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Abstract

Atomic interactions in solid materials are described using network theory. The tools of net-

work theory focus on understanding the properties of a system based upon the underlying

interactions which govern their dynamics. While the full atomistic network is dense, we

apply a spectral sparsification technique to construct a sparse interaction network model

that reduces the computational complexity while preserving macroscopic conservation

properties. This sparse network is compared to a reduced network created using a cut-off

radius (threshold method) that is commonly used to speed-up computations while approxi-

mating interatomic forces. The approximations used to estimate the total forces on each

atom are quantified to assess how local interatomic force errors propagate errors at the

global or continuum scale by comparing spectral sparsification to thresholding. In particular,

we quantify the performance of the spectral sparsification algorithm for the short-range Len-

nard-Jones potential and the long-range Coulomb potential. Spectral sparsification of the

Lennard–Jones potential yields comparable results to thresholding while spectral sparsifica-

tion yields improvements when considering a long-range Coulomb potential. The present

network-theoretic formulation is implemented on two sample problems: relaxation of atoms

near a surface and a tensile test of a solid with a circular hole.

Introduction

Molecular dynamics (MD) is a common simulation tool for modeling materials at the nano

and micron length scales [1, 2]. In the framework of MD simulations, atoms are treated as

point masses that are accelerated by an imbalance of interatomic forces from neighboring

atoms. To track the atomic trajectories, numerical integration of Newton’s equations of

motion is performed which often requires significant computer memory and lengthy compu-

tations to account for each interatomic interaction across a large number of time-step integra-

tions. A variety of atomistic scale insights about complex material behavior can be determined

including, mechanical [1, 3, 4], chemical [5, 6] and thermal [7–9] properties and in limiting

cases, macroscopic constitutive relations.
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Many simulations frequently require millions of atoms, making the computations expen-

sive [10]. Moreover, a large number of time steps are required to acquire meaningful thermo-

dynamic statistics [1, 2]. Additionally, accurate dynamic trajectories require time steps on the

order of the frequency of atomic vibrations which is typically on the order of femtoseconds.

Therefore, simulations on the nanosecond timescale require millions of time steps over mil-

lions of degrees of freedom on a three-dimensional grid [1].

Specialized research focused on improving computational speed in MD simulations has

focused on parallel implementation [1]. This has led to the creation of both novel algorithms

and specialized hardware [1, 11–14]. However, long range forces remain difficult to compute

and can suffer accuracy limitations. Typically, interactions above a cutoff distance are

neglected (i.e., thresholding). For short range forces, this is often sufficient. However, the

effects due to thresholding become uncertain when using long-range forces such as those pro-

duced from electrostatic and magnetostatic problems. Broadly speaking, the approaches cur-

rently used for dealing with these long range forces can be classified as one of the following:

use a cutoff distance despite the potential issues, transform the Coulomb potential into a short

range potential, e.g., Debye potential and Wolf summation, or mathematically exploit periodic

boundary conditions to generate a mathematical expression long range effects [15–18].

Thresholding is the most computationally efficient of the current methods, but generates large

error. The transformation strategy suffers from the same drawbacks as the thresholding strat-

egy; however, it has been shown to be adequate in some applications [18]. Methods for solving

the full solution by exploiting periodic boundary conditions are accurate, but computationally

expensive [14, 19, 20].

Research focusing on sparsity has recently gained traction in computational science [21–

23]. In machine learning, the use of the l1 norm has been leveraged to promote sparsity in the

resulting models without over-fitting [24, 25]. In handling big data, autoencoders and other

sparse techniques are used to create sparse representations of data to reduce memory require-

ments [23, 26]. In network theory, sparsification is used to create computationally tractable

representations of complex systems [27]. The use of sparsity to model continuum dynamics

has recently emerged to describe nonlinear flow phenomena but there has been limited

research in the field of atomistic scale computational materials science [28].

In this paper, we examine the kinematics and dynamics of atomistic systems using network

theory. Specifically, we utilize network-based techniques which create computationally tracta-

ble representations of the atomic system without sacrificing accuracy. Network theory has

long history of describing complex systems such as social interactions, electric grids, and air-

plane scheduling [29]. Although there have been applications in engineering systems such as

chemical networks [30], fluid dynamics [28, 31–34] and granular matter [35, 36], minimal

research has focused on applications in molecular dynamics and solid mechanics.

A network consists of nodes or vertices and their pairwise connections which are called

edges [29].

Sparse representations of networks are desirable because they distill the network to its core

features.

We describe and implement spectral sparsification, a technique for creating sparse repre-

sentations of networks, on atomisitic networks. This method generates a sparse network while

while maintaining spectral similarity with the original network [27, 37]. The results to be pre-

sented here demonstrate that spectral sparsification is a viable candidate to enhance computa-

tional efficiency of MD calculations while maintaining minimum errors.

Spectral sparsification is applied and implemented to atomic networks using the Lennard–

Jones and Coulomb potentials. Spectral sparsification conserves global network properties by

reorganizing interatomic force distributions in order to achieve a sparse representation of the
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interatomic forces. In what follows, we first introduce the essential relations used in molecular

dynamics calculations followed by definitions and concepts used in network theory that are

relevant to molecular dynamic modeling. We then introduce a formulation of atomic networks

and describe the spectral sparsification algorithm. Finally, we present and quantify the error in

kinematic and dynamic examples.

Molecular dynamics

Molecular dynamics calculates the motion of atomic nuclei via Newton’s law

m€x ¼
X

F; ð1Þ

where F are the interatomic forces within the solid, m is the mass and €x is the acceleration [1,

2]. The summation and calculation of F comprises the majority of the computational resources

in MD simulations. This is the one of the key aspects that motivates the use of a sparse force

interaction network in this work.

The forces on the atoms are given by

F ¼ � rU; ð2Þ

where U is the potential energy andr ¼ @

@rab
is the gradient with respect to the relative

atomic distance between two atoms. This distance between two atoms α and β is defined by

rαβ = |rα − rβ| [2].

The simplest potentials are functions where the only dependent variable is the distance

between two atoms, i.e. the pair potential

Uab ¼ UðrabÞ: ð3Þ

The vector rα denotes the absolute position of atom α. The potential energy is defined by Uαβ.
Summing all pairwise potentials yields the total energy.

In the current paper, we consider the Lennard-Jones and Coulomb potentials. The Len-

nard–Jones potential is given by

ULJ
ab ¼ �0

s

rab

 !12

�
s

rab

 !6" #

; ð4Þ

where �0 defines the depth of the energy well and σ defines the zero potential distance.

The Coulomb potential is given by

UC
ab
¼ k

qaqb
rab

; ð5Þ

which describes interactions between two point charges where k is Coulomb’s constant given

by, in S.I. units, k� 8.99 × 109Nm2/C2, and qα and qβ are the charges of the two atoms [38].

In solid mechanics, stress, potential energy, and kinetic energy are frequently quantities of

interest. This paper uses the standard expression for the virial Cauchy stress

σðx; tÞ ¼
1

NtVO

XNt

t¼0

�
X

a2O

mava � va þ
1

2

X

a;b2O

rab � Fab

 !

; ð6Þ

where� denotes a tensor product over the velocity of atom α given by vα. The atomic mass is

m, the number of time steps chosen for time averaging the stress is Nt, and the region which is

being considered over the volume VO is denoted byO. The average stress over the volume is
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defined at the center of mass point x. This average is based on a spatial average over the veloc-

ity of the α atoms within the volume. Similarly, the last summation is over the forces Fαβ for all

pairs of atoms α and β in the domain O.

The kinetic energy of the system is calculated by

Ek ¼
1

2

X

a

mava � va ð7Þ

and the potential energy is given by summing up the pairwise interactions

U ¼
1

2

X

a;b

Uab: ð8Þ

The summation α, β is again taken over all pairs atoms in the system. The last three rela-

tions will be used in addition to interatomic forces to quantify the performance of spectral

sparsification versus thresholding algorithms. Rather than focusing on the entire stress tensor,

we will instead look at the first and second invariants of the stress tensor [39]. The first invari-

ant is given by the trace of the stress tensor

I ¼ trðσÞ ð9Þ

and the second invariant is given by

II ¼
1

2
ðtrðσÞÞ2 � trðσ2Þ
� �

: ð10Þ

Physically, the first invariant is the hydrostatic pressure felt by the material while the second

invariant is related to the shear applied to the material which is often used to simulate plastic

deformation in solids [39].

Errors are computed by comparing the sparse representations to the corresponding com-

plete graph that contains all long range interactions.

Network theory

We briefly describe the fundamental concepts from network theory followed by its application

to MD simulations and the spectral sparsification algorithm.

Formulation

Network theory is used to model the interactions between objects [29]. Formally, a graph G is

an ordered set G = (V, E, w(E)) consisting of a nonempty set of the vertices, V = {v1, v2, . . .,

vN}, and edges, E, which describe the connections between pairs of vertices and the weights,

w(E), which assigns a nonnegative weight to each edge. If the weights are restricted to one

or zero, the graph is categorized as unweighted. Otherwise, the weights can take any nonnega-

tive value and the graph is categorized as weighted. A graph is considered to be undirected if

wαβ = wβα for all edges in G. Otherwise, the graph is called directed.

A common mathematical representation of networks is the adjacency matrix A 2 <N×N

Aab ¼
wab if ða; bÞ 2 E

0 otherwise:

(

ð11Þ

Relevant to this work is the fact that the adjacency matrix of an undirected graph is

symmetric.
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The graph Laplacian L 2 <N×N is given by

Lab ¼

ka if a ¼ b

� wab if ða; bÞ 2 E

0 otherwise;

8
><

>:
ð12Þ

where kα = ∑β Aαβ is the nodal strength of α. The graph Laplacian and the adjacency matrix

play key roles in graph-theoretic algorithms.

Atomistic networks

To create an atomic network representation, we take the individual atoms as the vertices and

the force magnitude as the scalar edge weights. The magnitude of the force between two atoms

separated by rαβ determines the edge weight,

wab ¼ jFabj: ð13Þ

In this paper, we quantify the network structure with the nodal strength and its distribution

[29]. The nodal strength is particularly important in this application because it describes the

total force magnitude of each particle. The strength distribution is graphically represented

using a histogram plot which can display changes in structure of the graph.

Atomistic network sparsification

Sparsification involves creating a sparse representation, Gs, that approximates the true net-

work, G. In this case, sparsity is described by a reduction in the number of edges while keeping

the number of vertices fixed. Network similarity is the concept used to compare the sparse

representation with the original graph. Different sparsification methods have been described

based on different definitions of similarity [40, 41]. Spectral sparsification [27], which defines

similarity based on the eigenspectra, is chosen due to its previous success in studying dynamics

across networks [28].

For this paper, we define Gs to be similar to G, with approximation order denoted by � 2

[0, 1] such that

ð1 � �ÞvTLv � vTLsv � ð1þ �ÞvTLv ð14Þ

for all v 2 RN
where L is the graph Laplacian, Ls is the sparsified graph Laplacian [27]. The

approximation order, � governs the potential sparsity of the system. If � = 0 the algorithm will

not sparsify any edges in the network while at the other extreme where � = 1, maximum sparsi-

fication is allowed by the algorithm. The following steps describe the spectral sparsification

algorithm [27, 28] which achieves spectral similarity with probability greater than one half:

1. Calculate the effective resistance given by the formula

R̂ij ¼ ðpi � qjÞ
TLþðpi � qjÞ; ð15Þ

where L+ is the Moore-Penrose pseudoinverse of the Laplacian while p and q are the

vector representation of the nodes. For example, the first node label is represented by p1 =

(1, 0, . . ., 0) = q1.

2. Select ne edges randomly with probability proportional to the edge’s effective resistance, R̂ij.

This probability is, pij ¼ R̂ij=
P

ijR̂ij. This selects edges based on their importance to the net-

work. The parameter ne is given by ne = 8Nlog2(N)/�2.
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3. Add the sampled edges to the sparse graph GS with weight ŵij ¼ nwij=ðnepijÞ, where q is the

number of samples and n is the multiplicity of selection. Edges which are not selected are

removed or, equivalently their weight set to zero.

Because spectral sparsification reduces the number of edges, it provides a novel way to

reduce the computations of forces while maintaining a low level of error during MD simula-

tions. In particular, the algorithm will be shown to be favorable for long-range forces and esti-

mation of continuum material properties. We kinematically and dynamically implement and

test this algorithm on a two-dimensional domain containing a circular hole. We show that

spectral sparsification preserves the total force for long-range potentials. This result is com-

pared to the frequently used thresholding method which fails to preserve the total force.

Because of this, we consider spectral sparsification as a simple alternative to other methods,

e.g. fast multipole method [20, 42–45] and the Wolf summation method [16] which also pre-

serve the total force magnitude.

Spatial domain decomposition

It is known that thresholding can be accomplished in OðnÞ time via spatial decomposition [1]

while sparsification does not scale as effectively (see Section A in S1 File). This section

describes an algorithm with better scaling properties. In particular, we present an algorithm

which combines thresholding and spectral sparsification with superior scaling properties to

the original spectral sparsification. We begin by describing a modification to the spatial

domain decomposition used in thresholding for spectral sparsification.

Here, we take advantage of the OðnÞ scaling of the thresholding algorithm by partitioning

the domain into subdomains with size slightly larger than the cut-off distance. This allows the

algorithm to only look for pairs in the neighboring subdomains. This builds upon previous

work that has shown how sparsification can be performed on subgraphs of the original graph

[46]. Therefore we can divide the domain spatially into subgraphs which can be individually

sparsified and can also facilitate parallelization of the algorithm.

Domain decomposition for spectral sparsification first divides the original graph G into

subgraphs G = [Gi, then approximates the subgraphs via sparsification Gi �
~Gi. The sparsified

subgraphs (~Gi) are recombined to form an approximation of the original graph, i.e. G � [~Gi.

From a numerical standpoint, the algorithm partitions the adjacency matrix into submatrices

and creates sparse approximations of the submatrices which are reassembled to generate a

sparse approximation of the original matrix.

The key steps associated with domain decomposition include:

1. Partition the domain O into subdomains {O1, . . .,Om}.

2. Sort the atoms into each subdomain.

3. For each subdomain, Oi, create a graph of the atomic interactions within the subdomain.

4. Sparsify this subgraph.

5. For each pair of subdomains, (Oi, Oj), generate the atomisitc graph consisting of the atomic

interactions of all atoms in both subdomains.

6. Sparsify the subgraph consisting of all interactions in Oi and Oj, then remove all edges

which do not contain a node in both subdomains.

7. Reassemble all approximations of the subgraphs together to create the approximation of the

original graph.

Application of networks to molecular dynamics
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Combined algorithm

Our combined algorithm consists of using the positive attributes of both thresholding and

sparsification. Sparsification is performed via domain decomposition described in the previous

section after thresholding using a prescribed cutoff radius. There is an important tradeoff to be

mentioned. As the cutoff radius shrinks, sparsification removes fewer edges and the algorithm

gives results similar to thresholding. In the other direction where the cutoff radius increases,

the algorithm becomes similar to pure spectral sparsification and approaches pure spectral

sparsification in the limit of an infinite cutoff radius.

Kinematic implementation and results

The present analysis evaluates spectral sparsification by investigating a test problem with the

Coulomb potential arranged in a two-dimensional crystalline material with an elliptical void

space (see Fig 1). Additional comparisons to a circular hole can be found elsewhere [47]. This

test problem was chosen because it is relatively simple and evaluates spectral sparsification for

problems with an elliptical hole defect. We compare example graphs by varying the edge densi-

ties generated by evaluating the radial cutoff length of thresholding and changing � as given in

(14) for spectral sparsification.

We define near-equilibrium position as the minimum energy lattice points for a perfect,

infinite crystal. Near-equilibrium position, therefore, neglects surface relaxation on the bound-

ary of our finite crystal and the free surface around the hole. The model consists of a square

with 30 unit cells where atoms near the center have been removed.

We focus on the effect of thresholding and sparsification by evaluating long range forces

from the Coulomb potential in Fig 1. In this figure, we plot the network representing the origi-

nal graph, the thresholded graph for a cut-off radius rcut = 10σ (σ given in (4)), and the spectral

sparsified graph with � = 1. Fig 1 illustrates the differences in sparsified forces for the long-

range Coulomb potential. An important difference in the algorithms is demonstrated here.

Spectral sparsification naturally detects and retains important long range forces. This is visual-

ized by noticing that both algorithms cut interactions across the hole. However, thresholding

removes all of these interactions while spectral sparsification maintains a finite amount of

edges while still creating a sparse representation.

The number of nonzero entities of the adjacency matrix representing interatomic force

interactions is illustrated for models exhibiting similar error levels; see Fig B in S1 File. These

error measures are defined later in (18). The left image in Fig B in S1 File applies the Coulomb

potential with a cutoff radius of 15σ while the right image in Fig B in S1 File applies the Cou-

lomb potential which spectrally sparsifies the graph using � = 1. Further comparisons are given

in Fig C in S1 File where the adjacency matrices of a 200 atom system for varying levels of spar-

sity is visualized. We see that spectral sparsification retains some of the long range forces and

removes some of the medium length forces in comparison to the thresholded adjacency

matrix. This highlights one key advantage of spectral sparsification: it retains sufficient long

range interactions to capture long range effects while strategically removing edges for compu-

tational efficiency.

We focus on the error analysis of the kinematic problem by examining the long range Cou-

lomb forces and provide comparisons to the Lennard-Jones potential summarized elsewhere

[47]. The number of edges removed is varied by adjusting the cutoff radius in the case of

thresholding and varying the value of � for spectral sparsification. The net normalized forces

versus the fraction of edges removed is plotted in Fig 2A. The net normalized force, ~F , is
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Fig 1. Coulomb force graph with thresholding and with spectral sparsification. The color represents the normalized

edge weight.

https://doi.org/10.1371/journal.pone.0213262.g001

Application of networks to molecular dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0213262 April 12, 2019 8 / 17

https://doi.org/10.1371/journal.pone.0213262.g001
https://doi.org/10.1371/journal.pone.0213262


defined by

~F ¼
P

ijA
s
ij

P
ijAij

; ð16Þ

where As
ij and Aij are the adjacency matrices of the sparsified and original graphs, respectively.

The net normalized force represents the magnitude of all the force interactions in the network.

Edge sparsification is quantified by the fraction of remaining edges Fe which is evaluated by

Fe ¼ 1 �
Ns

e

No
e

; ð17Þ

where Ns
e and No

e are the number of nonzero edges in the sparsified graph and the original

graph, respectively.

In addition to the total force analysis, we also show the average normalized error of the

nodal strength. This error is equivalent to the error of the total normalized force on each atom

which can be calculated from

ef ¼
1

N kAij k

X

i

As
ij �

X

i

Aij

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
; ð18Þ

where k � k represents the Euclidean norm and N is the number of nodes.

This error describes the change in the magnitude of forces on each atom. In prior analysis,

we have shown that both spectral sparsification and thresholding introduce relatively small

errors until Fe* 0.98 for the Lennard–Jones potential [47]. For cases Fe> 0.98, it was shown

that thresholding performs slightly better until Fe� 0.99. This suggests that thresholding is

more accurate than spectral sparsification for short range forces.

In Fig 2, we illustrate the total force and error analysis for the Coulomb potential. It is

shown that sparsification outperforms thresholding by cutting and redistributing edges to con-

serve global forces. We see in Fig 2A that sparsification maintains the global net force, whereas

errors using thresholding increase at a faster rate as Fe! 1. Furthermore, in Fig 2B we see that

spectral sparsification has lower local error than thresholding for the same fraction of edges

Fig 2. Evaluation of the Coulomb potential on total forces and force errors versus edges removed. (A) Net force vs. fraction of edges removed for thresholded,

sparsified, and the combined algorithm. (B) Normalized error vs. edges removed for thresholded, sparsified, and the combined algorithm.

https://doi.org/10.1371/journal.pone.0213262.g002

Application of networks to molecular dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0213262 April 12, 2019 9 / 17

https://doi.org/10.1371/journal.pone.0213262.g002
https://doi.org/10.1371/journal.pone.0213262


removed. This suggests that the use of spectral sparsification is efficient at removing edges for

models with long-range forces since lower error tolerances can be achieved with the same

number of edges removed relative to thresholding. Additionally, Fig 2 shows that combining

thresholding and spectral sparsification allows one to first select a point on the error vs. thre-

sholded distance curve and then remove more edges without significantly changing the net

force and the error (i.e. local force). This demonstrates that combining spectral sparsification

with thresholding gives the best of both algorithms: better scaling due to thresholding com-

bined with fewer edges to preserve global force accuracy due to sparsification.

We emphasize that spectral sparsification maintains the mean nodal strength distribution

while achieving a low level of global errors. In contrast, thresholding discards edges instead of

redistributing them and therefore fails to maintain the mean nodal strength. Qualitatively,

spectral sparsification keeps the average nodal strength constant while broadening the distri-

bution of the nodal degree. While the distribution of the nodal strength contains randomness,

the algorithm maintains a similar Laplacian eigenvalue spectrum and corresponding eigenvec-

tors. Maintaining these two quantities should maintain global dynamic properties. Therefore,

from a kinematic perspective, spectral sparsification better approximates the forces compared

to thresholding.

We also conduct numerical scaling experiments with the Coloumb potential to evaluate the

performance of spectral sparsification. These examples are run using the same geometry as our

previous kinematic example by varying the number of atoms from 10 to 104. The number of

edges and the kinematic force error is compared for spectral sparsification, thresholding, and

the combined algorithm. The scaling on the number of edges is tested for several cutoff radii

as indicated in the figure. Spectral sparsification used � = 1 for all simulations. We note that a

cutoff radius rc = 15σ (σ = 1 in our model) has been chosen based on previous work which sug-

gest this rc is a reasonably appropriate cutoff radius for the Coulomb potential [48, 49]. Results

are shown in Fig 3. The number of edges appears to scale linearly in Fig 3A, which is better

than the OðnlogðnÞÞ scaling proven in [27]. Additionally, we find that the local error for sparsi-

fication scales better than for thresholding. We note that the level of error in the combined

algorithm is set by the degree of thresholding.

Given the complexity reduction and computational scaling (see Section A and Fig A in S1

File for more details), it is preferred to limit the number of times sparsification is applied

Fig 3. (A) The number of edges as a function of atoms for sparsification, thresholding, and the combined algorithm for multiple cut-off radii (thresholding was done

at rc = 10σ). (B) Kinematic estimation of local (force) error as a function of number of atoms in the system.

https://doi.org/10.1371/journal.pone.0213262.g003
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during molecular dynamic time integration simulations. We investigate the effect of sparsifica-

tion using thresholding and spectral methods in the following section to quantify error propa-

gation for a fixed amount of sparsification applied at the initial time of the simulation. We

conduct these simulations on a circular hole to simplify the analysis. The sparsification is fixed

in all simulations such that we can quantify the amount of error that propagates over multiple

time steps of numerical integration.

Molecular dynamics implementation

For time stepping, we use the traditional Verlet algorithm given by

rðiþ1Þ ¼ rðiÞ þ vðiÞDt þ
Dt2

2
aðiÞ;

vðiþ1Þ ¼ vðiÞ þ
Dt
2

aðiþ1Þ þ aðiÞ
� �

;

ð19Þ

where Δt is the time step, r(i) is the position of the atoms, v(i) is their velocity, and a(i) is the

acceleration at the ith time step. The acceleration is computed from the negative gradient of

the potential energy normalized by the atomic mass according to (1) and (2).

Two different types of errors are computed. The first is the atomic trajectory or local error.

This is calculated by taking the difference in positions between an exact simulation where nei-

ther thresholding nor sparsification is applied and compared to an otherwise identical simula-

tion where an approximation of the force is used through one of the algorithms: spectral

sparsification, thresholding, or the combined algorithm. The other error metric considered is

global quantities of interest including the pressure, the second stress invariant, the kinetic

energy, the potential energy, and the total energy.

Spectral sparsification used in this analysis requires all entries in the adjacency matrix to be

positive. Incorporating both negative and positive charges into this formulation may be possi-

ble, but is beyond the scope of the current algorithm development [33]. Further research is

required to understand how both positive and negative charges may be sparsified. In order to

demonstrate the efficacy of spectral sparsification in molecular dynamics, we restrict the

dynamic implementation to problems with only positive charges for the present investigation.

Two example problems are considered using a potential which combines the Coulomb and

the Lennard-Jones potentials. The Lennard-Jones potential is included for model stability.

This resembles the potentials used for modeling ionic solids. The results presented here use

Lennard-Jones reduced units, i.e., units where �0 = 1 and σ = 1 with the timescale based on the

angular frequency of small oscillations in a Lennard-Jones oscillator given by

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
72�0

21=3ms2

r

: ð20Þ

For reference, this equation is derived in Section B in S1 File. The magnitudes of the charges

have been scaled such that the repulsive forces are strong enough to be significant while small

enough to not cause the material to rupture. Specifically we set q ¼ 0:1
ffiffiffiffiffiffiffiffiffiffiffi
�0s=k

p
where k was

given earlier in (5) as Coulomb’s constant.

While periodic boundary conditions are ubiquitous in molecular dynamics, this paper pri-

marily deals with defects associated with free boundary conditions. The boundary conditions

are chosen so that comparisons are made to the algorithm itself and not necessarily due to

issues involving periodic boundary conditions. The first example is relaxation of a solid along

free boundaries. The second problem is a tensile test of a solid with a circular hole in the side

using half symmetry boundary conditions (a classic problem in elasticity).
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The surface relaxation problem (without the hole) is performed for 20,000 times steps

which is approximately 4.5 periods based on (20). Fig 4 shows the energy of the system, the

second invariant of the stress tensor, and the average error in position and velocity for this

relaxation simulation. Results are compared to a system where neither spectral sparsification

nor thresholding was applied which is referred to as the exact solution. These results illustrate

that spectral sparsification has lower error than thresholding in position and velocity errors.

As expected, sparsification better preserves the total energy of the system as seen in Fig 4(c).

Also note that the difference of the stress invariant is negligible for the simulation.

For the second validation case, we evaluate the tensile test of a solid with a circular hole on

the side and invoke half symmetry boundary conditions of a hole inside a plate. The atoms on

the top of the crystal are slowly pulled by controlling their displacement in the y-direction. The

atoms on the left side and the bottom have the x and y positions held fixed, respectively, to

ensure half symmetry. The displacement and force of the atoms during the tensile test are

recorded and plotted in Fig 5. The fact that the sparsified system closely matches the force-dis-

placement curve suggests that a sparsified system will better predict global properties such as

Fig 4. Measures of error and global properties for the sparsified, thresholded, and combined approximations for the surface relaxation

problem. Comparisons are made to a system with all non-zero edges included which has been labeled the exact system. (A) Average difference

in position between the exact solution and the approximation methods. (B) Average difference in velocity between the exact solution and the

approximation solutions. (C) Potential energy, kinetic energy, and total energy of the system for the different methods. Note that there is about a

half of unit difference between the thresholded (and combined) total energy and the exact (and sparsified) total energy. (D) Normalized second

invariant of the stress tensor.

https://doi.org/10.1371/journal.pone.0213262.g004
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elastic modulus and yield stress, which can be derived from the slope of the curve and its

change in slope, respectively. As in the first example, we plot the average error in position and

velocity as well as the global energy and stress invariant for the tensile test in Fig 6. We note

that sparsification performs better in terms of energy of the system. Lower error in both posi-

tion and velocity is achieved for up to 8 periods based on (20). We also note that the combined

algorithm closely matches the thresholded algorithm. This is because the thresholding value

decides the level of error in the combined algorithm.

Conclusions

We have shown that spectral sparsification can provide a sparse representation of a material

network by approximating the interatomic forces. Spectral sparsification produces a lower

level of error relative to thresholding for problems containing long-range Coulomb forces.

Importantly, the results suggest that sparsification maintains the net force. This is significant

because it provides advantages for estimating macroscopic properties relative to threshold-

ing. We tested this hypothesis on a simple tensile test and found the force-displacement

curves for sparsification more closely resembled those of the full graph solution than thresh-

olding for a model problem with a circular hole defect. We also presented a modification to

the spectral sparsification algorithm that is fully parallelizable via spatial decomposition of

the domain. Error propagation over several molecular dynamic time steps for a fixed spectral

sparsification was shown to provide good estimates of many global characteristics such as

total energy, average stress, and average atomic displacements for condensed atomic struc-

tures with relatively small perturbations of atomic positions. Molecular systems such as bio-

logical materials in water may undergo large configurational changes in shape. In such

scenarios, the frequency of sparsification updates must be evaluated to assess accuracy. This

Fig 5. Force-displacement curve of the tensile simulation. Sparsification closely matches the force-displacement

curve of the full graph (i.e., exact solution).

https://doi.org/10.1371/journal.pone.0213262.g005
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will become important in highly nonlinear regimes and interactions containing more than

two-body effects.

Supporting information

S1 File. Section A: Computational costs associated with spectral sparsification. Section B.

Derivation of the angular frequency for a Lennard Jones potential. Fig A. (A) Scaling of resis-

tance calculation where tr is the time to perform the calculation of graph resistance. (B) Scaling

of sampling calculation where ts is the time to sample the edges. (C) Scaling simulation times,

td, vs. number of atoms using spectral sparsification for 100 time steps (D) Scaling simulation

times, td, vs. number of edges using spectral sparsification for 100 time steps. Fig B. Plots of the

adjacency matrices created by (A) thresholding and (B) spectral sparsification. These two

graphs have comparable error, but the spectrally sparsified system has 136,245 edges while the

thresholded system has 307,532 edges and ignores the long range interactions of the Coulomb

potential. Fig C. (A) Graphs of varying sparsity created by thresholding. The cutoff distance is

given by the fraction of the maximum distance, d, across the domain consisting of *200

Fig 6. Measures of error and global properties for the sparsified, thresholded, and combined approximations for the tensile simulations.

Errors are calculated by comparing sparsified networks to a network with no edge reduction. The network with no sparsification is labeled as

exact. (A) Average difference in position between the exact solution and the approximation solutions. (B) Average difference in velocity between

the exact solution and the approximation methods. (C) Potential energy, kinetic energy, and total energy of the system for the different

methods. Note that there is about a half of unit difference between the thresholded (and combined) total energy and the exact (and sparsified)

total energy. (D) Normalized second invariant of the stress tensor.

https://doi.org/10.1371/journal.pone.0213262.g006
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atoms. (B) Graphs of varying sparsity (� = 0.25, 0.5 and 1) created by spectral sparsification

again for*200 atoms. The sparsity of graphs which are in the same row position are equal.

(PDF)
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