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Abstract

Electrical spinal cord stimulation (SCS) has been gaining momentum as a potential therapy for motor paralysis in
consequence of spinal cord injury (SCI). Specifically, recent studies combining SCS with activity-based training have
reported unprecedented improvements in motor function in people with chronic SCI that persist even without
stimulation. In this work, we first provide an overview of the critical scientific advancements that have led to the
current uses of SCS in neurorehabilitation: e.g. the understanding that SCS activates dormant spinal circuits below
the lesion by recruiting large-to-medium diameter sensory afferents within the posterior roots. We discuss how this
led to the standardization of implant position which resulted in consistent observations by independent clinical
studies that SCS in combination with physical training promotes improvements in motor performance and
neurorecovery. While all reported participants were able to move previously paralyzed limbs from day 1, recovery of
more complex motor functions was gradual, and the timeframe for first observations was proportional to the task
complexity. Interestingly, individuals with SCI classified as AIS B and C regained motor function in paralyzed joints
even without stimulation, but not individuals with motor and sensory complete SCI (AIS A). Experiments in animal
models of SCI investigating the potential mechanisms underpinning this neurorecovery suggest a synaptic
reorganization of cortico-reticulo-spinal circuits that correlate with improvements in voluntary motor control. Future
experiments in humans and animal models of paralysis will be critical to understand the potential and limits for
functional improvements in people with different types, levels, timeframes, and severities of SCI.

Background
Recent studies combining spinal cord stimulation (SCS)
with activity-based training have reported lasting im-
provements in motor function that were historically
thought impossible in the chronic stage of spinal cord
injury (SCI). In 2018, three independent groups demon-
strated, for the first time, that participants with chronic

motor-complete SCI could achieve overground walking
with SCS (Angeli et al. 2018; Gill et al. 2018; Wagner
et al. 2018). Albeit only in a small number of patients,
because of the size and consistency of the effects, these
observations have been regarded as a giant step for SCI
research (Moritz 2018) and a potential paradigm shift in
rehabilitation strategies (Smith et al. 2019). In this work,
we review the clinical evidence of long-term recovery in-
duced by SCS after SCI and the experimental evidence
on markers of neural plasticity that have been observed
in animal and human studies.
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Spinal cord stimulation: from pain management to the
first anecdotical observations of improvements in motor
function
Epidural spinal cord stimulation has been a clinically ap-
proved technology for the treatment of neuropathic pain
since the 1970s (Krames et al. 2009). Epidural SCS ther-
apy requires the implantation of a silicone-based multi-
electrode array in the epidural space between the spinal
cord and the vertebral bone. The electrode array is then
used to deliver continuous electrical pulses to the sen-
sory afferents in the dorsal columns. The concept of
SCS for pain management was first proposed after
neurophysiological studies suggesting that it was possible
to inhibit input from pain fibers into the spinal cord by
the electrical stimulation of the large-diameter sensory
fibers (Melzack and Wall 1965; Wall and Sweet 1967).
Shealy and colleagues proved successful in 1967 in using
subdural SCS to manage intractable chronic pain in cats
(Shealy et al. 1967a) and immediately followed in one
human patient with cancer (Shealy et al. 1967b). This
paved the way for SCS to become a successful clinical
therapy for pain management (Lempka and Patil 2018)
with approximately 50,000 patients undergoing spinal
cord stimulator implants each year (Sdrulla et al. 2018).
The relatively low invasiveness of the procedure to im-

plant SCS leads quickly promoted the application of SCS
in a variety of clinical conditions. In 1973, just a few
years after the first human implants were performed,
SCS-mediated improvements in motor function were
unexpectedly observed: an individual with partial paraly-
sis due to multiple sclerosis receiving SCS to treat
chronic pain regained volitional control of her upper
and lower extremities, facilitation of sitting, standing,
and ambulation during stimulation (Cook and Weinstein
1973) – an improvement that had never been observed.
These observations led to a cascade of investigational
studies pioneering SCS applications for motor control
that described improvements in motor, sensory, and
bladder function by delivering SCS to participants with a
wide variety of motor disorders (Dooley and Sharkey
1977; Siegfried et al. 1978; Siegfried et al. 1981; Waltz
et al. 1981; Davis et al. 1981).

Motor prosthetic effect of SCS after paralysis
In the early years of SCS, its potential therapeutic use was
sought for a variety of conditions. The first applications of
SCS on individuals with SCI focused primarily on spasti-
city management (Richardson and McLone 1978; Richard-
son et al. 1979; Barolat-Romana et al. 1985; Barolat et al.
1988). However, secondary effects on autonomic function
including bowel control and sexual function, and motor
capacity, were also observed (Richardson and McLone
1978; Richardson et al. 1979; Barolat-Romana et al. 1985;
Barolat et al. 1988; Dimitrijevic et al. 1986). During these

initial clinical applications, the ability of SCS to improve
motor function after paralysis was not immediately under-
stood. This may be attributable to evidence of functional
improvements being purely empiric and occurring as add-
itional observations during clinical treatment of pain. In-
deed, when the first improvements in motor control were
observed, they were initially attributed to reductions in
spasticity enabled by SCS (Barolat et al. 1988). However,
spasticity and motor deficits are two distinct phenotypes
of SCI with different neural origins. Motor deficits do not
emerge in consequence of velocity-dependent rigidity at
the joints, instead, paralysis is driven by muscle weakness,
e.g. the inability to activate spinal motoneurons (Li et al.
2012). Moreover, the ability of an individual with SCI to
regain voluntary control of paralyzed muscles did not de-
pend on changes in spasticity. Although spasticity
remained present even after the stimulation was turned
off, motor improvements temporarily enabled by SCS
would be immediately lost (Barolat et al. 1988).
The ability of SCS to immediately improve voluntary

motor control constitutes the first breakthrough for ap-
plications of SCS in people with SCI. This can be con-
sidered a prosthetic effect: without any physical training,
the activation of SCS enabled individuals to move previ-
ously paralyzed limbs and activate spinal motoneurons,
thus overcoming muscle weakness (Fig. 1a). However,
this effect was not lasting and would immediately dis-
appear as soon as the stimulation was turned off. It is
important to distinguish this concept from typical “ther-
apy” as seen from the point of view of the rehabilitation
therapist. Physical therapy leads to lasting changes in
motor deficits, SCS alone did not. These observations
led to a multitude of studies investigating the potential
of this technology as a prosthesis capable of improving
or enabling motor function after SCI in multiple settings
(Siegfried et al. 1981; Davis et al. 1981; Dimitrijevic et al.
1986; Bamford and Davis 2019; Waltz 1997; Dimitrijevic
et al. 1998) which largely replicated these results.
It is fair to ask why SCS did not become an established

neuromodulation therapy for SCI if these results were so
robust. As we mentioned, the mechanisms of SCS were
not completely understood at this point; inferring mecha-
nisms of action from clinical observations in humans led
to a limited understanding. Human experiments in clinical
settings allowed for a limited type and source of neural
and biological signals to be recorded and evaluated. Add-
itionally, implant locations were optimized for the treat-
ment of pain, lacking consistency across participants and
studies. Finally, stimulation parameters were set at the
clinic, and low-intensity stimulation was constantly deliv-
ered throughout months without a training component to
promote the continuous interaction of spared spinal cir-
cuits with voluntary descending drive. Together, these
limitations constrained interpretations of the effects and
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therapeutic efficacy of SCS to restore motor function in
SCI.

Neural targets and optimal implant location
Studies following the initial observations from clinical
studies aimed to understand the mechanisms of action
of SCS. In particular, the specific neural elements that
were primarily activated by SCS and how those led to

recruitment of motoneurons were scientific questions of
high interest. The combination of theoretical investiga-
tions employing the physics of electrical stimulation and
the biophysics of neural membranes, as well as electro-
physiology studies in humans and animals confirmed
that epidural SCS directly recruits large-to-medium
diameter proprioceptive and cutaneous afferents within
the posterior roots of the spinal and the dorsal columns

Fig. 1 How can spinal cord stimulation lead to functional improvements in SCI? a SCS provides a prosthetic effect that enables activation of
previously paralyzed muscles. b The prosthetic effect of SCS enables prolonged activation of paralyzed muscles in a physical therapy setting. c
Long-term practice with activity-based training and SCS results in increases clinical measures of function in chronic SCI. Modified with permission
from (Wagner et al. 2018)
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(Rattay et al. 2000; Ladenbauer et al. 2010; Capogrosso
et al. 2013; Courtine et al. 2007a; Murg et al. 2000; Min-
assian et al. 2004; Minassian et al. 2007a). These sensory
afferents convey excitatory post-synaptic potentials to
the spinal motoneurons via mono- and poly-synaptic
connections (Capogrosso et al. 2013; Minassian et al.
2007a; Minassian et al. 2016; Sayenko et al. 2014; Mor-
aud et al. 2016; Greiner et al. 2021).
These studies led to two distinct conclusions: first, that

the prosthetic effect of SCS can be explained by the in-
crease of excitatory inputs to the spinal motoneurons
that is provided by the synchronized excitatory postsyn-
aptic potential volleys induced by each pulse of SCS via
the sensory afferents; and second, that because of this
mechanism, the optimal location of the electrode array
coincides with the position of maximum likelihood of re-
cruitment of the dorsal roots that innervate leg (or arm)
muscles (Capogrosso et al. 2013; Greiner et al. 2021;
Capogrosso et al. 2016; Capogrosso et al. 2018). For ex-
ample, in the case of the legs, this corresponds to the
T11-L1 vertebrae in humans (Angeli et al. 2018; Gill
et al. 2018; Wagner et al. 2018; Dimitrijevic et al. 1986;
Harkema et al. 2011; Angeli et al. 2014).
On the validity of the first point, it is certainly possible

that other mechanisms may also contribute to the pros-
thetic effect on volitional motor control. For example,
the generation of plateau potentials in the motoneurons
(Kiehn and Eken 1997; Heckman et al. 2005) polysynap-
tic spinal reflexes (Pinter et al. 2000; Hofstoetter et al.
2015a), as well as specialized spinal networks that con-
trol synergistic components of locomotor movements
(Minassian et al. 2017; Danner et al. 2015) (Fig. 2).

However, the understanding that SCS recruits mostly
the dorsal roots, can be reliably used in first approxima-
tion to guide implant procedures and obtain robust and
replicable results across participants (Angeli et al. 2018;
Gill et al. 2018; Wagner et al. 2018; Capogrosso et al.
2018; Lu et al. 2016).
The second implication in the optimal location of the

epidural array enabled standardization of practice which
allowed to achieve robust results that have been repro-
duced by multiple independent clinical studies around
the world (Angeli et al. 2018; Gill et al. 2018; Wagner
et al. 2018; Sayenko et al. 2014).

SCS-mediated neurorecovery in humans with SCI
Standardization of practice enabled interventional clin-
ical trials to study whether the delivery of SCS in com-
bination with physical training could improve functional
outcomes in individuals with SCI. This concept was first
explored in 2 individuals with incomplete SCI classified
as American Spinal Injury Association Impairment Scale
(AIS) C who improved their ability for treadmill and
overground walking after training with SCS in addition
to weight-assisted training, further than what could be
achieved by weight-assisted training alone (Herman
et al. 2002; Carhart et al. 2004). Subsequent studies in
rodent models of SCI further solidified this concept by
demonstrating the regained ability to walk and sustain
full body weight when SCS was combined with loco-
motor training (Fig. 1b) in larger groups (Ichiyama et al.
2008; Courtine et al. 2009; van den Brand et al. 2012;
Courtine et al. 2008). Recently, at least three independ-
ent clinical trials have reported improved functional

Fig. 2 Post-stimulation depression of evoked responses confirms elicitation of posterior root-muscle (PRM) reflexes. a Electrode position for
elicitation of muscle responses via transcutaneous SCS. b Afferent stimulation is confirmed by the depression and partial recovery of the PRM
reflex using a paired-pulse paradigm (Minassian et al. 2007b; Hofstoetter et al. 2018; Kagamihara et al. 1998; Hofstoetter et al. 2020). Exemplary
electromyographic responses of the leg muscles when the time between stimuli is set to 30, 50, and 100ms. Responses to the second stimulus
are completely eliminated at interstimulus intervals of 30 ms and partially recover at 100 ms (Hofstoetter et al. 2019). Modified with permission
from (Hofstoetter et al. 2021)
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outcomes besides walking, with and without stimulation,
after intense physical therapy in combination with SCS
(Fig. 1c). The results are summarized in Table 1.
The three reported studies achieved similar clinical

outcomes albeit with different timings. This may be at-
tributable to the efficiency of parameter optimization for
optimal, patient-specific stimulation protocols (Angeli
et al. 2018; Wagner et al. 2018; Formento et al. 2018).
However, in terms of clinical and scientific outcomes,
the results are remarkably consistent. First, all studies re-
ported on the efficacy of SCS as a prosthetic interven-
tion to enable movements of previously paralyzed joints
since day 1 after implantation. Second, participants pro-
gressively acquired abilities of increasing complexity
after the onset of SCS-assisted physical training focused
on walking and standing. The ability to stand with SCS
was reported in all participants 1 week after the onset of
therapy, and participants were able to move their previ-
ously paralyzed legs while walking on a treadmill after
the 2nd week. Twenty weeks after the onset of training,
6/8 participants were able to walk overground with a
minimal level of support (walker, crutches, etc.) in
addition to SCS. Perhaps of the highest importance, par-
tial regaining of motor function was reported in partici-
pants even when the stimulation was off by the end of
training. Interestingly, the 3/4 participants that did not
achieve this goal were classified as having a motor and
sensory complete SCI (AIS A), whereas the 4/8 partici-
pants that could activate their previously paralyzed mus-
cles, even without SCS were classified as motor
complete or incomplete (AIS B, C, and D). Two of them
(AIS C and D) could also perform isolated single-joint
movements, stand without external support, and walk
with an assistive device, all without stimulation.
Taken together with the pioneering reports from Her-

man and colleagues (Herman et al. 2002; Carhart et al.

2004), these studies show that SCS in combination with
physical training promotes neurorecovery and induces
lasting changes enabling improvements in motor per-
formance (with and without SCS) and rehabilitation out-
comes. While larger studies are required to evaluate the
overall effect size of SCS therapy for different SCI popu-
lations, motor improvements in the chronic stage of SCI
are remarkable compared to previous reports showing
no additional improvements in walking function when
comparing locomotor training to bodyweight supported
treadmill training with or without functional electrical
stimulation or robotic-assisted locomotor training
(Mehrholz et al. 2012).

The need to understand mechanisms of recovery
While population size is too small to make definitive
conclusions, results from the most recent studies
(Table 1) seem to indicate that recovery outcomes
correlate with lesion severity at study enrollment
(Fig. 3). On one side this result is not surprising.
Since SCS seems to amplify voluntary motor control
(Fig. 1a), the capacity of an individual to achieve
complex motor tasks must depend on the amount of
residual supra-spinal inputs after the lesion. However,
the apparent dependence of functional improvements
on lesion severity also represents an opportunity to
improve on current rehabilitation approaches that
could maximize outcomes of SCS-enhanced physical
therapy to improve rehabilitation outcomes for indi-
viduals with AIS A/B SCI. To this end, studies on the
neural mechanisms that may explain neurorecovery
induced by SCS and combined physical training are
crucial. Having a better understanding of the contri-
bution of specific supra-spinal inputs, as well as the
timing and dynamics of neurorecovery may allow im-
provements in a priori patient selection, optimization

Table 1 Functional outcomes after SCS and activity-based training

Functional outcomes Reported with
SCS on

Reported in Time of first observation
after surgery (SCS on)

Reported with
SCS off

Reported in

Voluntary muscle
contraction

8/8 participants Angeli et al. 2018; Gill et al.
2018; Wagner et al. 2018

Day 1 4/8 participants
AIS B/C/D

Angeli et al. 2018;
Wagner et al. 2018

Single joint movements
of paralyzed joints

8/8 participants Angeli et al. 2018; Gill et al.
2018; Wagner et al. 2018

Day 1 2/8 participants
AIS C/D

Wagner et al. 2018

Standing 8/8 participants Angeli et al. 2018; Gill et al.
2018; Wagner et al. 2018

Week 1 4/8 participants
AIS C/D

Angeli et al. 2018;
Wagner et al. 2018

Treadmill walking 8/8 participants Angeli et al. 2018; Gill et al.
2018; Wagner et al. 2018

3/8 >Week 2
5/8 >Week 10

n.r.

Overground walking 6/8 participants
(with assistance
e.g. walker)

Angeli et al. 2018; Gill et al.
2018; Wagner et al. 2018

> Week 20 2/8 participants
AIS C/Da

(with assistance
e.g. walker)

Wagner et al. 2018

Included studies: Angeli et al. 2018 (NCT02339233), Gill et al. 2018 (NCT02592668), Wagner et al. 2018 (NCT02936453). Included participants (N = 8): 3 AIS A (motor
and sensory complete), 2 AIS B (motor complete), 3 AIS C/D (motor incomplete)
aOne participant in Wagner et al. 2018 achieved steps overground without additional support 3 months after rehabilitation (parallel bars present for safety but
not touched)
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of stimulation parameters, and personalized rehabilita-
tion protocols that take advantage of patient-specific
residual functions to improve and accelerate neurore-
covery. Basic research on animal models of paralysis
will remain a key component of this effort (Courtine
et al. 2007b).

Animal models of SCS-mediated neurorecovery
Experiments in animal models of SCI enabled investi-
gations into the intrinsic neural mechanisms and con-
tributors of SCS-mediated recovery. One of the first
models explicitly designed to study voluntary motor
control enabled by SCS was a double-hemisection rat
model of SCI. Van den Brand and colleagues per-
formed a left lateral over-hemisection at the thoracic
vertebra (T7) and a right lateral hemisection below at
T10 (van den Brand et al. 2012). This procedure
completely interrupted supraspinal pathways while
leaving a gap (from T8-T9) of intact spinal cord,
mimicking maintenance of connections through the
lesion even in individuals with clinically complete SCI
(Sherwood et al. 1992; McKay et al. 2004). After the
complete loss of hindlimb function from the SCI, epi-
dural SCS combined with serotonin and dopamine re-
ceptor agonists promoted coordinated stepping on a
treadmill – but not overground – with body-weight
support as early as 7 days after injury. The combin-
ation of the prosthetic effect of SCS with long-term
activity-based training focused on promoting volun-
tary movement by training on over-ground locomo-
tion resulted in improvements in walked distance

covered in a fixed amount of time and voluntarily
mediated gait in stairs and obstacle avoidance.
Anatomical examinations with retrograde tract-tracing

revealed an increase in the number of neurons in the
intermediate and ventral laminate of the inter-lesion seg-
ments (from T8-T9) in trained rats that were active dur-
ing walking, suggesting these neurons may play a pivotal
role in restoring voluntary locomotion. Although the
SCI interrupted 98% of corticospinal tract axons,
overground-trained rats recovered ~ 45% or pre-lesion
fiber density in the inter-lesion dorsolateral funiculus,
bypassing the T7 over-hemisection, branching into the
gray matter, and recrossing the midline to develop
bouton-like swellings, suggesting regenerative sprouting
(Steward et al. 2003) mediated by the combination of
SCS with activity-based training and dopamine/sero-
tonin agonists. An increase in the density of cortical pro-
jections was also found in various brainstem motor areas
containing reticulospinal neurons that project spinally to
serotonergic neurons: the vestibular nuclei, the entire re-
ticular formation, and the pyramidal regions. Import-
antly, these improvements in motor function and neural
plasticity were observed only for rats that were received
overground training which promotes voluntary move-
ments, but not on the ones that trained only on a tread-
mill that may instead trigger automated stepping
behaviors (Sławińska et al. 2012a). Taken together, these
results constitute anatomical evidence of a synaptic
reorganization of residual projections that correlate with
the ability of rats to regain supraspinal control of spinal
circuits.
The double-hemisection rat model allows properly

controlled experiments, a precise quantification of the
SCI, and unambiguous conclusions about anatomical
reorganization. However, SCI in humans results primar-
ily from trauma (Center NSCIS 2021), resulting in high
variations in damage to the spinal cord and residual
pathways between individuals. Therefore, the mecha-
nisms of SCS-mediated recovery after severe contusions
remained largely debated and unexplored (Sławińska
et al. 2012b; Wernig 2014). Asboth, Friedly, Beauparlant,
and colleagues tackled this question by investigating the
role of cortico-reticulo-spinal circuits in motor recovery
in a rat model of contusion SCI (Asboth et al. 2018).
Similar to rats with the double hemisection SCI, com-
bined SCS and serotonergic and dopaminergic receptor
agonists immediately restored treadmill stepping with
body-weight support. After 9 weeks of 6 d per week
training, rats regained weight-bearing locomotion, vol-
untary stepping on a staircase, and swimming across a
pool of water without neuromodulation.
Optogenetic stimulation of pyramidal neurons project-

ing from the motor cortex to lumbar segments in mice
with contusion SCI triggered weight-bearing locomotion

Fig. 3 Functional improvements after long-term training with SCS
and activity-based training. Summary of recovery outcomes
extracted from Table 1 as a function of lesion severity assessed by
AIS classification at study enrollment. Transparent circles indicate not
all participants with that AIS classification achieved the outcome.
Adjacent ratios indicate the partial number
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during neuromodulation. In contrast, having only opto-
genetic stimulation or the electrochemical neuromodula-
tion by turning the other one off was not sufficient to
engage the paralyzed legs, suggesting that SCS enables
the motor cortex to modulate locomotor movements of
paralyzed legs. Viral tracing of the leg motor cortex re-
vealed complete abolishment of corticospinal tract pro-
jections below the injury but spared connectivity with
lumbar segments in a subset of projection neurons lo-
cated mostly in the ventral gigantocellular reticular nu-
clei (vGi), a subregion of the medullary reticular
formation. Silencing of glutamatergic neurons in the vGi
blocked the cortical control of locomotion that had been
previously enabled by optogenetic stimulation of the
motor cortex and electrochemical stimulation of the
spinal cord. Moreover, viral tracing and inactivation of
these circuits in rats with contusion SCI revealed a
reorganization triggered by neurorehabilitation with
electrochemical SCS, and that regaining of volitional
movements after training was contingent on these
projections.
Several animal studies in rats (Ballermann and Fouad

2006; Zörner et al. 2014) and non-human primates
(Zaaimi et al. 2012) have reported that supraspinal com-
mands from the cortex can reach the spinal cord
through brainstem pathways after SCI, and these have
been shown to contribute towards recovery after SCI in
humans (Baker and Perez 2017). In summary, animal
models of SCI suggest that cortico-reticulo-spinal cir-
cuits may mediate the volitional control of paralyzed
areas enabled by electrical stimulation of the spinal cord
(Angeli et al. 2014; Gerasimenko et al. 2015), and
activity-dependent reorganization of these circuits en-
abled by SCS may be a primary contribution towards the
restoration of function without stimulation that has been
observed in humans (Angeli et al. 2018; Gill et al. 2018;
Wagner et al. 2018).

Are motor improvements limited to individuals
with spared descending neural fibers?
The combined results from the three main clinical stud-
ies included in this review suggest recovery outcomes
are directly related to lesion severity (Fig. 3) which we
believe is indicative of the link between SCS and the
amount of spared descending neural fibers. Although
studies with a greater number of individuals with differ-
ent AIS grading scales (A, B, C, and D) are needed to
validate these preliminary observations, we expect that
this trend will be confirmed independently from inclu-
sion criteria. Indeed, inclusion criteria were already con-
siderably wide across the three studies, and represented
a wide variety of participants ranging from motor
complete to incomplete (Angeli et al., 2018: SCI above
T10 and at least 1 year post-injury; Gill et al., 2018: SCI

between C7-T10, AIS A or B, at least 2 years post-injury;
Wagner et al., 2018: SCI above T10, AIS A, B, C, or D,
at least 1 year post-injury). Moreover, by combining evi-
dence from both early and recent studies SCS can be
thought of as a technique that amplifies residual de-
scending voluntary input while simultaneously support-
ing the excitatory drive to the motoneurons, thus
enhancing motor function and strength (Minassian et al.
2016; Guiho et al. 2021). This unique combination en-
ables the integration of voluntary inputs with corre-
sponding, sustained motor outputs that can lead to the
activity-dependent plasticity that has been observed in
animal models of SCI and humans (Moraud et al. 2016;
Formento et al. 2018).
While we believe that residual supra-spinal input may

determine the upper-bounds for potential clinical out-
comes, it is important to note that anatomical (Kakulas
1988) and neurophysiological evidence of residual de-
scending white matter and voluntary input has been
found in a majority of individuals clinically classified as
having a complete SCI (Sherwood et al. 1992), and 10%
of these individuals with discomplete SCI can generate
traces of motor unit activity, yet not strongly enough to
elicit a visible contraction or movement (McKay et al.
2004). Perhaps unsurprisingly, participants classified as
having a “motor complete” SCI were able to recover vol-
untary movements with SCS as early as day 1 (Table 1).
To properly address the topic of responsiveness to

SCS, future clinical studies should perform objective
evaluations of the integrity of residual descending pro-
jections that go further than clinical function and im-
pairment scores. In this case, initial quantifications of
spared neural circuits could dictate the types of rehabili-
tation exercises that could maximize an individual’s po-
tential for SCS-mediated neurorecovery. In addition, SCI
research will greatly benefit from studies on large num-
bers of participants to determine other factors that may
affect responsiveness to SCS, such as sex, race, genetics,
and economic backgrounds and generate evidence-based
knowledge that appropriately represents target popula-
tions to addresses their specific needs.

What types of training activities are most likely to
maximize recovery outcomes?
The studies presented in this work make clear that vol-
itional effort from the participant is essential. When
stimulation is provided alone, as done initially five de-
cades ago, improvements in motor performance were
not consistently observed. Similarly, other rehabilitation
methods like robotic training are more effective when
requiring volitional effort from the participants than
when full assistance is provided such that stepping is
produced regardless of participant effort (Field-Fote and
Roach 2011; Lam et al. 2015).
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In retrospect, this should not be surprising given the
interpretation of SCS as potentiating residual descending
inputs (Minassian et al. 2016; Guiho et al. 2021) and the
assumption that these inputs are necessary to generate
plasticity (Kakulas 1988; Dimitrijevic et al. 1984). How-
ever, unexplored questions concern the specific exercises
that may or may not maximize outcomes. Functional
improvements in motor function have been reported by
combining SCS with different types of activity-based
training, from walking to hand and arm function (Angeli
et al. 2018; Gill et al. 2018; Wagner et al. 2018; Inanici
et al. 2021). Training programs that incorporate multiple
types of activities have the potential for improved out-
comes compared to training on a single task (Yang et al.
2014). This is further supported by recent studies show-
ing that the consolidation of learning – i.e. the long-
term retention of acquired skills – is better achieved by
practicing multiple diverse tasks than by focusing on a
single task (Kantak et al. 2010; Kantak and Winstein
2012). Therefore, training programs should aim at maxi-
mizing volitional inputs while implementing diverse
types of tasks.
Because some arm function is essential to use assistive

devices like walkers and crutches in locomotor training,
the inclusion of individuals with injuries above C5 in
locomotor-type rehabilitation would present significant
challenges. Nevertheless, novel rehabilitation strategies
using wearable sensors (Seanez-Gonzalez et al. 2016;
Seanez-Gonzalez et al. 2017; Pierella et al. 2017) could
incorporate lower extremity motor functions into SCS
and activity-based training paradigms without the need
for the highly demanding locomotor training. Indeed, it
is possible to significantly improve walking function in
people with SCI even without gait-specific training
(Zhou et al. 2018).
How should be exercises be diversified? We believe

that the way to approach this problem is tightly con-
nected to the diversity of function of the different
components of brain-spinal projections. For example,
corticospinal projections contribute to dexterous
tasks in humans (Bunday et al. 2014; Perez and
Rothwell 2015) while reticulospinal circuits may con-
tribute to strength (Glover and Baker 2020) and may
be critical to recovery after corticospinal tract lesions
or SCI (Zaaimi et al. 2012; Baker and Perez 2017).
Therefore, we believe that there should be sufficient
diversity in rehabilitation exercises to promote
circuit-specific plasticity via SCS. For example, an in-
dividual with residual corticospinal tract input may
benefit from the training of dexterous tasks and dis-
tal movements (Welniarz et al. 2017; Sangari and
Perez 2020; Perez et al. 2004), whereas residual reti-
culospinal connections may dictate training of pos-
tural balance, strength production, and bimanual

tasks (Glover and Baker 2020; Prentice and Drew
2001; Maslovat et al. 2020).

Translating high-intensity training to clinical
rehabilitation
Improvements in motor function mediated by SCS
have been observed after high-intensity rehabilitation
protocols that require daily practice and months-
length durations. In contrast, rehabilitation protocols
covered by insurance in the early and intermediate
phases of SCI are low intensity and short in duration.
Moreover, clinical SCI rehabilitation protocols usually
end when a patient reaches a plateau in performance
(Behrman et al. 2006; Thuret et al. 2006), and indi-
viduals with chronic SCI rarely receive additional re-
habilitation coverage. Additional controlled clinical
trials that evaluate the effectiveness of training inten-
sity on rehabilitation outcomes are warranted to jus-
tify insurance coverage for these types of
neurorehabilitation strategies. In addition, innovations
that reduce the number of experts needed for SCS-
mediated training and reduce the need for daily com-
mute to the clinic may improve access for those with
SCI and accelerate the adoption of these neuro-
technologies for low-cost, at-home
neurorehabilitation.

Non-invasive alternatives to epidural stimulation
Transcutaneous SCS was developed (Minassian et al.
2007b) as a non-invasive method to activate the same
neural structures, via similar mechanisms, as epidural
SCS (Ladenbauer et al. 2010; Danner et al. 2011; Hof-
stoetter et al. 2018). The low-threshold sites along pro-
prioceptive fibers at the posterior rootlet-spinal cord
interface (Rattay et al. 2000) make the recruitment of
posterior roots by skin-surface electrodes possible
(Ladenbauer et al. 2010). In this manner, transcutaneous
SCS can be used to augment muscle activity through
mono- and polysynaptic spinal reflexes (Minassian et al.
2007b; Hofstoetter et al. 2008; Dy et al. 2010) and enable
functional movements during treadmill stepping in indi-
viduals with chronic, motor incomplete SCI (AIS D)
(Minassian et al. 2010; Hofstoetter et al. 2013; Hofstoet-
ter et al. 2015b). And although transcutaneous SCS suf-
fers from low selectivity in muscle recruitment
compared to epidural SCS (de Freitas et al. 2021), differ-
ent electrode positions can improve preferential activa-
tion of rostro-caudal (Krenn et al. 2015) or lateral
(Calvert et al. 2019) spinal networks. Moreover, long-
term rehabilitation with SCS combined with activity-
based training can improve standing and balance
(Sayenko et al. 2019) and induce functional recovery in
people with SCI (Gerasimenko et al. 2015; Gad et al.
2017). Notably, improvements in balance control and
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reduced dependence on external assistance were quanti-
tatively similar to those seen with epidural SCS (Har-
kema et al. 2011; Rejc et al. 2015). Finally, recent studies
by several groups further highlight the need to combine
SCS therapy with activity-based training to enable con-
sistent improvements in walking (Shapkova et al. 2020;
Estes et al. 2021), sit-to-stand (Al’joboori et al. 2020),
and hand and arm function (Inanici et al. 2021) in
people with SCI.

Enhanced potential for high-intensity
rehabilitation by improving autonomic function
Severe injuries above T6 commonly lead to
hemodynamic instability and cardiovascular dysfunction
that cause repeated hypotensive episodes known as auto-
nomic dysreflexia (Weaver et al. 2012). Although intense
activity-based training in the early phases of SCI is cru-
cial for functional recovery, these life-threatening
hypotension episodes hinder activity-based rehabilitation
programs for individuals with SCI (Ashley et al. 1993;
Illman et al. 2000). Recent studies have shown that by
engaging sympathetic circuitry, SCS can restore
hemodynamic stability after SCI (Squair et al. 2021;
Phillips et al. 2018; Harkema et al. 2018). By improving
cardiovascular function with SCS, it may be possible to
avoid hypotension episodes during early rehabilitation
and increase training frequency and intensity towards
improved neurorecovery (Harman et al. 2021; Ditterline
et al. 2020).

Overcoming limitations of SCS through multi-
intervention approaches
Although SCS-facilitated therapies have shown unprece-
dented improvements in motor function that persist
even without stimulation, increases in strength produc-
tion, range of motion, and even clinical outcomes have
not been shown to have a significant, positive impact on
the quality of life of people with SCI. Therefore, rehabili-
tation strategies should be aligned to the health and life
priorities of individuals with SCI (Simpson et al. 2012).
Interventions that improve arm/hand function, mobility,
bowel, bladder, and sexual function, will be crucial to
enable the independence and well-being of people with
SCI. Multi-intervention approaches that contain a re-
habilitation component in combination with SCS are
likely to improve clinical measures of function and inde-
pendence in people with SCI to a higher level than SCS
alone (Gomes-Osman et al. 2016). Future SCI interven-
tions will likely involve the combination of SCS with
therapies using pharmacological neuromodulation (Gad
et al. 2017; Radhakrishna et al. 2017; Freyvert et al.
2018) to engage spinal circuits or neural stem cells (Grill
et al. 1997; Lu et al. 2012; Kadoya et al. 2016) and

antibodies (Kucher et al. 2018; Freund et al. 2007) to
promote axonal regeneration and synapse formation in
SCI.

Conclusion
The prosthetic effect of SCS on motor function below
the injury can enable the delivery of activity-based inter-
ventions that lead to unprecedented functional improve-
ments in the chronic stage of paralysis (Angeli et al.
2018; Gill et al. 2018; Wagner et al. 2018). However,
whether these improvements are the result of the larger
set of exercises that participants with SCI can execute
with the support of SCS, or whether electrical stimula-
tion of spinal circuits can somehow promote plasticity
via the creation of a plasticity-permissive environment
remains an important open question (Benavides et al.
2020; Rejc et al. 2020). While direct recordings and
stimulation of cortico-reticulo-spinal circuits with viral
tracing and optogenetics are not currently possible in
humans, the use of transcranial magnetic stimulation
(Perez et al. 2004; Benavides et al. 2020; Sangari and
Perez 2019), startling responses (Baker and Perez 2017;
Sangari and Perez 2020; Sangari and Perez 2019), per-
ipheral nerve stimulation (Kumru et al. 2021), as well as
functional (Weber et al. 2016) and structural (Smith
et al. 2020; Smith et al. 2018) MRI, can provide a unique
opportunity to evaluate the short- and long-term contri-
butions of these neural circuits towards neurorecovery
enabled by SCS and activity-based training. The continu-
ous interaction between clinical trials and studies in ani-
mal models of paralysis will be critical to refine our
understanding of the recovery capacity of the nervous
system, ultimately leading to the development of opti-
mized SCS-enabled rehabilitation strategies that acceler-
ate neurorecovery.
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