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Plasma tRF-1:29-Pro-AGG-1-M6
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novel diagnostic biomarkers for
lung adenocarcinoma
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Objective: TRNA-derived fragments (tRFs) and tRNA-derived stress-induced

RNAs (tiRNAs) are recognized as novel and potential types of non-coding RNAs

(ncRNAs), and several tRF/tiRNA signatures are closely associated with tumor

diagnosis. This study aimed to analyze the expression profiles of plasma tRFs/

tiRNAs and to clarify their diagnostic value in lung adenocarcinoma (LUAD).

Methods: The differential expression profiles of plasma tRFs/tiRNAs in patients

with four patients with early LUAD, four patients with advanced LUAD, and four

healthy controls were analyzed using high-throughput sequencing

technology. Then, plasma tRFs/tiRNAs were validated by quantitative real-

time polymerase chain reaction (qRT-PCR), and their diagnostic efficiency

was appraised by receiver operating characteristic curve analysis. The

correlation of candidate plasma tRFs/tiRNAs with clinicopathological features

was also analyzed. Finally, bioinformatics analysis was performed to explore

and identify the potential biological pathways induced by tRFs/tiRNAs.

Results: The sequencing results revealed that tRFs/tiRNAs from plasma

samples in patients with LUAD were differently expressed, supporting the

necessity of exploring their potential as biomarkers. The validation results of

qRT-PCR demonstrated that the expression level of tRF-1:29-Pro-AGG-1-M6

was downregulated in LUAD, while that of tRF-55:76-Tyr-GTA-1-M2 was

upregulated, which was consistent with the sequencing data. The areas

under the receiver operating characteristic curve of tRF-1:29-Pro-AGG-1-M6

and tRF-55:76-Tyr-GTA-1-M2 were 0.882 and 0.896, respectively, which have

significant values in the diagnosis of LUAD. The expressions of tRF-1:29-Pro-

AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 in LUAD were obviously correlated

with various clinicopathological features such as tumor–node–metastasis

stage, node stage, and the expression levels of carcinoembryonic antigen. In
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addition, their expression was significantly altered from before to after tumor

resection in LUAD patients. The results of Gene Ontology and Kyoto

Encyclopedia of Genes and Genomes analyses further indicated that tRF-

1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 are widely distributed

and apparently enriched in several tumor-related signaling pathways.

Conclusions: Plasma tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2

may be promising components in the development of highly sensitive and non-

invasive biomarkers for LUAD diagnosis.
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Introduction

One of the malignant tumors that most significantly threaten

human life worldwide is lung cancer, and the subtype with the

highest incidence is lung adenocarcinoma (LUAD) (1, 2).

Despite considerable progress made in treatment, the 5-year

overall survival rate for LUAD is ≤15%, as a large proportion of

patients are often diagnosed at a later stage of the disease when

symptoms become apparent (3). Although low-dose computed

tomography is the early diagnostic method with the highest rate

of LUAD detection, its typical defects of a high price and false-

positive rate are apparent (4). Additionally, traditional serum

biomarkers such as carcinoembryonic antigen (CEA) and

cytokeratin fragment antigen 21-1 often fail to achieve early

diagnosis of LUAD due to insufficient specificity (5). The

discovery of new early diagnostic biomarkers is of great

importance to overcome LUAD, which will provide practical

and effective support for the timely detection, early treatment,

and even improved prognosis of the condition.

With the assistance of high-throughput sequencing

technology, a large quantity of non-coding RNAs have been

identified to play important roles in the occurrence and

progression of cancer (6). Transfer RNA (tRNA)-derived small

non-coding RNAs (tsRNAs) have received extensive attention,

and the group’s main members, tRNA-derived fragments (tRFs)

and tRNA-derived stress-induced RNAs (tiRNAs), are obtained

from precursor or mature tRNAs through specific cleavage by

nucleases (7, 8). The understanding of tRFs/tiRNAs can be

traced back to the 1970s when Borek et al. (9) found that an

abundant supply of tRFs/tiRNAs in tumor tissue originated from

a high turnover of tRNAs. Since then, successive studies have

detected large amounts of tRFs/tiRNAs in cells, tissues, and body

fluids (10–12) and have demonstrated that the stable existence of

tRFs/tiRNAs has crucial regulatory functions in gene expression,

protein translation, and epigenetic modification (13–15). The

latest evidence reveals that tRFs/tiRNAs are abnormally
02
expressed in neurological diseases, metabolic diseases, and

cancer (16). Specifically, research has determined that tiRNA-

Gln-CTG-003, tiRNA-His-GTG-001, and tRF-Ala-AGC-002 are

abnormally expressed in advanced ovarian cancer tissues, while

5′-tRF-LysCTT appears to be overexpressed in bladder cancer

patients (17, 18). Moreover, Shao et al. (19) indicated that the

level of tRF-Leu-CAG was upregulated in non-small cell lung

cancer (NSCLC) tumor tissues and cell lines and observed that

its expression in NSCLC serum significantly correlated with

tumor stage progression. Li et al. (20) discovered that serum tRF-

31-79MP9P9NH57SD expression was higher in NSCLC patients

and related to both clinical stage and lymph node malignancy. It

is reasonable to believe that tRFs/tiRNAs can serve as candidate

molecular markers for monitoring cancer.

In the present study, based on high-throughput sequencing

technology, the plasma tRF/tiRNA expression profiles of four

patients with early LUAD, four patients with advanced LUAD,

and four healthy controls were analyzed. First, tiRNA-1:34-Val-

CAC-2, tRF-1:29-Pro-AGG-1-M6, and tRF-55:76-Tyr-GTA-1-M2

were screened out as candidate tRFs/tiRNAs and verified by

quantitative real-time polymerase chain reaction (qRT-PCR).

Then, the diagnostic efficacy of plasma tRFs/tiRNAs was assessed

by receiver operating characteristic (ROC) curve analysis.

Subsequently, this study predicted the potential target genes of

tRFs/tiRNAs and their regulatory networks using bioinformatics

technology then further explored their main cellular biological

functions and related molecular mechanisms in LUAD.
Materials and methods

Clinical information

All plasma samples were collected from LUAD patients and

healthy individuals who visited Fujian Provincial Hospital

between January 2021 and March 2022.
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A total of 19 men and 28 women aged 28–80 years with an

average age of 56.02 ± 10.42 years and histopathologically

confirmed LUAD were enrolled. We excluded any patients with

hypertension, diabetes, severe liver and kidney disease, metastatic

tumors, or other systemic diseases. The stage of LUAD was

defined according to the version of the tumor–node–metastasis

(TNM) system released by the Union for International Cancer

Control/American Joint Committee on Cancer. Separately, the

healthy control group included 9 men and 12 women aged 26–77

years with an average age of 47.71 ± 12.48 years without lung

disease, tumors, or various systemic diseases.

Plasma samples from four patients with early LUAD, four

patients with advanced LUAD, and four healthy controls were

randomly selected for sequencing analysis, and the remaining

samples were reserved for consecutive studies. In addition,

plasma samples from 47 LUAD patients were selected for

qRT-PCR analysis, and plasma samples from 12 LUAD

patients were selected to evaluate the changes in tRF/tiRNA

expression after complete tumor resection. Relevant clinical data

were collected from all participants and recorded in detail.

Written informed consent was given by all participants, and

the study was approved by the ethics committee of Fujian

Provincial Hospital (K2021-03-054).
Extraction and pretreatment of
plasma RNA

Total RNA was extracted from plasma using TRIzol™ LS

reagent (Thermo Fisher Scientific, Waltham, MA, USA). The

concentration and purity of each RNA sample were assessed

with an ND-1000 spectrophotometer (Thermo Fisher Scientific).

The absorbance at wavelengths of 260 and 280 nm was

measured. All the isolated RNA samples had an OD260/

OD280 ratio between 1.8 and 2.1. The RNA integrity was

checked by agarose gel electrophoresis. Total RNA samples

were pretreated to remove some RNA modifications that

interfere with small RNA sequencing library construction

according to the following process: 3′-aminoacyl (charged) was

deacylated to 3′-OH for 3′-adaptor ligation, 3′-cP (2’,3′-cyclic
phosphate) was removed to 3′-OH for 3′-adaptor ligation, 5′-
OH (hydroxyl group) was phosphorylated to 5′-P for 5′-adaptor
ligation, and m1A and m3C were demethylated for efficient

reverse transcription.
Library preparation and
tRF/tiRNA sequencing

Pretreated total RNA was used to prepare the sequencing

library. First, the total RNA of each sample was sequentially

ligated to 3′ and 5′ small RNA adapters. Complementary DNA

(cDNA) was then synthesized and amplified using proprietary
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RT and amplification primers (Illumina, San Diego, CA, USA).

Subsequently, 134–160-bp PCR-amplified fragments were

extracted and purified from the polyacrylamide gel

electrophoresis gel. Finally, the completed libraries were

quantified with the Agilent 2100 bioanalyzer (Agilent

Technologies, Santa Clara, CA, USA). The libraries were

denatured as single-stranded DNA molecules, captured on

Illumina flow cells, amplified in situ as sequencing clusters,

and sequenced for 50 cycles on the Illumina NextSeq 500

system per the manufacturer’s instructions.
Sequencing data analysis of tRFs/tiRNAs

Image analysis and base calling were performed using

Solexa pipeline version 1.8 (Off-Line Base Caller software,

version 1.8). Sequencing quality was examined in FastQC

(Babraham Institute, Cambridge, UK). Raw data files in

FastQC format were generated from the Illumina sequencer.

To examine the sequencing quality, the quality score plot of

each sample was plotted. The quality score Q was

logarithmically related to the base calling error probability

(P). After Illumina quality control, the sequencing reads were

5,3-trimmed, and reads (length of <14 or >40 nt) with

cutadapt were discarded and recorded in FASTA format.

Trimmed reads in FASTA format were aligned allowing for

one mismatch only to the mature tRNA sequences; then,

reads that did not map were aligned, allowing for one

mismatch only to precursor tRNA sequences with the

bowtie software. Subsequently, the remaining reads were

aligned, allowing for one mismatch only to microRNA

reference sequences with miRDeep2. The abundance of

tRFs/tiRNAs was evaluated using their sequencing counts

and was normalized as counts per million of total aligned

reads (CPM). Based on alignment statistical analysis

(mapping ratio, read length, and fragment sequence bias),

we determined whether the results could be used for

subsequent data analysis. If so, the expression profiling and

differentially expressed tRFs/tiRNAs and miRNAs were

calculated. A fold change ≥1.5 and p ≤ 0.05 were used for

screening differentially expressed tRFs/tiRNAs. Principal

component analysis, correlation analysis, pie plots, Venn

plots, hierarchical clustering, scatterplots, and volcano plots

were performed for the expressed tRFs/tiRNAs in the R (R

Foundation for Statistical Computing, Vienna, Austria) or

perl environment for statistical computing and graphics.
qRT-PCR analysis

Following the manufacturer’s instructions, RNA pretreatment

and cDNA synthesis were performed using the rtStar™ tRF &

tiRNA Pretreatment Kit and the rtStar™ First-Strand cDNA
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Synthesis Kit, respectively (both Arraystar, Rockville, MD, USA).

According to the 2× PCRMaster Mix Kit manufacturer’s protocol,

synthetic cDNA was analyzed by qRT-PCR on a LightCycler480

real-time quantitative PCR system (Roche Holding, Basel,

Switzerland). All reactions were conducted in triplicate, and the

relative expression levels of tRFs/tiRNAs were computed using the

2−DDCt and 2−DCt methods with U6 as an internal control. The

primers of targeted genes were as follows: U6, forward 5′-GCT
TCGGCAGCACATATACTAAAAT-3′ and reverse 5′-CGCT
TCACGAATTTGCGTGTCAT-3′; tiRNA-1-34-Val-CAC-2,

forward 5′-ACGATCGCTTCTGTAGTGTAGTGG-3′ and

reverse 5′-CGATCTGAGGCGAACGTGAT-3′; tRF-55-76-Tyr-
GTA-1-M2, forward 5′-CAGTCCGACGATCTCGAATCC-3′
and reverse 5′-GCTCTTCCGATCTTGGTCCTTC-3′; and tRF-

1-29-Pro-AGG-1-M6, forward 5′-GATCGGCTCGTTGGTCTA
GG-3′ and reverse 5′-CTTCCGATCTCGAGAATCATACC-3′.
Determination of carcinoembryonic
antigen, neuron-specific enolase, and
squamous cell carcinoma (SCC)
concentrations in serum by
electrochemiluminescence

Following the manufacturer’s instructions, the expression

levels of CEA, neuron-specific enolase (NSE), and SCC in serum

were quantified on a Cobas E602 machine (Roche Holding)

using the original kit. The cutoff values for CEA, NSE, and SCC

were 5, 16.3, and 2.7 ng/ml, respectively.
Bioinformatics analysis of tRFs/tiRNAs

The exact location of each tRF in the secondary structure of

the derived tRNA was determined according to the GtRNAdb

database (http://gtrnadb.ucsc.edu/). Then, potential target genes

of tRFs/tiRNAs were explored in the TargetScan (http://www.

targetscan.org/vert_72/) and Miranda (http://www.microrna.

org/microrna/) databases. Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) functional

enrichment of tRFs/tiRNAs was described using KOBAS

version 3.0.
Statistical analysis

Statistical analysis was carried out by using SPSS Statistics

version 24.0 (IBM Corporation, Armonk, NY, USA) and

GraphPad Prism version 8.0 software (GraphPad Software, La

Jolla, CA, USA). An unpaired t-test was employed to assess the
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addition, an unpaired t-test was used to analyze the correlation

between tRFs/tiRNAs and clinicopathological features, and a paired

t-test was carried out to assess the expression differences between

preoperative and postoperative LUAD patients. The area under the

ROC curve (AUC) was calculated based on the ROC curve to

determine the diagnostic value. All measurement data are presented

as the mean and standard error of the mean (SEM). Youden’s index

was used to calculate the optimal cutoff values of the tRFs/tiRNAs,

and we considered p < 0.05 to be statistically significant.
Results

Expression profiles of tRFs/tiRNAs
in plasma

As the core standard to measure the rationality and

reliability of sample selection, the closer the value of the

sample correlation coefficient is to 1, the greater the degree of

similarity is between any two samples. In this study, by

calculating the sample correlation coefficient, it was

confirmed that the selected 12 plasma samples were suitable

for this sequencing analysis, and the results were accurate and

reliable (Figure 1A). The results of the principal component

analysis showed significant differences in the expression

profiles of tRFs/tiRNAs between LUAD patients and

healthy controls (Figure 1B). As shown in Figure 1C, a total

of 506 tRNA derivatives were identified by sequencing

analysis of tRFs/tiRNAs, including 431 novel tRNA

derivatives that were not annotated in the tRFdb database.

Moreover, as shown in Figure 1D, there were commonly and

specifically expressed tRFs/tiRNAs found between early

LUAD patients and healthy controls, advanced LUAD

patients and healthy controls, and early and advanced

LUAD patients, respectively.
Analysis of plasma tRF/tiRNA subtypes

The pie charts of the distribution of tRF/tiRNA subtype

revealed that the number of each tRF/tiRNA subtype varied in

the early LUAD, advanced LUAD, and healthy control groups

(Figures 2A–C). The amounts of tRF-1, tRF-3a, tRF-3b, and

tRF-5a were increased in early and advanced LUAD patients

compared to normal controls. Furthermore, tRF-1 and tRF-5b

counts were significantly elevated in advanced LUAD patients

compared to early LUAD patients. As can be seen in

Figures 2D–F, Arg-TCT, Leu-TAA, Phe-GAA, and Ser-CGA
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B C

D

A

FIGURE 1

The expression profiles of tRFs/tiRNAs in plasma between LUAD patients and healthy controls. (A) Correlation coefficient heatmap for all
samples, with colors in panels closer to blue representing higher correlation coefficients between the two samples. (B) PCA between LUAD
patients and healthy controls based on tRF/tiRNA expression profiles. (C) Venn diagram shows the number of tRFs/tiRNAs detected in this
project and collected in the tRFdb. (D) Venn diagram of commonly and specifically expressed tRFs/tiRNAs between early LUAD and healthy
controls, advanced LUAD and healthy controls, and early LUAD and advanced LUAD. tRFs, TRNA-derived fragments; tiRNAs, tRNA-derived
stress-induced RNAs; LUAD, lung adenocarcinoma; PCA, principal component analysis.
B C

D E F

G H I

A

FIGURE 2

Analysis of plasma tRF/tiRNA subtypes in LUAD patients and healthy controls. (A–C) The distribution of tRF/tiRNA subtypes among the healthy
controls, early LUAD, and advanced LUAD. (D–F) The number of subtypes for tRFs/tiRNAs against tRNA isodecoders among the healthy
controls, early LUAD, and advanced LUAD. (G–I) The frequency of subtypes against length of tRFs/tiRNAs among the healthy controls, early
LUAD, and advanced LUAD. tRFs, TRNA-derived fragments; tiRNAs, tRNA-derived stress-induced RNAs; LUAD, lung adenocarcinoma.
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contained in LUAD are four tRNA isodecoders present in

LUAD patients that were absent in healthy controls.

Furthermore, although the tRNA isodecoders had the same

anticodon, the types and numbers of subtypes of tRF and

tiRNA subtypes were not identical in the healthy control, early

LUAD, and advanced LUAD groups. The frequencies of tRF/
Frontiers in Oncology 06
tiRNA subtypes in tRNAs with different sequence lengths were

also not identical, and the present study additionally found that

there were also significant differences in the frequencies of tRF/

tiRNA subtypes with the same sequence length among the

healthy control, early LUAD, and advanced LUAD groups, as

indicated in Figures 2G–I.
B

C

A

FIGURE 3

Differential expression analysis of tRFs/tiRNAs in early LUAD, advanced LUAD, and healthy controls. (A) The hierarchical clustering heatmap
showed the differentially expressed tRFs/tiRNAs between early LUAD and healthy controls, advanced LUAD and healthy controls, and early LUAD
and advanced LUAD. (B) Volcano plot of differentially expressed tRFs/tiRNAs between early LUAD and healthy controls, advanced LUAD and
healthy controls, and early LUAD and advanced LUAD. (C) The relative expression levels of seven tRFs/tiRNAs (tiRNA-1:34-Val-CAC-2, tRF-1:15-
Ala-AGC-2-M11, tRF-1:24-Ser-AGA-1-M7, tRF-1:29-Pro-AGG-1-M6, tRF-55:76-Tyr-GTA-1-M2, tRF-59:75-Trp-CCA-1-M5, and tRF-61:77-Thr-
AGT-1-M2) in healthy controls, early LUAD, and advanced LUAD. *p < 0.05, **p < 0.01, and ***p < 0.001. ns, no significance; tRFs, TRNA-
derived fragments; tiRNAs, tRNA-derived stress-induced RNAs; LUAD, lung adenocarcinoma.
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Differential expression analysis of
tRFs/tiRNAs

The unsupervised hierarchical clustering heatmap

demonstrated differential changes in tRF/tiRNA expression

between any two groups among the healthy controls group, early

LUAD group, and advanced LUAD group (Figure 3A). As plotted

in Figure 3B, 40 upregulated and 34 downregulated tRFs/tiRNAs

existed between early LUAD patients and healthy controls; among

the differentially expressed tRFs/tiRNAs found between advanced

LUAD patients and healthy controls, 24 were upregulated and 25

were downregulated, and there were 23 increased and 16 decreased

tRFs/tiRNAs in patients with advanced LUAD compared to early

LUAD. Based on the CPM results, seven tRFs/tiRNAs (tiRNA-1:34-

Val-CAC-2, tRF-1:15-Ala-AGC-2-M11, tRF-1:24-Ser-AGA-1-M7,

tRF-1:29-Pro-AGG-1-M6, tRF-55:76-Tyr-GTA-1-M2, tRF-59:75-

Trp-CCA-1-M5, and tRF-61:77-Thr-AGT-1-M2) with good

homogeneity and high variability in different groups were

selected, and their expression levels were assessed by qRT-PCR.

The results showed that the expression levels of tiRNA-1:34-Val-

CAC-2, tRF-1:24-Ser-AGA-1-M7, tRF-1:29-Pro-AGG-1-M6, tRF-

55:76-Tyr-GTA-1-M2, and tRF-61:77-Thr-AGT-1-M2 varied in

LUAD patients (Figure 3C). Eventually, according to the relative
Frontiers in Oncology 07
expression of each tRF/tiRNA, this project chose three tRFs/tiRNAs

(tiRNA-1:34-Val-CAC-2, tRF-1:29-Pro-AGG-1-M6, and tRF-

55:76-Tyr-GTA-1-M2) with the most significant differential

expression as candidate tRFs/tiRNAs for follow-up studies.
Expression and diagnostic efficacy of
candidate plasma tRFs/tiRNAs in
lung adenocarcinoma

To clarify the concrete expression of tiRNA-1:34-Val-CAC-2,

tRF-1:29-Pro-AGG-1-M6, and tRF-55:76-Tyr-GTA-1-M2 in the

plasma of LUAD patients, their expression levels were further

analyzed by qRT-PCR. Compared to that in healthy controls, the

expression level of tRF-1:29-Pro-AGG-1-M6 was significantly

downregulated in LUAD patients, while that of tRF-55:76-Tyr-

GTA-1-M2 was upregulated distinctly (Figures 4B, C). However,

as shown in Figure 4A, there was no obvious difference in the

expression of plasma tiRNA-1:34-Val-CAC-2 in the plasma of

LUAD patients compared to that of the healthy controls. On this

basis, the diagnostic value of tRF-1:29-Pro-AGG-1-M6 and tRF-

55:76-Tyr-GTA-1-M2 in LUAD was further analyzed. The AUCs

of tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 were
B C

D E

A

FIGURE 4

The expression levels and diagnostic value of candidate plasma tRFs/tiRNAs in LUAD. (A–C) The relative expression levels of tiRNA-1:34-Val-
CAC-2, tRF-1:29-Pro-AGG-1-M6, and tRF-55:76-Tyr-GTA-1-M2 in LUAD patients and normal controls. (D, E) The diagnostic performances of
tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 in LUAD patients ***p < 0.001. ns, no significance. tRFs, TRNA-derived fragments;
tiRNAs, tRNA-derived stress-induced RNAs; LUAD, lung adenocarcinoma.
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0.882 (95% confidence interval, 0.794–0.970) and 0.896 (95%

confidence interval, 0.821–0.970), respectively, and their optimal

cutoff values for tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-

GTA-1-M2 were 0.9575 (sensitivity, 85.7%; specificity, 76.6%) and

2.277 (sensitivity, 78.7%; specificity, 85.7%), respectively (Figures

4D, E). It can be concluded that tRF-1:29-Pro-AGG-1-M6 and

tRF-55:76-Tyr-GTA-1-M2 have tremendous potential in the

diagnosis of LUAD.
Correlation of tRF-1:29-Pro-AGG-1-M6
and tRF-55:76-Tyr-GTA-1-M2 expression
with clinicopathological features

The correlation of the expression levels of tRF-1:29-Pro-

AGG-1 -M6 and tRF - 55 : 7 6 -Ty r -GTA-1 -M2 w i t h

clinicopathological features was further evaluated. As shown in

Table 1, the expression of tRF-1:29-Pro-AGG-1-M6 was related

to TNM stage, N stage, and the expression of CEA, while there

was no clear correlation with age, gender, T stage, M stage,

diameter, or the expression levels of NSE and SCC. Meanwhile,

the expression of tRF-55:76-Tyr-GTA-1-M2 in LUAD was

significantly correlated with TNM stage, T stage, N stage, M
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stage, diameter, and the expression of levels CEA and SCC, but

not with age, gender, or the expression of NSE.
Expression and potential value of tRF-
1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-
GTA-1-M2 in lung adenocarcinoma
preoperatively and postoperatively

The value of the three candidate tRFs/tiRNAs in monitoring

LUAD treatment was evaluated by analyzing their expression in

LUAD patients both preoperatively and postoperatively,

although there was no divergence in the expression of tiRNA-

1:34-Val-CAC-2 after LUAD complete resection (Figures 5A).

Compared to those before surgery, the expression levels of tRF-

1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 after

complete tumor resection were significantly downregulated

and upregulated, respectively (Figures 5B, C). Further ROC

analysis proved that recording the expression levels of tRF-

1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 in LUAD

preoperatively and postoperatively can effectively help to

distinguish the treatment status of patients, and their AUCs

were 0.899 (95% confidence interval, 0.770–1.000) and 0.896
TABLE 1 The correlation of the expression levels of tRF-1-29-Pro-AGG-1-M6 and tRF-55-76-Tyr-GTA-1-M2 with the clinicopathological
characteristics for LUAD patients.

Clinicopathological factor Cases tRF-1-29-Pro-AGG-1-M6 p-Value tRF-55-76-Tyr-GTA-1-M2 p-Value

Age (years) <60 32 0.712 ± 0.080 0.318 3.636 ± 0.300 0.721

≥60 15 0.575 ± 0.099 3.822 ± 0.404

Gender Male 19 0.738 ± 0.101 0.368 3.374 ± 0.362 0.274

Female 28 0.621 ± 0.081 3.913 ± 0.316

TNM stage I 29 0.785 ± 0.076 0.017 3.011 ± 0.201 <0.001

II+III+IV 18 0.480 ± 0.097 4.797 ± 0.426

T stage 1 31 0.726 ± 0.075 0.208 3.244 ± 0.217 0.007

≥2 16 0.557 ± 0.111 4.569 ± 0.505

N stage 0 29 0.785 ± 0.076 0.017 3.011 ± 0.201 <0.001

≥1 18 0.480 ± 0.097 4.797 ± 0.426

M stage 0 36 0.734 ± 0.070 0.060 3.190 ± 0.207 <0.001

≥1 11 0.454 ± 0.124 5.348 ± 0.524

Diameter <3 32 0.755 ± 0.072 0.206 3.119 ± 0.207 0.003

≥3 6 0.509 ± 0.226 4.796 ± 0.508

Unknown 9

CEA <5 ng/ml 31 0.731 ± 0.067 0.034 3.340 ± 0.223 0.038

≥5 ng/ml 12 0.448 ± 0.115 4.448 ± 0.609

Unknown 4

NSE <16.3 ng/ml 31 0.677 ± 0.079 0.510 3.571 ± 0.281 0.286

≥16.3 ng/ml 10 0.577 ± 0.090 4.189 ± 0.505

Unknown 6

SCC <2.7 ng/ml 38 0.655 ± 0.067 0.647 3.522 ± 0.249 0.025

≥2.7 ng/ml 2 0.518 ± 0.109 6.132 ± 1.200

Unknown 7
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(95% confidence interval, 0.745–1.000), respectively (Figures 5D,

E). The above findings verify the idea that tRF-1:29-Pro-AGG-1-

M6 and tRF-55:76-Tyr-GTA-1-M2 can serve as valuable plasma

markers for judging the operative effect in LUAD patients.
Prediction and functional analysis of
potential target genes of tRF-1:29-Pro-
AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2

In addition to showing the positions of tRF-1:29-Pro-AGG-1-

M6 and tRF-55:76-Tyr-GTA-1-M2 on the clover secondary

structure of their corresponding tRNAs, Figures 6A, B also show

their respective target sites. The regulatory network diagrams of

tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 revealed

that one tsRNA corresponded to multiple messenger RNAs

(Figures 6C). The GO function analysis manifested the finding

that the target genes of tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-

Tyr-GTA-1-M2 were widely distributed in the cytosol, nucleus, and

nucleoplasm and played central roles in cell growth and

development by promoting biological processes such as protein

binding and identical protein binding (Figures 6D). The KEGG

pathway enrichment analysis also demonstrated that the target
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genes of tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2

were mainly enriched in cancer-related signaling pathways,

including the metabolic pathway, pyrimidine metabolism, MAPK

signaling pathway, calcium signaling pathway, and HIF-1 signaling

pathway (Figure 6E).
Discussion

LUAD is the most common subtype of lung cancer at

present. Unfortunately, many patients do not receive timely

and effective diagnosis and treatment, leading to a poor

prognosis. The emerging biomarker tsRNA has been discussed

by more and more researchers owing to its stable existence in the

body fluid circulation and is actively used in the diagnosis,

treatment, and monitoring of various diseases (7, 21). The

latest research suggests that the key members of tsRNAs, tRFs,

and tiRNAs are biomarkers with great potential, which can affect

the occurrence and development of tumors by acting on protein

translation and gene expression in tumor cells (22–24). In this

study, the expression profiles of tRFs/tiRNAs in the plasma of

LUAD patients were analyzed using high-throughput

sequencing technology. It was unexpectedly discovered that
B C

D E

A

FIGURE 5

The expression levels and diagnostic value of candidate plasma tRFs/tiRNAs in preoperative and postoperative LUAD. (A–C) The relative expression
levels of tiRNA-1:34-Val-CAC-2, tRF-1:29-Pro-AGG-1-M6, and tRF-55:76-Tyr-GTA-1-M2 in preoperative and postoperative LUAD patients. (D, E)
The diagnostic performances of tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 in preoperative and postoperative LUAD patients *p < 0.05
and **p < 0.01. ns, no significance. tRFs, TRNA-derived fragments; tiRNAs, tRNA-derived stress-induced RNAs; LUAD, lung adenocarcinoma.
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431 new tRFs/tiRNAs were not annotated in the tRFdb database,

and a more in-depth study of them in the future will help to

unearth their value in LUAD. Furthermore, compared to healthy

controls, there were 350 and 344 differentially expressed tRFs/

tiRNAs in early LUAD and advanced LUAD patients,

respectively. Complementary subtype authentication of tRFs/

tiRNAs illuminated the fact that LUAD patients had abnormally

elevated levels of tRF-1, tRF-3a, tRF-3b, and tRF-5a. Further

analysis also found that the isoforms corresponding to the

missing tRNA isodecoders Arg-TCT, Leu-TAA, Phe-GAA, and

Ser-CGA in the control group were tRF-1, tRF-3a, tRF-3b, and

tRF-5a, which are overexpressed in LUAD. Studies have
Frontiers in Oncology 10
previously assessed the presence of differentially expressed

tRFs/tiRNAs in LUAD tissue samples (25–27). This study

revealed the altered tRF/tiRNA expression in the plasma

samples of LUAD patients from another perspective, thus also

providing support for exploring tRFs/tiRNAs as potential

biomarkers for LUAD.

In the present project, seven tRFs/tiRNAs were screened by

qRT-PCR, and the results revealed that the expression levels of

tiRNA-1:34-Val-CAC-2, tRF-1:29-Pro-AGG-1-M6, and tRF-

55:76-Tyr-GTA-1-M2 in LUAD matched with the sequencing

consequences. These tRFs/tiRNAs were selected as candidates

for further ROC curve analysis, and their further validation of
B

C

D E

A

FIGURE 6

Bioinformatics analysis of tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2. (A, B) Location of the tRF-1:29-Pro-AGG-1-M6 and tRF-
55:76-Tyr-GTA-1-M2 in the clover secondary structure of tRNAs and their target sites. (C) Target genes of tRF-1:29-Pro-AGG-1-M6 and tRF-
55:76-Tyr-GTA-1-M2. (D) GO enrichment analysis of tRF-1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2. (E) KEGG pathway analysis of tRF-
1:29-Pro-AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.Note. LUAD, lung
adenocarcinoma; CEA, carcinoembryonic antigen; NSE, neuron-specific enolase.
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candidate tRFs/tiRNAs demonstrated that, compared to healthy

subjects, tRF-55:76-Tyr-GTA-1-M2 was upregulated in LUAD

patients, while the expression of tRF-1:29-Pro-AGG-1-M6 was

greatly downregulated. In contrast, the AUCs of tRF-1:29-Pro-

AGG-1-M6 and tRF-55:76-Tyr-GTA-1-M2 reached 0.882 and

0.896, exhibiting a more obvious diagnostic advantage for LUAD

patients. More encouragingly, this study also assessed the

correlation between the expression levels of these tRFs/tiRNAs

in LUAD and clinicopathological features, and the results

revealed that the expression of tRF-55:76-Tyr-GTA-1-M2 was

evidently elevated in LUAD patients, indicating that it was

positively related to the malignancy of LUAD. Moreover, the

expression of tRF-1:29-Pro-AGG-1-M6 was inversely associated

with the clinical stage of patients, demonstrating that its high

expression has great potential in inhibiting tumor progression.

In addition, tRF-1:29-Pro-AGG-1-M6 was downregulated in

LUAD patients after complete tumor resection compared to

preoperatively, while the expression level of tRF-55:76-Tyr-

GTA-1-M2 was reversely upregulated. It can be concluded

that the expression levels of tRF-1:29-Pro-AGG-1-M6 and

tRF-55:76-Tyr-GTA-1-M2 are closely associated with tumor

occupy. Shao et al. (19) found that the upregulated expression

of tRF-Leu-CAG in lung cancer is evidently correlated with its

progression stage, which is consistent with the results of this

experiment. Yang et al. measured plasma AS-tDR-007333 levels

and found that they were significantly higher in NSCLC patients

than in healthy controls. The study further revealed that the

AUC for AS-tDR-007333 was 0.9379, which suggests that AS-

tDR-007333 can serve as a diagnostic biomarker for NSCLC

(28). Enlightened by previous research carried out by Yang et al.,

we screened and identified tRF-55:76-Tyr-GTA-1-M2 and tRF-

1:29-Pro-AGG-1-M6 as potential biomarkers with high

diagnostic sensitivity and specificity in LUAD patients.

Multiple studies have identified arginine (Arg), isoleucine

(Leu), phenylalanine (Phe), and serine (Ser) as important

components of tumor cell metabolism (29–32), indicating that

altered tRF/tiRNA expression profiles could trigger metabolic

disturbances in tumors (33). The tRF-Glu-TTC-027 was also

found to regulate the progression of gastric carcinoma via the

MAPK signaling pathway (34). Further exploration of the

downstream regulatory mechanism of tRF-55:76-Tyr-GTA-1-

M2 and tRF-1:29-Pro-AGG-1-M6 in our research revealed that

they participated and functioned in key biological signaling

pathways, such as the metabolic pathway, pyrimidine

metabolism, calcium signaling pathway, MAPK signaling

pathway, and HIF-1 signaling pathway. Our results suggest

that tRF-55:76-Tyr-GTA-1-M2 and tRF-1:29-Pro-AGG-1-M6

may affect the occurrence and progression of LUAD through

these tumor-related signaling pathways, providing us with a

direction to further explore their mechanism.

In conclusion, our study revealed the landscape of tRF/

tiRNA expression profiles in plasma with LUAD patients and

identified tRF-55:76-Tyr-GTA-1-M2 and tRF-1:29-Pro-AGG-1-
Frontiers in Oncology 11
M6 as promising, novel biomarkers for the diagnosis of LUAD.

However, there are several limitations in the present study that

should be pointed out. First, our study included only 47 LUAD

patients and 21 healthy controls; thus, the total sample size was

small. In addition, the survival analysis data of tRF-55:76-Tyr-

GTA-1-M2 and tRF-1:29-Pro-AGG-1-M6 were not analyzed, as

we lacked long-term clinical follow-up data. Therefore, further

studies with larger sample sizes are required to explore the role

and mechanism of these tRFs/tiRNAs in the occurrence and

development of LUAD.
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