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Abstract

CCL11, a protein previously associated with age-associated cognitive decline, is observed

to be increased in the brain and cerebrospinal fluid (CSF) in chronic traumatic encephalopa-

thy (CTE) compared to Alzheimer’s disease (AD). Using a cohort of 23 deceased American

football players with neuropathologically verified CTE, 50 subjects with neuropathologically

diagnosed AD, and 18 non-athlete controls, CCL11 was measured with ELISA in the dorso-

lateral frontal cortex (DLFC) and CSF. CCL11 levels were significantly increased in the

DLFC in subjects with CTE (fold change = 1.234, p < 0.050) compared to non-athlete con-

trols and AD subjects with out a history of head trauma. This increase was also seen to cor-

relate with years of exposure to American football (β = 0.426, p = 0.048) independent of age

(β = -0.046, p = 0.824). Preliminary analyses of a subset of subjects with available post-mor-

tem CSF showed a trend for increased CCL11 among individuals with CTE (p = 0.069) mir-

roring the increase in the DLFC. Furthermore, an association between CSF CCL11 levels

and the number of years exposed to football (β = 0.685, p = 0.040) was observed indepen-

dent of age (β = -0.103, p = 0.716). Finally, a receiver operating characteristic (ROC) curve

analysis demonstrated CSF CCL11 accurately distinguished CTE subjects from non-athlete

controls and AD subjects (AUC = 0.839, 95% CI 0.62–1.058, p = 0.028). Overall, the current

findings provide preliminary evidence that CCL11 may be a novel target for future CTE bio-

marker studies.
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Introduction

CTE is a progressive neurodegenerative disease associated with a history of repetitive head

impacts (RHI) [1]. Over the last decade, CTE has become an increasingly recognized as a

potential consequence for athletes participating in contact sports such as American football,

soccer, boxing, and ice hockey, and military veterans exposed to blasts [2, 3]. A recent analysis

of the brains from 111 National Football League (NFL) players observed 110 (99%) had evi-

dence of CTE, further suggesting how prevalent the disease might be [4]. Currently, CTE can

only be diagnosed by post mortem examination of brain tissue. The diagnostic hallmark of

CTE is the accumulation of hyperphosphorylated tau (as neurofibrillary tangles (NFT)) in neu-

rons and astrocytes present around small blood vessels at the sulcal depths of the cerebral cor-

tex [5]. The development of perivascular tau pathology in CTE is associated with a robust and

persistent inflammatory microglial response that significantly increases with the pathological

severity of CTE [6, 7]. The pathology of CTE differs in several substantive ways from AD. AD

is characterized by the accumulation of beta-amyloid (Aß) plaques as well as the deposition of

aggregates of hyperphosphorylated tau (ptau) as NFTs, however in AD there is no accentua-

tion of ptau deposition around small blood vessels and there are differences in the tau epitopes

expressed in AD and CTE [8]. Although AD and CTE are both characterized by disruption of

the BBB and neuroinflammation, the BBB disruption and neuroinflammation in CTE appear

to predate ptau deposition [6]. A detailed analysis of the select cytokines and chemokines

involved in CTE and AD has yet to be performed.

The neuropathological features of CTE have become increasingly well-defined, including

recently developed diagnostic criteria [5]. However, there is an urgent need for a method to

detect CTE during life. One reason that precludes that ability to diagnose CTE in life at this

time is the lack of in vivo biomarkers that accurately detect CTE pathology. PET imaging of

tau is expected to be the gold standard biomarker for CTE, however, analysis of plasma and

CSF proteins is a more practical alternative that can also accurately detect the presence of

neurodegenerative diseases (e.g., AD). CCL11 may be one potential candidate biomarker for

CTE.

The chemokine CCL11, also known as eotaxin-1, was first identified in the peripheral

immune system as a potent eosinophil chemoattractant in allergic inflammation, asthma,

atopic dermatitis, and inflammatory bowel disease [9–11]. Although CCL11 has been previ-

ously observed to be produced and act mainly in the periphery, studies in mice have shown

that CCL11 is capable of both penetrating the blood-brain barrier (BBB) and in aged mice, can

be directly produced by the choroid plexus epithelial cells suggesting direct CNS effects [12].

Additionally, inflammatory insults have been observed to stimulate CCL11 secretion in pri-

mary cultures of astrocytes, pericytes, and microglia [13–15]. Furthermore, microglia, oligo-

dendrocytes, astrocytes and neurons are known to express CCR1, CCR3, and CCR5, which are

the cognate receptors for CCL11 [16]. These findings suggest that regardless of the production

source, CCL11 is capable of reaching the central nervous system (CNS) and interacting with

resident microglia, oligodendrocytes, astrocytes and neurons.

Recent studies have shown that CCL11 and related molecules play a role in neuroinflamma-

tion and neurodegeneration [17–19]. CCL11 levels increase in the plasma and cerebrospinal

fluid (CSF) of mice and humans as part of normal aging [20]. In mice, these increases are asso-

ciated with declining neurogenesis and impaired cognition and memory [20]. CCL11 has also

been reported to enhance microglial production of reactive oxygen species and promote exci-

totoxic neuronal death [14]. In humans, altered CSF and plasma levels of CCL11 have been

observed in Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Huntington’s dis-

ease (HD) and secondary progressive multiple sclerosis (SPMS) when compared to age-
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matched, healthy controls. Notably, in AD and HD, increased plasma CCL11 expression is

associated with more advanced disease, while in ALS and SPMS, lowered CCL11 expression is

associated with increased disease severity [17–19, 21]. The observed differences in CCL11

expression with certain neurodegenerative diseases suggest that CCL11 is differentially regu-

lated across disease states and may prove useful as a novel biomarker candidate to detect dis-

tinctive neurodegenerative diseases.

Using human brain tissue from several neurodegenerative disease brain banks, the purpose

of this study was to compare the level of expression of CCL11 in the dorsolateral frontal cortex

(DLFC) among subjects with neuropathologically verified AD, CTE and normal controls. Fur-

thermore, preliminary analysis on CSF was performed to determine the viability of CCL11 as a

potential diagnostic biomarker for CTE.

Methods

Subjects

Frozen brain tissue from the DLFC was obtained from 23 former male American football play-

ers with neuropathologically diagnosed CTE using recently published National Institute Neu-

rological Diseases and Stroke (NINDS) criteria [5]. Subjects were selected from the entire 139

subjects who donated their brain and had frozen tissue available based on the following crite-

ria: 30 subjects were excluded that did not have CTE, an additional 76 were excluded due to

carrying a neuropathological diagnosis of either Alzheimer’s disease, Parkinson’s disease,

Dementia with Lewey bodies, frontotemporal lobe degeneration, or motor neuron disease,

lastly, 10 cases were excluded due to not playing American football. This group was designated

as “CTE”. Frozen DLFC brain tissue was also obtained from Framingham Heart Study brain

donors, both male and female, without a history of military exposure or participation in con-

tact sports. This included 50 subjects with neuropathologically diagnosed AD using the

National Institute on Aging–Alzheimer’s Association criteria [22] without comorbid neurode-

generation and 18 control subjects free of neurodegenerative pathology (Table 1). No statistical

differences in CCL11 levels were observed between gender (Control Male vs. Control Female:

p = .297, AD Male vs. AD Female: p = .272). Next of kin provided written consent for partici-

pation and brain donation. IRB approval for brain donation and this study were obtained

through the Boston University Alzheimer’s Disease Center (BU ADC) and CTE Center,

Human Subjects Institutional Review Board of the Boston University School of Medicine, and

Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA.

Clinical assessment

Clinical assessment occurred as previously described [4, 23]. During a telephone interview,

athletic history, military service history, demographic information, and education, were

assessed. An informant versions of the Ohio State University TBI Identification Method Short

Form [24] and two questionnaires adapted from published studies that address military-

Table 1. Demographic and exposure characteristics of subject groups.

N Age Years of exposure Number of Concussions Gender (%male)

Control 18 85.4 ± 9.4 0 0 50%

CTE 23 62.0 ± 16.5 16.0 ± 4.5 37.9 ± 53.5 100%

AD 50 83.9 ± 9.7 N/A N/A 50%

Data expressed as mean ± SD.

https://doi.org/10.1371/journal.pone.0185541.t001
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related head injuries and concussions was used to determine TBI history [25, 26]. For analysis

on how the number of years exposed to playing football relates to CCL11, subjects in the CTE

group were further divided into two groups based on the group median number of years play-

ing football (16 years). An identical clinical assessment was performed using the Framingham

Heart Study cohort.

Neuropathological examination and immunohistochemistry

Pathological processing, immunohistochemistry, and evaluation were conducted using previ-

ously published methodology [6, 27, 28]. Briefly, all brain tissue was processed identically by

fixation in periodate-lysine-paraformaldehyde (PLP) and stored at 4˚C. During the initial pro-

cessing, macroscopic features and brain volume were recorded. Tissue was blocked and cut at

10 μm thickness. To identify the CTE specific features required for a positive neuropathologic

diagnosis, 22 sections from multiple tissue regions were stained for Luxol fast blue, hematoxylin

and eosin (LHE), Bielschowsky’s silver, phosphorylated tau (ptau) (AT8), alpha-synuclein (αs),

amyloid-ß (Aß), and phosphorylated TDP-43 (pTDP-43) using methods described previously

[29]. For histologic antibody staining, section underwent antigen retrieval using citrate buffer

(pH 6.0) and boiling in the microwave for 10 mins. Primary antibodies were applied and incu-

bated overnight at 4˚C. The next day, biotinylated secondary antibodies and 3-amino-9-ethyl-

carbazol HRP substrate kit (Vector Laboratories H-3401) were used for visualization of stain-

ing. Sections were coverslipped for long term storage using Permount mounting medium.

As previously described [4], a neuropathological diagnosis of CTE was made using criteria

recently defined by the 2015 NINDS-NIBIB Consensus Conference [5]. Other neurodegenera-

tive diseases were diagnosed using well-established criteria for AD [30, 31], Lewy body disease

(LBD) [32], frontotemporal lobar degeneration (FTLD) [33–37], and motor neuron disease

(MND) [38, 39]. To diagnose CTE, the criteria requires at least one perivascular ptau lesion

that consisting of ptau aggregates in neurons, astrocytes, and cell processes around a small ves-

sel [5]. The deposition of ptau is most commonly observed at the depths of the cortical sulci in

the cerebral cortex [40]. The CTE ptau deposition is distinct from the lesions of aging-related

tau astrogliopathy [41].

Microscopy and analysis

For analysis of CTE pathologic severity, AT8 (ptau) immunostained slides from the DLFC

were scanned and digitized at 20x magnification using the Aperio ScanScope (Leica) as previ-

ously described [42]. Identification, selection, and analysis of the regions of interest were per-

formed as previously described [6]. Briefly, the depth of the cortical sulcus, which was defined

as the bottom third of two connecting gyri, was selected and circled in ImageScope (Lecia).

Only gray matter was highlighted. A modified version of the Aperio positive pixel count algo-

rithm (Version 9) was used to determine the total area of AT8 positive staining. Quantifica-

tions were standardized to the area measured and presented as density per analyzed area as

previously described [6].

Enzyme-Linked Immunosorbent Assay (ELISA)

Flash frozen brain tissue was obtained from the sulcus of the DLFC, weighed, and placed on

dry ice. Freshly prepared, ice cold 5M Guanidine Hydrochloride in Tris-buffered saline (20

mM Tris-HCl, 150 mM NaCl, pH 7.4 TBS) containing 1:100 Halt protease inhibitor cocktail

(Thermo Scientific) and 1:100 Phosphatase inhibitor cocktail 2 & 3 (Sigma) was added to the

brain tissue at 5:1 and homogenized with Qiagen Tissue Lyser LT, at 50Hz for 5 minutes. The

homogenate was then incubated while rocking overnight at room temperature. Lysate was
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diluted according to manufacture protocol and spun down at 17,000 g, 4˚C, for 15 minutes.

The supernatant was then applied to Meso Scale Discovery (MSD) Chemokine Panel 1

(human) Kit V-PLEX Plus (Thermo Scientific) and run according to manufactures protocol.

Plates were run on MSD plate reader model 1250. Plates were run in three separate batches. In

order to account for inter-batch variability, values were normalized to controls present on

each respective batch to generate a “fold change” value compared to the controls.

Post-mortem cerebrospinal fluid (CSF) was obtained from the foramen magnum by gently

lifting the frontal lobes to access with a large bore needle. CSF was then mixed by gently invert-

ing the tube 5 times. The tubes were centrifuged at 1.5 g for 15 minutes at 4˚C. The CSF super-

natant was carefully removed with a transfer pipet, leaving about 300 μL in the bottom, and

aliquoted into 1.5 mL microcentrifuge polypropylene tubes. CSF was stored at -80˚C prior to

use. CSF was then run undiluted using R&D Quantikine Human CCL11/CCL11 ELISA

according to manufactures protocol. Plates were imaged using a SpretraMax M3 imager

(Molecular Devices). CSF was available from only a small group of cases: 4 controls, 7 CTE,

and 4 AD. Values were standardized against the controls to generate relative fold change.

Statistics

Statistical analysis was performed using SPSS (v.24; IBM, Inc., Armonk, NY).and Prism (v. 6,

Graphpad Software, La Jolla, CA). AT8 density and the number of reported concussions were log

transformed to normalize for regression analysis. A one-way analysis of covariance (ANOVA)

was used to compare CCL11 fold changes among control, CTE, and AD groups. Age at death

was included in all regressions analyses to control for age-associated changes. Separate multiple

linear regression analyses were used to compare CCL11 expression levels to AT8 tau density,

years of exposure, and number of concussions. Binary logistic regressions were used to determine

the association between CCL11 and CTE or AD. Receiver operating characteristic (ROC) curve

analysis was used to determine sensitivity and specificity of CCL11 as a biomarker that can pre-

dict CTE in between controls, CTE, and AD cases.

Descriptive statistics were generated using SPSS (v.24; IBM, Inc., Armonk, NY).

Results

CCL11 is elevated in CTE

Total levels of CCL11 were significantly increased in subjects with CTE compared to controls or

to subjects with AD as measured by ELISA (Fig 1). Furthermore, when pooling the control, AD,

and CTE subjects together, a binary logistic regression was able to significantly discriminate a

positive neuropathologic diagnosis of CTE when using CCL11 fold changes (OR = 76.382,

p = 0.024), independently of age (OR = 0.850, p = 0.001) and gender (OR< 0.001, p = 0.997).

In contrast, binary logistic regression was not able to discriminate between a positive or negative

neuropathologic diagnosis of AD using CCL11 levels (OR = 0.394, p = 0.238) when controlling

for age (OR = 1.053, p = 0.009) and gender (OR = 2.324, p = 0.111). In subjects with CTE, multi-

ple linear regression also demonstrated that AT8 tau density at the sulcal depths of the DLFC is

significantly predicted by CCL11 levels (β = 0.430, p = 0.035) independent of age (β = 0.404,

p = 0.047).

Years of exposure to American football is associated with greater CCL11

levels

A significant increase in CCL11 levels was observed in individuals with CTE and 16 years or

more exposure to football compared to controls with no exposure to sports and individuals
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with CTE and less than 16 years exposure (Fig 2). Furthermore when looking only at individuals

with CTE, multiple linear regression analysis demonstrated that CCL11 levels were significantly

predicted by the number of years of exposure to football (β = 0.426, p = 0.048) independent of

age (β = -0.046, p = 0.824). The number of reported concussions were not able to predict CCL11

levels (β = -0.230, p = 0.357) independently of age (β = -0.128, p = 0.605)

Fig 1. Protein levels of CCL11 are elevated in the DLFC in CTE but not AD. CCL11 protein levels were

measured using ELISA. CCL11 fold change is shown for non-exposed control, CTE, and AD subjects. Bar

graphs shows mean ± SEM, *p < 0.05; One-way ANOVA.

https://doi.org/10.1371/journal.pone.0185541.g001

Fig 2. CCL11 is elevated in cases with more than 16 years of exposure to American football. CCL11

protein fold changes are shown for non-exposed controls (n = 18), cases with less than 16 years of exposure

(n = 10), and cases with more than or equal to 16 years of exposure (n = 13). Bar graphs shows mean ± SEM,

*p < 0.05, ***p < 0.001; One-way ANOVA.

https://doi.org/10.1371/journal.pone.0185541.g002
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CCL11 in the cerebrospinal fluid (CSF) in CTE

In preliminary analysis using a small cohort of cases with available post-mortem CSF (Con-

trol = 4, CTE = 7, AD = 4), there was a trend towards increased CCL11 levels in CTE, but not

AD, compared to controls (Fig 3A). Multiple linear regression analysis also demonstrated that

CCL11 levels in the CSF were associated with greater exposure to RHI (β = 0.685, p = 0.040)

independent of age (β = -0.103, p = 0.716). Furthermore, despite the limited sample size,

receiver operating characteristic (ROC) curve analysis demonstrated that CSF CCL11 levels

significantly discriminated participants with CTE from controls and individuals with AD

(AUC = 0.839, 95% CI 0.62–1.058, p = 0.028) (Fig 3B). A cutoff value of 5.630 pg/ml was deter-

mined to have a maximum sensitivity and specificity of 71.43% and 87.5% respectively. Finally,

although CSF CCL11 could significantly predict a diagnosis of CTE (Fig 3B), CCL11 levels in

the CSF were not able to predict severity of disease as measured by AT8 density in the DLFC

(β = 0.424, p = 0.247).

Discussion

Overall, preliminary analysis demonstrated that levels of CCL11 were significantly elevated

in the DLFC of former American football players with CTE compared to controls and indi-

viduals with AD without exposure to football. Furthermore, in individuals with CTE,

CCL11 levels correlated with increased density of AT8 immunopositive tau pathology in the

DLFC independently of age. Additionally, greater total number of years of football partici-

pation was significantly associated increased levels of CCL11 in subjects with CTE. Finally,

CCL11 was increased in the CSF of participants with CTE and significantly predicted a posi-

tive diagnosis of CTE when compared to the CSF of controls and individuals with AD. Due

to the limited sample size, this study was most likely too underpowered to observe an effect

of CSF CCL11 on CTE severity. Although additional studies are needed, these preliminary

data suggest that CCL11 may be a novel biomarker to aid in the detection of CTE neuropa-

thology and to discriminate CTE from AD.

Fig 3. CCL11 is elevated in the CSF during CTE. (A) Quantitation of CCL11 fold change in the CSF is shown for control (n = 4), CTE (n = 7), and

AD (n = 4) subjects. (B) Receiver operatic characteristic (ROC) curve for CSF CCL11 predicting CTE. Red line denotes CCL11 while the black line

is the reference, AUC = 0.839, 95% CI 0.62–1.058, p = 0.028. Bar graphs shows mean ± SEM, One-way ANOVA.

https://doi.org/10.1371/journal.pone.0185541.g003
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There are several limitations to this preliminary study. Age is an important component of

neurodegeneration and has been hypothesized to be critical in age related neurocognitive

changes [20, 43]. The mean age of the CTE cohorts was several years younger than both the

control and AD cohort. To account for this, age at death was included into the regression anal-

ysis; however, the difference still remains as a potential confounding factor and future analyses

will require more comparable age ranges between cohorts. Additionally, contrary to recent

publications [20], age related increases in CCL11 were not observed. In CTE subjects, it was

found that tau pathology in the DLFC and years of exposure to RHI were more predictive than

age. There are several explanations for this. The study performed by Villeda et al. demon-

strated significant plasma and CSF CCL11 differences between those within an age range of

20–45 years old and those 65–90 [20]. The majority of the subjects presented here were over

the age of 50, which likely prevented proper observations of the full spectrum of CCL11 con-

centrations as this study does not capture the CCL11 levels in younger cases. Additional stud-

ies will be needed to determine if similar CCL11 dynamics are present in younger cases after

RHI.

An additional explanation for the lack of age-associated correlations is that the years of RHI

and the subsequent neuroinflammation mimics the effects of aging resulting in an environ-

ment similar to advanced aging. This could result in the neuroinflammatory environment of

young and old individuals to appear more similar and obscure potential age related changes.

Neuroinflammation is part of the normal aging process and has been termed “inflammaging”

[44]. CCL11 is believed to be part of this inflammaging process. Previous work has demon-

strated that those exposed to RHI, even at a young age, have significant chronic neuroinflam-

mation compared to older controls [6]. By creating an inflammatory environment similar to

advanced aging, CCL11 concentrations could be higher, even in younger cases. This would

make years of RHI a more significant predictor of CCL11 as opposed to age, as is seen in this

study.

There are other limitations as well. In order to increase the power of this preliminary study,

individuals of both genders were included into the control and AD cohorts in order to maxi-

mize the chances of observing significant results. Although, no significant CCL11 changes

were observed between genders, neuropathological gender differences have been reported in

the past [45]. Future validation studies with more subjects will be needed to exclude gender

related differences in biomarkers after head trauma. Additionally, there is selection bias in an

autopsy-based study of individuals whose brains are donated by the family, and the subjects

may not represent the population as a whole. Clinical and RHI exposure histories are obtained

retrospectively and are subject to bias. Lastly, the CSF analysis was limited by the low sample

size. Additional subjects with postmortem and antemortem CSF will be required to confirm

and extend these results.

Clinically, CTE and AD may be similar in their clinical presentation [46]. Therefore, bio-

markers will be necessary to differentiate these diseases in life. Previous studies have shown

that CCL11 was elevated in the serum of individuals with AD but observed no changes in CSF

[21, 47]. In agreement, this study found no increase in CCL11 levels within the CSF of AD sub-

jects. However, there was an increase in CTE subjects (Fig 3A). Furthermore, a ROC curve

demonstrated CCL11 was both specific and sensitive enough to distinguish a CTE diagnosis

from controls or those with AD (Fig 3B). If similar results are found in antemortem CSF from

a larger number of subjects, CCL11 may be a helpful biomarker for discriminating CTE from

control and AD subjects. It will also be important to determine whether there is any relation-

ship between serum CCL11 levels and levels in the CSF and brain.

The reason for the difference in CCL11 levels between AD and CTE subjects is unclear.

However, it could be related to the cellular source in the brain. The choroid plexus (CP) has
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been suggested to be the a possible CNS endogenous CCL11 source [12]. Epithelial CCL11

production in the CP has been previously shown to be dependent on the ratio of the cytokines

IFNγ and IL-4 [12]. A murine model of aging observed that higher CP mRNA levels of IL-4

correlated with higher CCL11 levels while the opposite was observed for IFNγ [12] suggesting

this ratio could control CCL11 production. Interestingly, brain IFNγ levels have been shown

to be elevated in AD [48] suggesting that IFNγ may keep CCL11 levels lower in AD brain tis-

sue, but not blood. Additionally, the CP is an area that is not typically believed to be involved

in early AD while TBI has been shown to lead to CP damage and immune cell entry into the

brain. It has been hypothesized that the CP is an entry point for neutrophils and other periph-

eral immune cells post TBI [49]. Furthermore, the CP has been demonstrated to produce che-

mokines in response to TBI [50]. This suggests that CCL11, as well as other important

chemokines, could be produced as an acute phase neuroimmune response post TBI. Just as

neuroinflammation is initially a protective response [51], initial CP CCL11 signaling might be

needed to recruit a repair response after TBI. However, many years of RHI may lead to chronic

increases in CCL11 and detrimental downstream effects. In addition to the CP, the endoge-

nous microglia and astrocytes could also contribute to CCL11 production post TBI and be

involved in observed difference between AD and CTE. Previous reports have demonstrated

glial neuroinflammation and potentially cytokine production is an early event in CTE patho-

genesis [6]. However, while both astrocytes and microglia have been observed to produce

CCL11 [14, 15], additional studies are needed to determine if the unique environmental factors

surrounding AD and CTE (i.e. aging vs. head trauma) would contribute to the differential

expression during disease.

There are several hypotheses on how CCL11 exerts its effect in the CNS. Microglia [52],

astrocytes [52], and neurons [53, 54] all express the CCL11 receptor, CCR3, demonstrating

CCL11 can affect a wide variety of CNS targets. Several studies have suggested CCL11 ulti-

mately plays a role in cognitive impairment [12, 20] and therefore, either directly or indirectly,

affect neurons. To that end, CCL11 has been shown to both impair neurogenesis [20] and

reduce synaptic density in mouse models [53]. CCL11 has also been found to recruit microglia

and increase reactive oxygen production [14]. The subsequent neuroinflammation and result-

ing synaptic dysfunction or neuronal death might contribute to the tau pathology in CTE and

lead to cognitive impairment [6].

Several promising targets for biomarkers have been proposed for the in vivo detection of

CTE. For instance, MRI based techniques such as diffusion tensor imaging (DTI) have been

used to identify axonal injury and white matter abnormalities, which have been related to CTE

progression [55]. Additionally, PET imaging has been developed to observe pathologic pro-

teins such as p-tau in living brains [56]. Fluid biomarkers targeting substances in the CSF or

peripheral blood have also been examined [57]. Peripheral blood represents an attractive target

for biomarkers due to relative ease of obtaining from living individuals and the increased

quantity compared to the CSF. Several promising blood based targets have been identified

including, total tau and exosomal tau [58–60]. While both the blood and CSF can reflect

changes occurring in the brain, the CSF is of special interest due its mechanistic function and

dynamic relationship with the brain. The CSF is in continuity with the interstitial space and

plays a role in the glymphatic clearance of solutes [61]. Thus, it may be an important compart-

ment to identify neuropathological changes and several CSF biomarkers are already in devel-

opment. Tau and neurofilament light chain (NF-L) [62] have been used as potential measures

of axonal injury while S100β and GFAP have been reported to be elevated following contact

sports play [63]. Ultimately, no one biomarker may be adequate for proper identification of

CTE. The results of the current study used subjects with AD or CTE in the absence of any

other co-neurodegenerative disease. However, amyloid beta pathology is observed in 52% of
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CTE cases [64] and a diagnosis of CTE with comorbid AD can occur, which can complicate

biomarker interpretation. Additionally, several other diseases like ALS, Lewey body dementia,

or frontotemporal lobe degeneration can exist as copathologies with CTE. CCL11 will likely be

most useful as one biomarker in a panel of multiple biomarkers that can capture multiple

aspects of a diverse range of neuropathologies. This suggests that utilizing CCL11 in combina-

tion with imaging biomarkers like amyloid and tau PET scans, in addition to the many fluid

biomarkers would be ideal for the most sensitive and specific diagnostics of CTE. The prelimi-

nary data presented here, describes CCL11 as another potential biomarker to aid in clinical

diagnosis of CTE and to help discriminate from other neurodegenerative diseases such as AD.

Overall, CCL11 levels in the brain were selectively increased in a group of CTE subjects

compared to control or AD subjects without a history of RHI. Similar changes were seen in a

preliminary analysis of postmortem CSF from a subset of subjects. CCL11 may be a potential

diagnostic biomarker useful in life. Future studies are necessary to determine whether CCL11

is an early or late change in CTE and whether levels are predictive of clinical course.
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