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Abstract: Inflammatory allergic and nonallergic respiratory disorders are spreading worldwide
and often coexist. The root cause is not clear. This review demonstrates that, from a biochemical
point of view, it is ascribable to protons (H+) released into cells by exogenous and endogenous
acids. The hypothesis of acids as the common cause stems from two considerations: (a) it has long
been known that exogenous acids present in air pollutants can induce the irritation of epithelial
surfaces, particularly the airways, inflammation, and bronchospasm; (b) according to recent articles,
endogenous acids, generated in cells by phospholipases, play a key role in the biochemical mechanisms
of initiation and progression of allergic-type reactions. Therefore, the intracellular acidification and
consequent Ca2+ increase, induced by protons generated by either acid pollutants or endogenous
phospholipases, may constitute the basic mechanism of the multimorbidity of these disorders,
and environmental acidity may contribute to their spread.

Keywords: atmospheric acidity; air pollution; allergic reactions; mechanisms of allergy; allergic
rhinitis; asthma; chronic; allergic multimorbidity; nonallergic; pseudo-allergic

1. Introduction

Inflammation and hypersensitivity of the airways and epidermis, whether allergic or nonallergic,
acute or chronic, are pandemic illnesses and epidemiological studies show that they are growing faster
in developing countries [1]. The increase has been attributed to several factors, both genetic [2] and
environmental [3–5]; this work focuses on the latter.

Environmental factors that can affect the aetiology of these diseases, such as lifestyle, climate
change, and air contaminants, have long been the subject of study and debate the world over [3–9].
The World Health Organization (WHO) has provided recommendations on how to reduce air pollution
produced by household activities, one of these being to properly ventilate the home [9]. This is useful
in rural areas but not in cities or industrial areas, where the outside air is often more polluted than the
air indoors. Consequently, today, inflammatory allergic and nonallergic (also known as pseudoallergic)
diseases are more widespread in urban than rural areas [10]. Authoritative research confirms that the
higher prevalence in urban areas correlates with some outdoor air pollutants [3,10–13]. Immunological
effects can be observed in both the upper and lower respiratory tract after exposure to diesel exhaust,
and the short-term exposure to traffic-related nitrogen dioxide (NO2), an acidic gas, has a direct effect
on respiratory morbidity [13]. Furthermore, a relationship between allergic diseases, Black Carbon (BC)
and Particulate Matter (PM2.5) [14], and between air pollutants and allergic infant sensitization has
been demonstrated [14]. The MeDALL (Mechanisms of the Development of Allergy) European study
confirmed the relevance of environmental exposure [15,16]. Wherever possible, prevention by allergen
avoidance remains the first measure [17]. Recent research has provided new data and technologies
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for therapeutic improvements [18]. However, further studies are needed to discover the molecular
determinants and to clarify the basic onset mechanisms of allergic and nonallergic diseases [17,19].

In addition to the relevance of environmental exposures, the MeDALL study highlighted that
air pollution not only correlates with bronchitis, rhinitis, asthma, and even eczema [10–14], but these
diseases often co-exist and share causal mechanisms [15,16,20,21].

While the mechanism of allergic response has been extensively studied and remains mainly
an IgE/FcεRI-based individual hypersensitivity reaction to specific allergens [1,6], there is no fully
convincing biochemical explanation of the nonallergic response and the relationship between increasing
allergic and nonallergic hypersensitivities, their multimorbidity, and air pollutants. IgE sensitization can
no longer be considered the dominant causal mechanism of multimorbidity of such diseases [15,16,20],
because allergic symptoms exist even in the absence of positive IgE tests. For these non-IgE-associated
diseases, it is necessary to hypothesize other mechanisms, which should be investigated [6,16,20].
Some studies proved that this is in part attributable to genetic predisposition.

Regarding the consequences of environmental pollution, many studies have analyzed the toxic
effects induced by air pollutants, in particular oxidative [22] and nitrosative [3,11] stress, and the causal
relationship with allergies. Studies of acid stress began in the 1980s [23,24], without investigating the
correlation between extra- and intracellular acidity. Acids can cause stress because they lower the
physiological pH by the release of protons (H+).

The aim of this review is to highlight the chemistry of atmospheric acid pollutants, their irritating
effects on the airways, and the existence of a possibly shared causal, proton-based mechanism, induced
by both exogenous and endogenous acids, for the onset and spread of allergic and nonallergic
inflammatory reactions.

Scientific literature available online from 1970–April 2020 was taken into consideration. The main
databases, such as Embase, Medline, PubMed Central, Scopus, Web of Science, were searched and the
most cited and most recent papers were selected. We analyzed the data and critically evaluated the
fundamental biochemical concepts concerning the topic under study and their possible consequences
on a cellular level.

2. Results

2.1. Outdoor Acid Air Pollutants: Chemical and Toxicological Characteristics

Polluting atmospheric acids damage surface water, buildings, and living organisms, either by
direct reactions or through acid rain. Epidemiological studies on acute respiratory effects show
that fine particulate matter (PM2.5) and gaseous acid pollutants can have a major impact on the
airways [8,11,25,26], because of their significant toxic potential. Given their small size, fine particles are
able to penetrate deeply and reach the lower respiratory airways [13,27]. Furthermore, as a result of their
low polarity and high liposolubility, the gases can spread quickly through biological membranes [13,28]
and hence enter cells. Among these gases, NO and O3 are known to cause nitrosative and oxidative
stress, respectively. Recent studies have drawn attention to the health impacts of PM [13,14,26,27,29],
NO2 [3,11,13,14,25,30], and SO2 [31–33].

It is known that PM from anthropogenic sources, such as heating systems, industrial plants,
and motor vehicles, is mainly acid, since PM is associated with the anthropogenic acid pollutants NO2

and SO2 [11,13]. In addition, NO2 and SO2 can react with water and oxygen to give the corresponding
acids: nitric acid (HNO3), sulphurous acid (H2SO3), sulphuric acid (H2SO4), and their related acidic
salts. The toxicity of acid compounds is mainly due to their ability to release protons (H+). Both HNO3

and H2SO4 are strong acids, important sources of protons, and therefore are fiercely corrosive. While,
at normal temperature and pressure, NO2 and SO2 are gases, the corresponding acids HNO3, H2SO3,
and H2SO4 are liquids, and easily soluble in water. Their acidic salts are water-soluble as well. Therefore,
most air acidity is concentrated in the microscopic PM, suspended in the air itself, in the form of both
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moist solid particles and watery droplets, known as acid aerosols. Notably, for its smaller particle size
and its larger specific surface area, PM2.5 is richer than PM10 in water and acids.

Around the year 1985, interest in the effects of acid aerosols increased as a result of the risk of
high exposure levels in the US and Canada. Clinical studies were carried out to assess the toxicity of
some atmospheric pollutants. The results showed that:

(a) The bronchoconstrictor action of carbachol could be enhanced by acid sulphate aerosols [23,34],
even though the sulphate is not itself toxic [34];

(b) The biologically active portion of these compounds is H+ rather than sulphate and the potency is
proportional to their acidity [34];

(c) Titratable acidity appears to be a more important stimulus to bronchoconstriction than pH [35].

Consistently, it was shown that bronchoconstriction provoked by inhalation of sodium sulphite
aerosols was caused by the released gaseous SO2, or by bisulphite, but not by sulphite [35]. Combined
exposures to acidic aerosols and pollutant gases have synergic effects.

The abovementioned PM, HNO3, H2SO3, and H2SO4 are the strongest acid components of acid
aerosols. In addition, some other weaker acids are present, including carbonic acid, nitrous acid,
and hydrogen sulphide, which essentially contribute to titratable acidity. All acids can contribute to
the effects of total air acidity by releasing H+s to different extents.

2.2. Biochemical Effects of Cellular Acidification in Epithelial Tissues

It has been shown that exogenous acids can cause irritation and the bronchoconstriction of the
airways [23,24,34–36] in both asthmatic [24] and healthy subjects [36]. Moreover, they can stimulate
both immune cells (mast cells [37], neutrophils [38–40], dendritic cells [41], eosinophils [42], Jurkat cells,
and primary T cells [43–45]) and nonimmune cells (epithelial cells [46,47], fibroblasts [20], and smooth
airway muscle cells [48–50]). It is reasonable to assume that the effects of limited exposure by healthy
subjects are negligible, because air acidity can be entirely neutralized within a short time by the
buffering capacity of airway surface liquid (ASL) [51]. On the contrary, major exposure, or for sensitive
people even limited exposure, can overcome the ASL defense, giving rise to the transfer of H+ into
cells as described below.

Regarding endogenous acids, it should be remembered that cells use intracellular enzymes such as
phospholipase C (PLC) and messengers such as inositol 1,4,5-trisphosphate (IP3) to increase the free Ca2+

concentration in cytosol ((Ca2+)c). PLC and other phospholipases are powerful acidifying enzymes,
because one H+ is released for each hydrolyzed ester bond [52–54]. The hydrolysis of phospholipid
esters and the generation of endogenous acid molecules, such as arachidonic acid (AA), phosphatidic
acid, and IP3, are at the base of the production of allergic mediators. It is known that external acidification
can cause mobilization of the segregated Ca2+ from intracellular stores [38,39,46,47,53,55–59], because
protons can readily replace Ca2+ in its ligand locations [53,60–62]. Moreover, it is known that the
increase of [Ca2+]c is involved in many physiological processes [63–67], but also in the triggering of
pathological manifestations such as allergic responses [65], airway hyper-responsiveness (AHR) [66],
and abnormal contraction and remodeling of airway smooth muscle (ASM) [67].

The two paragraphs below give a more detailed description of the biochemical mechanisms by
which intra- and extracellular acidification take place and foster allergic reactions.

2.3. Intracellular H+: Intracellular Acidification May Be Caused by the Action of Phospholipases in the Cytosol
or by Protons Entering the Cell through the Plasma Membrane

The cells responsible for triggering the allergic response, such as mast cells [6,65,68–70] and
basophils [6,69–71], have numerous receptors sensitive to various agonists. These receptors can be
classified historically as IgE-dependent and non-IgE-dependent receptors, based on their positive or
negative response to immunoglobulins E (IgE) [72]. The best example of an IgE-dependent receptor
is the high-affinity IgE receptor (FcεRI) [73,74]. Non-IgE-dependent receptors include the recently
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discovered G-Protein-Coupled Receptors (GPCR), which respond to less specific agonists [69,71,75–78].
Furthermore, in the GPCR group are Mas-related G-protein coupled receptors (MRGR) [72,76],
protease-activated receptors (PAR) [79], and purinergic receptors [80]. Given the sheer number
of GPCRs, many combinations with different agonists are possible. For example, GPR4, GPR65,
GPR68, and GPR132 receptors may be activated by extracellular protons [48,49,55,81,82]. Alternatively,
muscarinic agonists may stimulate the Gαq/11 subunits of the acetylcholine GPCRs [48]. So-called
pseudoallergic agents also follow this route [83]. All individuals can respond via GPCR receptors to the
stimulus of the agonist, but only sensitized individuals (the “truly” allergic) can respond via IgE/FcεRI.

Contact between the agonist and the receptor triggers a PLC/IP3-pathway-type complex chain
reaction which, via the activation of numerous enzymes and the increase in the concentration of H+

and cytosolic Ca2+ (respectively (H+)c and (Ca2+)c), culminates with degranulation, by the exocytotic
secretion of allergic mediators and the onset of an acute allergic response. The responses of the various
agonist/receptor couples may differ [69,77,84], but depend in each case on the concentration and affinity
of the agonist [74], and the fundamental steps in the basic biochemical mechanism of allergic reactions
do not vary (Figure 1):

(a) The stimulation of the receptor, both of the FcεRI and GPCR types, activates phospholipase C
(PLC) [85–88] and hence the hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2) on the
inner wall of the plasma membrane, generating and releasing IP3, a protonated acid salt [62,89],
in the cytosol;

(b) Through dissociation, the IP3 releases H+ [62,89] and, via its IP3R receptor, induces cell calcium
release and store depletion, increasing (Ca2+)c [62,90];

(c) The increase in (Ca2+)c activates numerous calcium-dependent enzymes, including phospholipase
A2 (PLA2), which produces arachidonic acid (AA) [91,92], which in turn dissociates releasing
more H+ and inducing the release of more Ca2+ [56,58,93]; from the AA hundreds of derivatives
(eicosanoids cascade) are formed, including leukotrienes (LTs) and prostaglandins (PGs) [94,95].
Both leukotrienes and prostaglandins are known to play a pivotal role in inflammatory and
allergic reactions;

(d) The store depletion stimulates the entry of more Ca2+ from the extracellular space (calcium influx)
via the mechanism known as Store Operated Calcium Entry (SOCE), in which, from the surface
of the Endoplasmic Reticulum (ER), Stromal Interaction Molecule1 (STIM1) activates the opening
of ORAI1 and Transient Receptor Potential Cation Canonical (TRPC) [96–99] channels on the
plasma membrane;

(e) The calcium influx further stimulates PLA2 activity and fosters the maturing of the granules and
subsequent degranulation and release [100–103] of mediators [94,104,105], including histamine,
PGs, LTs, cytokine, tryptase, and chymase, which promote the acute phase of allergic inflammation.
The cysteinyl LTs are thought to be responsible for the increase in the basal tone of the ASM and
in bronchoconstriction in asthma [6,106].

In conclusion, as shown in Figure 1, the allergic and nonallergic responses differ only in the first
step of agonist stimulation, which leads to PLC activation. The subsequent PLC/IP3 pathway is the
same for both responses and is characterized by the generation of acids, such as IP3 and AA, and thus,
H+ release by acid dissociation. Figure 1 shows two different steps in the intracellular generation of H+

through the action of phospholipase, the first dependent on the IP3 produced by PLC, the second on the
AA produced by PLA2. A third step, not shown in Figure 1, can depend on the action of phosphatases
which dephosphorilate the IP3 on IP3R [62]. Each of these three steps gives rise to a rapid transient
increase in (H+)c. This increase, as a result of the protons derived from the IP3 and the AA, contributes
to cell store depletion/calcium release and to the subsequent Ca2+ influx, via the activation of SOCE,
with a consequent increase in (Ca2+)c [39,47,56–59,62,107]. The rise in (H+)c is transient because it is
subject to feedback control and can be rapidly neutralized by the buffering capacity of cytosol and
the calcium influx itself, which leads to the alkalization of the cytosol, because the extracellular pH
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outweighs the intracellular pH. The influx may also be induced by a mechanism other than SOCE and
independently of the reserves, known as Store-Independent Calcium Entry (SICE), by direct activation,
via STIM1 and ORAI, due to the AA or LTs [108].Int. J. Environ. Res. Public Health 2020, 17, x 6 of 17 
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In addition to being generated in the cytosol by the phospholipases as described above, H+ can
penetrate the cell directly [28,38,46,109–114], passing through the epithelial barrier and plasma
membrane, thanks to the acid loaders (Figure 2A). This is possible because the permeability of the
epithelial barrier can vary as a result of the stimuli received from the cellular receptors [115], or the
barrier itself may be destroyed [116,117]. Examples of acid loaders are the Cl−/HCO3

− exchangers of
the SLC4 and SLC26 type, [117–120] and the Na+-HCO3

− cotransporter of the SLC4 type [118,120],
which are chemically equivalent to a counterflux of H+ ions, the plasma membrane Ca2+ ATPase
pump (PMCA), which exchanges H+ for Ca2+ [121], acid-sensing ion channels (ASICs) [53,82,122],
ORAI [123], and some types of TRP channels [109–112]. Furthermore, H+ can be released into the cell
after entry by passive transfer of reactive oxides coming from atmospheric pollution, such as CO2, NO2,
and SO2. CO2 can react with water to release H+ much quicker than NO2 and SO2 due to the specific
ubiquitous catalyst Carbonic Anhydrase (CA) [124]. Therefore, the CO2/CA system is possibly an
excellent means of transport for H+, as some researchers believe [38,120,124]. Lastly, the extracellular
excess of protons may enter the cell by diffusion [125].
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2.4. Extracellular H+: The Acidification of the Surfaces of the Respiratory Airways May Be Due to
Environmental Acid Pollutants or Endogenous Acids

The outer surface of the epithelia of respiratory pathways is kept moist at all times by ASL.
ASL plays a key role in the defense of the airways from pathogens and contains some phagocytes and
a number of proteic and peptidic antimicrobials for this purpose. For optimum antimicrobial activity,
both in the nose and lungs, ASL pH should be maintained within slightly acidic physiological values
(circa pH = 6.80) [24,126,127] and a lowering can be counterproductive [128]. Interestingly, a decrease
in ASL pH after exposure to airborne traffic pollutants has been detected in asthmatic [128] and healthy
subjects [129], albeit to different extents.

Historically, endogenous acidification of the airway surfaces has been suggested as a way to
measure airway disease [126]. In 2000, Hunt et al. found that the pH of Exhaled Breath Condensate
(EBC) was over two log orders lower in patients with acute asthma than in healthy subjects. Hence,
they suggested a possible causal relationship between endogenous airway acidification and the airflow
limitation observed in acute asthma [130]. Similarly, in more recent years, low pH values of ASL
have been observed by other authors in asthma, allergic rhinitis, atopic dermatitis [131], and even in
nonallergic inflammatory diseases, such as bronchiectasis and Chronic Obstructive Pulmonary Disease
(COPD) [117].

Figure 2B shows the possible causes of the lowering of ASL pH depending on endogenous or
exogenous acidity. Extracellular and ASL acidification may be caused in four different ways:

(a) H+ derived from the physiological process of restoring prestimulus conditions, carried out by all
cells through the expulsion of excess protons, generated by acidifying enzymes, to return to the
steady state; cells can use acid extruders as exchangers and channels to transfer H+ externally;
the Na+-H+ exchanger (NHE) in some cells is the major acid-extruder, also the Cystic fibrosis
transmembrane conductance regulator (CFTR) plays an important role in the acidification of the
ASL [117]; in addition, the excess protons in the cytosol may exit the cell via voltage-gated proton
channels (Hv1), TRP channels, plasma membrane vacuolar V-type H+-ATPase [126,132–136],
and diffusion [125];

(b) The degranulation of phagocytes, such as macrophages and granulocyte neutrophils and
eosinophils [69,135,137,138], produced as a defensive inflammatory action [24,126] in response to
the stimulus. This acidifying action may be significant and long lasting, and is therefore the basis
for chronic disease;

(c) The degranulation of mast cells and basophils, caused by the stimulus, the basis of the acute
allergic response [77,78,80,84,138], as described above in Figure 1. It is known that, like phagocytes,
basophils and mast cells [138] can produce and secrete acids and phospholipolytic enzymes
with the contents of their cytosolic granules and vesicles. Examples of secreted acids are lactic,
hypochlorous, uric, phosphoric acid, and fatty acids. Examples of enzymes are the cytosolic
and secretory phospholipases A2, which produce fatty acids such as AA through hydrolysis of
cellular triglycerides and phospholipids [139]. Each of the secreted acids can contribute to the
release of protons and thus act as new stimuli for cellular responses;

(d) In addition to the endogenous acids described above in point a, band c, which are transferred by
the cells to the ASL by means of expulsion, extrusion, and/or degranulation, the acidification of
the ASL may be due to exogenous acids, and hence, possibly, to the presence and direct action of
atmospheric acid pollutants.

All four processes of acidification described in points a–d, and in Figure 2B, can contribute
separately or simultaneously to lowering ASL pH. It is known that protons are allosteric modulators
and protein structure modifiers [140]. The harmful consequences of the lowering of ASL pH, caused
by either exogenous or endogenous acids, can include an increase in mucus viscosity, a decrease of
ciliary beat frequency, recruitment of proinflammatory mediators, oedema, leukocyte infiltration, AHR,
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tissue remodeling, and damage [24,40,50,136]. These consequences foster the origin and development
of acute and chronic diseases of an allergic kind [24,37,40,66,72,130].

3. Discussion

3.1. Difficulties to Overcome

It is difficult to demonstrate if a common causal mechanism for the onset and increasing spread
of inflammatory allergic and nonallergic diseases exists and how it works, but it is very important.
To our knowledge, a great number of interesting publications are available in the literature on this
theme, but none specifically takes into consideration inflammatory nonallergic manifestations from a
biochemical point of view. The association of airway inflammation, bronchoconstriction, and/or asthma
with acids [23,24,33–37,40,130], and more specifically, of allergic responses with some particular acids,
such as sulphurous [33,35], and AA [6,58,141], has long been known. The association of environmental
acids with allergic sensitization [37,142] and the hypothesis that these diseases might share a common
mechanism [15,16,20] have been considered more recently. Some critical issues emerge from reading
the existing toxicological studies. Important criticalities arise, above all, from the features of the proton
(H+ ion) (small, very mobile and fast, able to interact with many molecular entities). These properties,
which make it an ideal activation factor, are at the same time an obstacle to detection by normal
instruments. In addition, the interdependence of the concentrations of H+ and Ca2+ suggests that the
latter varies rapidly and in parallel with the former. This depends on the intrinsic chemical properties
of the two ions [62]. Even in simple aqueous solutions without biological structures, it can be observed
that the addition of acids quickly solubilizes the bound calcium and therefore produces an increase in
(Ca2+), whilst the addition of alkali causes it to deposit and therefore reduces (Ca2+).

Other criticalities arise from the difficulty in isolating a single pollutant, and in the case of PM,
its nonspecific composition. There are a number of variables at play, some of which are hard to
investigate. Studies often include different cells and different experimental conditions in terms of
method and duration. It is therefore very difficult to evaluate and compare data and conclusions. This
should be carefully considered in experimental studies. However, modern instruments and techniques
can help. In particular, biosensors, which allow one to study subcellular H+ and Ca2+ dynamics
simultaneously, in combination with electron cryomicroscopy and X-ray crystallography should give
interesting results.

One question arises spontaneously: “If acids play an important role in asthma and allergies,
how are the pathologic responses to basic compounds to be explained?” As recently pointed
out [83], most so-called pseudoallergic compounds are basic. The answer, given by the same author,
is that pseudoallergic compounds activate G proteins, directly or through GCPRs [83]. Accordingly,
the subsequent steps follow the abovementioned PLC/IP3 pathway, involving acid generation and thus
release of H+.

Some other studies [123,143,144] showed that in vivo cellular alkalinization causes a substantial
increase in (Ca2+)c.

This is not in contradiction with what is reported here (Section 2.3, the intracellular H+ paragraph),
because different events are involved. In their article, Yu et al. [123] describe studies of the regulatory not
the activation mechanisms, and some authors think the increase in (Ca2+)c caused by the alkalinization
may be due to influx [143] or to the inhibition of Ca2+ATPase and influx [144]. Influx causes an increase
in intracellular calcium, since [Ca2+] is normally much higher outside than inside the cell. In Section 2.3,
the intracellular H+ paragraph, we describe the rapid and transient increase in [Ca2+]c, caused by the
activation of phospholipase or the entry of extracellular H+. Both of these events occur before influx.

3.2. Possible Deductions

This review on the acidification/increase of (H+) in external cells and epithelia highlights that
the acidity of external epithelia can have both exogenous (environmental acidity) and endogenous
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(phospholipase activation) origins (Figure 2B), and therefore, the cellular calcium homeostasis can be
altered from both outside and inside.

By the release of protons in various ways via acid loaders and acid extruders through the plasma
membrane, the acids increase (Ca2+)c and activate immune cells, inducing the inflammation of the
airways and bronchospasm. The parallelism and interdependence of the concentrations of H+ and
Ca2+, and the well-known ability of H+ to easily replace Ca2+ in its binding sites are the basic facts that
suggest that the various means of intracellular acidification, of both exogenous and endogenous origin,
have a common mechanism, with H+ acting as a stimulus for the increase in (Ca2+)c.

Many enzymes at the basis of the allergic and nonallergic inflammatory response have catalytic
activity, strictly dependent on pH and/or Ca2+ as cofactors. The PLC and PLA2 themselves are
Ca-dependent. Therefore, intracellular acidification, of both exogenous and endogenous origin,
may induce acute inflammatory reactions and hypersensitivity through the activation of specific
enzymes and the modulation of their action.

Furthermore, exogenous and/or endogenous acidification may favor the lowering of the ASL pH
and the reiteration of the acid stimulus, triggering the recruitment of proinflammatory mediators and
chronic disease. To sum up, it is possible that:

(a) Environmental acidity increases the sensitivity of epithelial surfaces and promotes AHR;
(b) Exogenous and endogenous acids contribute to both the decrease in ASL pH and the increase in

ASM basal tone, thus favoring bronchoconstriction;
(c) The excess of temporary intracellular acidification is at the origin of acute manifestations of an

allergic kind;
(d) Recurrent or continuous acidification is the biochemical basis of airway inflammation,

hyper-responsiveness, tissue remodeling, and chronicity.

Accordingly, the impairment of H+/Ca2+ homeostasis and particularly their abnormally high
concentrations can constitute a powerful biochemical basis for the onset, continuation, and multimorbidity
of disorders, such as inflammatory allergic and nonallergic acute and chronic reactions. The entry/exit
pathways for the protons, as described above, are based on physiological activation mechanisms and
therefore could be carried out either in healthy or sensitized subjects. The variety of possible paths to
increase and control intracellular H+ and its numerous interactions in the human organism require
biomedical studies to explain the diversity of responses and existing situations.

A relation between oxidative or nitrosative stress and acid stress was also put forward [24].
Notoriously, protons can readily produce modifications in the conformation of proteic molecules [140].
Moreover, environmental pollutants have been associated with some asthma phenotypes through the
mediation of IL-13 and DNA methylation [2]. DNA methylation is favored by heavy metals, which in
turn are made available by acid mobilization. Certain metal constituents of PM2.5 were associated
with circulating biomarkers of endothelial function [145]. Therefore, environmental acids might play
a role in genetic/environmental interactions, by inducing epigenetic modifications with consequent
allergic sensitization.

4. Conclusions

Acid pollutants can have toxic, cumulative effects on human epithelia via the release of protons.
Protons can affect cellular homeostasis from both outside and inside. Therefore, it can be assumed
that intracellular acidification, and the consequent increase in Ca2+ concentration induced by protons
generated either by acid pollutants or endogenous phospholipases, may be at the basis of the shared
causal mechanism of acid stress and multimorbidity of respiratory and hypersensitivity reactions.
Moreover, acid environmental pollutants can contribute to the development and growing spread of
inflammatory allergic and nonallergic reactions worldwide.

Further studies are required to clarify the specificity and the activation pathways of G proteins in
general, and in relation to protons, considering the very high number of GPCRs discovered in recent
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years. Similarly, further studies are required into the ability of ion channels to transfer H+ into cells,
together with an investigation of the permeability of plasma membranes to gaseous pollutants, such as
NO, NO2, SO2, and particularly to CO2, because CO2 may have considerable influence on intracellular
pH as well as on titratable acidity. Studies of acidity are often limited to measuring only pH, but the
measurement of both pH and titratable acidity is indicated for better evaluation purposes.

Identifying and understanding the mechanisms of feedback and control of the different processes of
cytosolic acidification, either of internal or external origin, temporary or lasting, and their consequences
represents a major challenge for future research.

Reducing air acidity may be an important aim to limit the spread of the disorders taken into
consideration in the present study, and to improve the health, especially in children and in frail
subjects, of those more exposed to the risk of diseases. We believe our review calls attention to the
fundamental importance of H+/Ca2+ interdependence and hope it contributes to further studies into
allergic reactions and the identification of the molecular causes of these disorders.
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