictive outcomes than are observed
for any feature alone. Thus, it is likely that incorporation of
additional MAP features should further improve the SAPH-ire
NN model. At present, SAPH-ire does not incorporate PTM
dynamics or stoichiometry data—features that have been
shown to be predictive for biological function previously (5).
Although the availability of these features is increasing, they
are less available from proteomics studies conducted to date,
due in part to the cost and expertise needed to acquire the
information. Availability of modification stoichiometry is even
more rare than modification dynamics, and also possibly not
as valuable. For example, whereas phosphorylation stoichi-
ometry is critical for the cell cycle-coordinated degradation of
the CDK inhibitor, Sic1 (human p27Kip1) (43), it is not critical
that all GPCRs on the surface of a cell are phosphorylated to
promote desensitization in response to agonist stimulation of
a single receptor—though both Sic1 and GPCR phosphory-
lation mechanisms are essential for normal cell function
(44). Indeed, localization-dependent, sub-stoichiometric PTM
plays a critical role in GPCR-mediated chemotaxis (45, 46).
SAPH-ire NN also does not utilize enzyme/motif matching to
estimate PTM function potential. Although these types of
relationships have been shown to be predictive for biological
function, especially for kinases, they are largely based on
predictive rather than experimental evidence; and what ex-
perimental data does exist is often limited to a subset of
protein families and PTM types.

Beyond the six MAP features described here, we have
tested several other MAP and family-descriptive features that
did not significantly improve the SAPH-ire NN model (data not
shown). Included among these were family member count
and intrinsic disorder, which can be widely different between
protein families in the SAPH-ire data set. Neither feature alone
is strongly predictive for function potential. We have also
found that addition or exclusion of different features have
unique effects on the distributions of MAPs with different
known function source count—some that are worse than
others. Thus, detailed analysis beyond ROC-AUC metrics are
essential when evaluating the performance of these models.
We show here that high-source count, known function MAPs
are highly ranked by SAPH-ire NN - independent of family
member count (supplemental Fig. S4). During the review of
this manuscript, we discovered that an alternative modeling
approach was taken in which some (but not all) similar fea-
tures were used to generate predictive models for phosphor-
ylation (47). Although this suggests that there are indeed more
features to be considered, neither the distribution of known
function source count nor the contributions of individual fea-
tures were fully analyzed. Thus, although additional MAP fea-
tures may be useful, further work will be needed to interrogate
their effects on individual MAPs.

Exploiting SAPH-ire NN for Understanding the Fundamental
Nature of Post-translational Modifications and Genetic Dis-
ease—The SAPH-ire NN model was built simply to predict the

likelihood that any given MAP is biologically impactful based
on characteristics derived from the sequence and structure of
PTMs previously determined to have measureable impact on
some biological process. Naturally, PTMs that are easily de-
tected (e.g. phosphorylation, ubiquitination, acetylation),
dominate the empirically derived PTM landscape, which may
or may not accurately reflect the natural landscape in living
cells - thereby affecting the outcome of the model. The model
is also subject to any error inherent in the collection of data as
it may occur through PTM detection or through published
experimental demonstrations of PTM function. In this as well
as our previous study, we rigorously attempt to exclude,
correct, or recalibrate data that is nonbiological or resulting as
a consequence of arbitrary data curation methods (e.g. cali-
bration of sequence alignment between different data formats
such as the PDB, UniProt, and other data sources). Indeed,
we have found that most data sources are not provided in a
manner that enables instantaneous incorporation into SAPH-
ire. Having taken these precautions, and further validating
SAPH-ire NN output through the analysis of known-function
PTMs (Figs. 5–8), we suppose that the final dataset shown
here not only provides a list of candidate PTMs likely to
impact protein and cellular function, but also informs our
knowledge of the nature of post-translational modification in
relation to protein structure/function. Restated, the SAPH-ire
data set can be used as a foundation for further studies into
the process of PTM in general. With this in mind, cutoffs for
identification of PTM hotspots, whether based on enrichment
over random models or on frequency distributions of known-
function source counts, should not be treated as hard-set
thresholds. Rather, we would argue that they provide quanti-
tative distinction between different classes of PTM that can be
used to better understand their biological nature. Indeed,
based on our analysis, the vast majority of PTMs do not
exhibit high function potential (Fig. 5). This observation may or
may not be a reflection of the source data—including the
quality of sample preparation before proteomics mass spec-
trometry, the quality of PTM identification and localization, as
well as the quality of experiments that describe the function-
ality of PTMs. We have shown that SAPH-ire NN is a strong
predictor of MAP function potential despite the absence of
explicit PTM data filters. Thus, although improved data quality
will surely improve prediction strength, the inclusion of several
MAP features into SAPH-ire NN likely also enhance the ro-
bustness of such models.

Given the results from this work, we conclude that neural
networks and machine learning can provide robust models
through which the complexity of PTM feature interactions
might be gleaned from biological data. In addition, further
improvements to such models may be achieved by inclusion
of disease-linked mutations that associate with MAPs, as we
have done here (Fig. 8). Not only might such a strategy im-
prove function potential prediction, but it may also reveal
previously unrealized connections between several biolog-
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ical features and disease mechanism. We have found sev-
eral cases in which MAPs can be linked with disease-
associated mutations (Fig. 7–8). Interestingly, most cases of
coincidence were found as a result of linking PTM and
mutation datasets through family alignment position, as
opposed to Uniprot ID and native position that is only spe-
cific for the protein alone. Thus, biological knowledge from
a broad diversity of eukaryotes such as plants, yeast, mice,
and humans is used to inform our understanding of human
disease. Expanding on these benefits will benefit from fur-
ther experimental and computational effort that will surely
provide greater insight into the nature, evolution and func-
tional landscape of PTMs.
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