
life

Article

The Mutational Robustness of the Genetic Code and Codon
Usage in Environmental Context: A
Non-Extremophilic Preference?

Ádám Radványi 1,* and Ádám Kun 2,3,4

����������
�������

Citation: Radványi, Á.; Kun, Á. The

Mutational Robustness of the Genetic

Code and Codon Usage in

Environmental Context: A

Non-Extremophilic Preference? Life

2021, 11, 773. https://doi.org/

10.3390/life11080773

Academic Editors: Moran

Frenkel-Pinter and Anton S. Petrov

Received: 16 June 2021

Accepted: 28 July 2021

Published: 30 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd
University, 1053 Budapest, Hungary

2 Institute of Evolution, Centre for Ecological Research, 1121 Budapest, Hungary; adam.kun@ttk.elte.hu
3 Parmenides Centre for the Conceptual Foundation of Science, Parmenides Foundation,

82049 Pullach, Germany
4 MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, 1117 Budapest, Hungary
* Correspondence: adamradvanyi117@gmail.com

Abstract: The genetic code was evolved, to some extent, to minimize the effects of mutations. The
effects of mutations depend on the amino acid repertoire, the structure of the genetic code and
frequencies of amino acids in proteomes. The amino acid compositions of proteins and correspond-
ing codon usages are still under selection, which allows us to ask what kind of environment the
standard genetic code is adapted to. Using simple computational models and comprehensive datasets
comprising genomic and environmental data from all three domains of Life, we estimate the expected
severity of non-synonymous genomic mutations in proteins, measured by the change in amino acid
physicochemical properties. We show that the fidelity in these physicochemical properties is expected
to deteriorate with extremophilic codon usages, especially in thermophiles. These findings suggest
that the genetic code performs better under non-extremophilic conditions, which not only explains
the low substitution rates encountered in halophiles and thermophiles but the revealed relationship
between the genetic code and habitat allows us to ponder on earlier phases in the history of Life.

Keywords: mutational robustness; standard genetic code; genetic code origin; evolution of the
genetic code; origin of life; extremophiles; codon usage; GC-content; environmental selection

1. Introduction

The origin of the genetic code and translation remains amongst the greatest conun-
drums of Life despite more than 50 years of research [1]. There are many actively debated,
sometimes opposing, theories trying to explain it [2–9]. One possible way to crack the code
is to study how mutations affect the integrity of proteins and how this might depend on
the environment or genomic properties.

One of the key features of the standard genetic code (i.e., the nearly universal mapping
of amino acids to codons) is its capacity to minimize the deleterious effects of mutations,
thus making it optimized for translation [8–11]. The basis for this argument is the average
fitness cost of replacing one amino acid with another due to mutation, measuring the change
on a scale of amino acid physicochemical properties (e.g., hydrophobicity or polarity) that
should correspond to the risks of misfold and loss of function in proteins [8,9]. Several
studies have pointed out that the overwhelming portion of random alternative genetic
codes have inferior error minimization capacities (i.e., lower mutational robustness) and
the effect of a mutation is expected to be more detrimental. In comparison, only a few
variants show that the code can be locally improved with codon reassignments [12,13].
This leads to the claim of error minimization playing a significant (but not exclusive [14])
role in the evolution of the standard genetic code [8,9,15].
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Unfortunately, this is only one piece of the puzzle. For the actual genetic code, the
average effect of mutations depends on codon usage, as certain codons carry an increased
or decreased risk of deleterious effects when mutated [16–19]. For example, compared to
AGY codons, the mutation of UCN codons of Ser is less likely to lead to major shifts in
physicochemical properties of the mutant protein.

Codons, generally, are not employed in equal frequencies. The variability in codon
usage comes partly from amino acid usage that differs from the frequencies dictated by the
standard genetic code. Differential usage of amino acids could stem from the environment,
as the general requirements for functional proteins may change with the habitat. The most
renowned examples of environmental selection are studied in halophiles and thermophiles
possessing characteristic amino acid distributions and codon usage in order to retain
functional protein structure [20–33] by preferring specific interaction types or molecular
strategies [25,34–45]. Other specialists, such as alkaliphiles, acidophiles and barophiles,
can also possess recognizable patterns [28,46,47].

Secondly, there is a strong correspondence between codon usage bias and
GC-content [32,48–51]. The exact causes of its variation remain an ongoing area of re-
search; for example, bias in nucleobase composition has been associated with specific
lifestyles [52–56] and mutational bias [57–60], whereas it appears that high GC-content in
protein coding regions is not necessarily an adaptation to high temperature [61]. In any
case, we must account for the predominant GC-effect.

After determining these two factors, namely environmental selection and GC-content,
we ask the following questions: Can their effects on codon usage have further repercussions
with respect to mutational robustness (i.e., the average effect of mutations in proteins)?
In what condition does the genetic code minimize the effect of mutations considering the
observable biological variance of codon usages?

The change in mutational robustness along these codon usage determining gradients
can be studied using the information theoretic metric of distortion [16–18,62–64]. The
measure of distortion contains the same essentials as previous well-known measures of
the field [8–10], that is, (i) the estimated probabilities of non-synonymous mutation events
occurring within the genome (described in a background mutation model); and (ii) the
estimated cost of such missense mutation in proteins (one amino acid translated as another),
based on a physicochemical trait (e.g., hydrophobicity). However, contrary to previous
measures, distortion also builds in a third term (iii) by weighting for codon usage. This
results in the average change in said amino acid physicochemical property caused by a
non-synonymous mutation, given a distribution of codon usage.

The purpose of this study is to analyse the response of the average effect of genomic
mutations associated with different environments (temperature, NaCl concentration and
pH) and genomic gradients (GC-content) that govern codon usage. Using two compre-
hensive datasets comprising codon usage, genomic and environmental data from all three
domains of Life, we estimate the expected severity of non-synonymous mutations by
calculating distortions in four physicochemical properties: hydropathy, polar requirement
(both related to hydrophobicity), molecular volume (i.e., the size of the amino acid), and
isoelectric point (related to charge and polarity). We focus on their change with said
environmental and genomic covariates.

Our findings suggest that the genetic code shows a certain preference towards non-
extremophiles, that is, the codon usage of these organisms is expected to be more robust
against mutations. In comparison, fidelity in the studied physicochemical properties can
decrease in extremophiles, especially in thermophiles. This not only helps in explaining
the low substitution rates found in extremophilic taxa, but also allows us to reflect on the
relationship between habitat and the genetic code, and how it might help us to reconstruct
earlier phases in the history of Life.
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2. Materials and Methods
2.1. Data Aquisition

The nucleobase and codon distributions of each organism’s coding region were estab-
lished from the Uniprot Reference Proteome database, which provides a representative
cross-section of the taxonomic diversity found within UniProtKB [65]. Using NCBI Taxon-
omy ID-s [66], this codon usage dataset was cross-referenced with databases containing op-
timal environmental conditions. In one dataset, the environmental data for optimal growth
temperature, pH, and salt concentration were obtained from the BacDive database [67]
for 402 prokaryotes (Dataset S1). A second environmental database was made available
by Engquist [68], which resulted in a compilation of optimal temperatures for 3873 taxa,
including Eukaryotes (Dataset S2).

2.2. Distortion as a Measure for Code Performance

Distortion (Equation (1)) is used to estimate the average effect of mutations [16–18,69].
It is calculated given a source distribution of codons, P(ci), and the uncertainty of the
code resulting from noise, P (Y = cj|X = ci), i.e., the probability of codon ci mutating into
cj (see next section about background mutation model). Another important element of
distortion is the distortion matrix with elements d(aai,aaj) of physicochemical properties.
Distortion matrices are essentially identical to “error matrices” widely used by other studies
of random genetic codes (e.g., [8,9]). A distortion matrix d with elements d(aai,aaj) specifies
the cost associated with mistaking the encoded symbol aai (amino acid of codon ci) of the
source (genome X) and reproducing it as aaj in the replicated copy (genome Y). In our
case, this cost is the absolute change in a specified physicochemical property. We define
d(aai,aaj) = 0 if aai = aaj, that is, ci and cj codes for the same amino acid. Mutations to stop
codons are forbidden.

In short, the term Σi,j P (Y = cj|X = ci) × d(aai,aaj) is essentially the same as earlier cost
functions used to define the “error-minimization” or “mutational robustness” of genetic
codes (for reference, see Freeland and Hurst [8] or Haig and Hurst [9]). Distortion adds a
new term by weighting for codon distribution P(ci).

D = ∑
i,j

P(ci)× P
(
Y = cj

∣∣X = ci
)
× d

(
aai, aaj

)
(1)

Multiple distortion matrices were defined in order to measure different physicochemi-
cal dimensions of code performance. For these, we use a set of properties made available by
Haig and Hurst [9], which include hydropathy, polar requirement, molecular volume and
isoelectric point, yielding four different measures of code performance, denoted as DHyd,
DPol, DVol and DpI. Note that PAM [70], BLOSUM [71] and related empirical matrices are
not appropriate as they incorporate additional information with regard to the structure of
the genetic code [72].

2.3. Background Mutation Model

The conditional probabilities P (Y = ci|X = cj) are the result of random mutations
appearing in the genome and describe the chance of triplet ci mutating into triplet cj
(insertions and deletions are ignored for now). In order to approximate these probabilities,
a background mutation model is required to describe the generalized mechanism for
spontaneous DNA mutations. We must estimate the raw, a priori performance of the genetic
code without natural selection introducing additional bias. To this effect, we employ
a simple model of random mutations [69] (Equations (2)–(4)), which is reminiscent of
Kimura’s two parameter model [73]. Here, κ denotes the transition/transversion rate ratio,
otherwise known as the ti/tv-ratio, and µ is the mutation rate. The inherent structure of
the genetic code defines the probability of which codon i mutates into codon j given the
occurrence of a transition or a transversion; these are denoted by terms P (ci → cj|ti) and
P (ci → cj|tv), respectively. Expected proteomic distortions were then calculated for each
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taxon’s codon composition. Since our goal is a comparative analysis between taxa, the
effect of µ is unimportant.

κ =
pti

ptv
(2)

P
(
Y = cj

∣∣X = ci
)
= µ×

[
κ

(1 + κ)
× P

(
ci → cj |ti

)
+

1
(1 + κ)

× P
(
ci → cj |tv

)]
(3)

P(Y = ci|X = ci) = 1− µ (4)

First, a detailed study of the model is carried out at a specific transition–transversion
ratio (κ = 2.5), as this rate is close to those observed in a number of studies [57,58,74]. How-
ever, this ratio encountered in non-coding regions could still be the result of a remaining,
albeit relaxed, error correction or negative selection. It can also vary greatly from organism
to organism [75], with rates close to uniformity (κ ≈ 0.5) [76], or very strong bias towards
transitions (κ ≈ 10) [77]. To ensure the robustness of our analysis, distortions are also
calculated for an interval of ti/tv-ratios. The resulting measures are, therefore, DHyd(κ),
DPol(κ), DVol(κ) and DpI(κ), where κ = [0.5, 10] (Datasets S1 and S2).

2.4. Multi-Linear Regressions

On both datasets, we performed multi-linear regression in RStudio [78]. Response
variables DHyd(κ), DPol(κ), DVol(κ) and DpI(κ) were modelled separately using the available
environmental variables as covariates. The genomic content of guanine and cytosine (GC-
content) was also included as a quadratic polynomial predictor (based on other works
using information theoretic metrics [51]) to control for its predominant effect on the codon
composition [48]. The regressions were applied for each ti/tv value individually and the
influence of ti/tv on the robustness of predictor effects was then determined by plotting
the partial effects (β) of each covariate against κ.

3. Results

We analyse the mutational robustness of codon usage profiles associated with different
codon frequency determining factors. To this effect, we prepared two different datasets:
Dataset S1 comprises codon usage data for 402 prokaryotes, and includes environmental
data on optimal growth temperature, pH, and salt concentration, whereas Dataset S2 con-
tains a larger sample of 3873 archaeal, bacterial and eukaryotic taxa, but only temperature
as an optimal environmental condition. Then, we calculated distortions (i.e., the average
effect of a non-synonymous mutation) in four distinct physicochemical properties (hydropa-
thy, polar requirement, molecular volume, and isoelectric point). We employ multi-linear
regression models to study the response of distortions to environmental covariates and
GC-content.

Here, we report that both environmental selection and GC-content can affect codon
usage in ways that are expected to impact mutational robustness. This leads to increased
distortions, that is, reduced physicochemical fidelities, in thermophiles and halophiles.

In all cases of the four distinct physicochemical distortions, the overall regressions
are significant (p < 0.001). Both datasets show relatively high R2 values for each attribute,
especially in the cases of distortions of hydropathic and isoelectric properties (Tables 1 and 2,
also including the relative effects as standardized partial coefficients (βstd) where variables
were Z-transformed prior to analysis). These general results indicate that our regression
models provide good fits. In the following, we discuss the effects of environmental selection
and GC-bias on distortions separately.
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Table 1. Results of the four multi-linear regressions performed on prokaryotic distortions (n = 402; Dataset S1) and the
effects of environment (optimal growth temperature, NaCl concentration, pH) and GC-content on these physicochemical
distortions (D). Distortions (in hydropathy, polar requirement, molecular volume, and isoelectric point, respectively) and
GC-contents are calculated from codon usage data of the Uniprot Reference Proteome Dataset [65]. Optimal growth
environment data of prokaryotes are from the BacDive database [67].

D Parameter
Unstandardized Coeff.

Bstd t p F(5,397) R2 p
β SE

Hyd.

Intercept 1.525 0.018 - 82.653 0.000

471.286 0.854 0.000

Temp. 0.001 0.000 0.160 7.967 0.000
NaCl −0.001 0.000 −0.100 −5.247 0.000
pH 0.003 0.001 0.060 2.944 0.003
GC 0.440 0.067 1.300 6.529 0.000
GC2 −0.115 0.063 −0.360 −1.810 0.071

Pol.

Intercept 1.447 0.018 - 79.729 0.000

61.372 0.430 0.000

Temp. 0.000 0.000 0.120 3.024 0.003
NaCl 0.002 0.000 0.360 9.426 0.000
pH 0.002 0.001 0.090 2.327 0.020
GC −0.416 0.066 −2.470 −6.275 0.000
GC2 0.314 0.062 1.980 5.026 0.000

Vol.

Intercept 28.919 0.353 - 82.024 0.000

18.882 0.193 0.000

Temp. 0.013 0.001 0.420 9.060 0.000
NaCl 0.007 0.004 0.080 1.744 0.082
pH −0.006 0.018 −0.010 −0.327 0.744
GC −0.898 1.288 −0.330 −0.697 0.486
GC2 0.830 1.213 0.320 0.684 0.494

pI

Intercept 1.130 0.023 - 49.960 0.000

130.303 0.617 0.000

Temp. 0.001 0.000 0.320 10.067 0.000
NaCl 0.002 0.000 0.210 6.857 0.000
pH 0.002 0.001 0.060 1.954 0.051
GC 0.023 0.083 0.090 0.282 0.778
GC2 −0.177 0.078 −0.730 −2.273 0.024

Table 2. Results of the four multi-linear regressions performed on proteomic distortions comprising all three domains of
Life (n = 3873; Dataset S2), and the effects (β) of optimal growth temperature and GC-content on these physicochemical
distortions (D). Distortions (in hydropathy, polar requirement, molecular volume, and isoelectric point, respectively) and
GC-contents are calculated from codon usage data of the Uniprot Reference Proteome Dataset [65]. Temperature data are
cross-referenced from [68].

D Parameter
Unstandardized Coeff.

Bstd t p F(3,3870) R2 p
β SE

Hyd.

Intercept 1.531 0.005 - 284.970 0.000

5706.573 0.815 0.000
Temp. 0.001 0.000 0.150 21.510 0.000

GC 0.468 0.021 1.370 22.490 0.000
GC2 −0.148 0.020 −0.450 −7.480 0.000

Pol.

Intercept 1.436 0.006 - 259.990 0.000

557.517 0.301 0.000
Temp. 0.000 0.000 0.160 11.920 0.000

GC −0.324 0.021 −1.790 −15.140 0.000
GC2 0.228 0.020 1.320 11.210 0.000

Vol.

Intercept 26.972 0.107 - 252.380 0.000

241.166 0.157 0.000
Temp. 0.014 0.001 0.330 22.310 0.000

GC 6.031 0.413 1.890 14.590 0.000
GC2 −5.249 0.394 −1.730 −13.320 0.000

pI

Intercept 1.128 0.007 - 155.120 0.000

1098.377 0.460 0.000
Temp. 0.001 0.000 0.170 14.370 0.000

GC 0.175 0.028 0.650 6.230 0.000
GC2 −0.328 0.027 −1.270 −12.220 0.000
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3.1. Environmental Factors Mainly Increase Expected Distortions

The regressions imply a detailed relationship between the expected distortions and
environmental selection (Table 1, Figure 1), especially temperature (Table 2, Figure 2).
Temperature has significant distortive effects, first demonstrated by the prokaryotic dataset
(Dataset S1) showing a significant increase in distortions with optimal growth temperature
(Table 1; hydropathic distortion: βstd = 0.16; t = 7.97; p < 0.001; distortion in polar require-
ment: βstd = 0.12; t = 3.02; p = 0.003; volumetric distortion: βstd = 0.42; t = 9.06; p < 0.001;
distortion in isoelectric pattern: βstd = 0.32; t = 10.07; p < 0.001). These effects are also com-
parable with the distortive effects of temperature observed in the larger sample of Dataset
S2 (Table 2; hydropathic distortion: βstd = 0.15; t = 21.51; p < 0.001; distortion in polar
requirement: βstd = 0.16; t = 11.92; p < 0.001; volumetric distortion: βstd = 0.33; t = 22.31;
p < 0.001; distortion in isoelectric pattern: βstd = 0.17; t = 14.37; p < 0.001); thus, Eukaryotes
fit in well with the trends observed in prokaryotes (Figure 2). To summarize, distortions
increase in codon compositions adapted to high temperature, so genomic mutations are
prone to produce more severe amino acid substitutions with respect to all four examined
physicochemical properties.
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terns, shown by the increased distortion related to isoelectric points (pI). Partial regression lines are 
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Figure 1. The effect of environmental variables on the expected distortion of amino acid physicochem-
ical properties (hydropathy, polar requirement, molecular volume, and isoelectric point, respectively;
κ = 2.5), using prokaryotic data (n = 402; Dataset S1). The effect of optimal temperature on codon
usage has clear distortive effects with respect to all four physicochemical traits. Hypersaline environ-
ments select for codon usages that have a reduced fidelity of polar and charge patterns, shown by the
increased distortion related to isoelectric points (pI). Partial regression lines are drawn by setting
remaining covariates as GC = 0.5; T = 30 ◦C; ccNaCl = 2.5 w/V%; pH = 7 (continuous line: p < 0.001;
dashed line: p < 0.01).
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Figure 2. The effects of optimal growth temperature on the expected distortion of amino acid
physicochemical properties (hydropathy, polar requirement, molecular volume, and isoelectric point,
respectively; κ = 2.5), using proteomes comprising all three domains of Life (n = 3873; Dataset S2).
The effect of optimal temperature on codon usage has clear distortive effects with respect to all four
physicochemical traits. Partial regression lines of temperature show responses adjusted for GC = 0.5
(p < 0.001).

The prokaryotic data of Dataset S1 also allows us to include the effects of halophilic
adaptations and ambient pH in regressions (Table 1, Figure 1). Organisms adapted to higher
NaCl concentrations possess codon compositions less prone to hydropathic distortion
(βstd = −0.10; t = –5.25; p < 0.001), but the average effect of incidental mutations is predicted
to be more severe if distortion is measured via polar requirement (βstd = 0.36; t = 9.43;
p < 0.001). These opposite effects are somewhat surprising, as both hydropathy and polar
requirement measure the hydrophobic character of amino acids and have high correlation
(r = –0.79; t = –5.39; p < 0.001).

The reason for the ambiguous effect of halotolerance on hydrophobic characters is
that Glu and Asp are highly favoured in halotolerant proteins [28,30,79]. These acidic
amino acids show large discrepancies in hydropathy and polar requirement [9]; therefore, a
comparison of related distortions will be also sensitive to the usage of Glu and Asp codons.
The relative position of halophilic archaea supports this reasoning (top two plots in the
middle of Figure 1).

Nevertheless, hypersaline environments select for codon usages that have a reduced
fidelity in polar and charge patterns, probably the most important features in halophiles (see
Discussion). This is shown by the increased distortion of isoelectric properties (βstd = 0.21;
t = 6.86; p < 0.001).

The effects of ambient pH remain inconclusive; regardless of p-values, the stan-
dardized beta coefficients indicate that effect sizes are negligible (hydropathic distortion:
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βstd = 0.06; t = 2.94; p = 0.003) compared to other environmental factors, or non-significant.
This can be attributed to the relative invariance of intracellular pH regardless of the ambient
environment [80].

3.2. Robustness of Enviromental Effects with Regard to Ti/Tv-Ratio

Choosing the parameter of κ = 2.5 in our background mutation model to calculate
distortions is a biologically reasonable assumption [57,58,74]. However, to see how this as-
sumption could have influenced our study, we extend the analysis to a wider range of ti/tv-
ratios using the data comprising prokaryotes and their respective optimal growth environ-
ment (Dataset S1). We recalculate distortions in an interval of ti/tv-ratios (κ = {0.5, . . . , 10}),
reemploy the multi-linear regression models, and plot the partial effect (β) of each covari-
ate against κ to see how our assumption of κ could influence the interpretation of the
environmental effects on distortions.

The results are shown on Figure 3. The partial regression coefficients at increasing κ

are qualitatively similar, the effects of environmental factors change but only asymptotically,
and the signs of these coefficients do not change in general. The only exception is the effect
of temperature on the expected distortion in polar requirements. Here, in higher ranges of
ti/tv (κ > 3.5), the distortive effect becomes non-significant (p > 0.01). Nonetheless, we may
conclude that the other effects of environmental selection remain similar over a broader
range of ti/tv-ratios; thus, our interpretations of the impact of environmental conditions
remain valid, including the distortive effect in thermophiles with regard to the other three
physicochemical traits.
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Figure 3. The effect of ti/tv-ratio (κ) on the effects of environmental coefficients (β) to the responses of the four distinct
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p < 0.01; white: p > 0.01).
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3.3. The Effect of GC-Content on Physicochemical Fidelities

The inclusion of quadratic effects on GC-content is mainly used to control for more
elusive effects generating shift in genomic composition (see Introduction). All distortions
on Figures 1 and 2 show significant variations in the mesophilic range. This is attributed to
the predominant effect of GC-bias (Tables 1 and 2).

In the larger sample of Dataset S2, which includes only optimal temperature data, all
distortion measures show a significant quadratic response to GC (Table 2). Said significant
quadratic responses in Table 2 are caused presumably by an unaccounted effect of salt
concentration leading to high GC-bias typical of halophilic archaea [30] (observe the
distortion in polar requirements on Figure 2, and the cluster of archaea around 37.5 ◦C) or
other unaccounted effects.

This is further supported by the fact that most effects of GC-content are missing if we
account for all three environmental factors in Dataset S1 (Table 1). Only the distortion in
polar requirements stays quadratic in this case. The effect on hydropathic distortion appears
linear, with the quadratic term remaining non-significant. We also find a weaker statistical
support for a quadratic response of distortion in isoelectric properties (βstd = –0.73; t = –2.27;
p = 0.024), indicating higher fidelity in GC-biased proteomes. The response of volumetric
distortion is not significant. Just as in the case of environmental effects (Section 2.3), these
effects (or the lack of thereof) are largely robust to ti/tv-ratio (Figure 4).
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p < 0.001; grey: p < 0.01; white: p > 0.01).

To visualise the minima or maxima arising in the assumed relationship between GC-
content and distortions at different ti/tv-s (κ = {0.5, . . . , 10}), we have extrapolated from the
available data to the whole parameter space. Data were extracted, similar to the process
described in Section 3.2, using the prokaryotic data controlling for all environmental
variables (Dataset S1). Then, expected distortion values were standardized for each value
of κ. Figure 5 shows the results, indicating that the expected (fitted) distortion in the
hydropathic trait is lowest at low GC-contents. Conversely, the maximum fidelity (i.e.,
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minimized distortion) measured in polar requirements is achieved with a moderately
high GC-bias, along with a slight shift of minima towards intermediate GC-content at
increased κ. These effects of GC-content on hydrophobicity-related distortions (hydropathy
and polar requirement) appear at first sight to be antagonistic, cancelling each other out.
However, as the regression of the hydropathic distortion results in better fit compared to
polar requirement (Table 1), we suggest that the general fidelity in hydrophobic property is
maximized at low-intermediate or intermediate GC-content. Nonetheless, this relationship
will require further analysis in the future.
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4. Discussion

To figure out the evolution of the genetic code, we must also understand how factors
known for affecting codon or amino acid usage, such as environmental selection [20–33] and
the GC-composition of the coding region [48,51,81,82], may leave their mark on code usage.
We can estimate the average impact of non-synonymous genomic mutations (i.e., distortion)
via the change in four distinct amino acid physicochemical properties: hydropathy, polar
requirement (both are hydrophobic characters), volume, and isoelectric point (the latter
reflecting polar properties and charge). With more whole genomes available and datasets
on optimal growth conditions (optimal growth temperature, NaCl concentration and pH),
we can establish the expected change in distortions with optimal environmental conditions
and GC-content.

The current study confirms that extreme environments, by selecting for specific codon
usages, can negatively affect physicochemical fidelity, increasing the average severity
of incidental genomic mutations. This is demonstrated on two datasets: (i) one dataset
documents optimal temperature, salt concentration, and pH conditions for Bacteria and
Archaea [67], whereas the (ii) second compiles optimal growth temperature conditions for
a more comprehensive sample including members of all three domains [68]. Although
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Bacteria are overrepresented in both, our earlier analysis on a smaller but phylogenetically
controlled dataset showed similar effects that are robust to taxon sampling [69]. We can
also confirm that the inclusion of Eukaryotes is unlikely to change this picture. Thus, at
least with regard to habitat temperature, we may be revealing a trend that is universal to
all organisms of Earth: environmental selection is likely to affect the efficiency of using the
standard genetic code.

4.1. Selection in Extremophiles can Decrease Mutational Robustness

Adaption to increasing temperatures results in codon usage profiles that are generally
worse at maintaining hydrophobic, polar, and volumetric patterns, than those of organisms
(including Eukaryotes) thriving at lower temperatures. In other words, the conservation of
these physicochemical properties tends to be more unreliable and the effects of incidental
mutations are expected to be more severe. Despite the adjustment of codon usage against
such mutations [28], this reduced mutational robustness of thermophiles could lead to
an increased risk of defective mutants (e.g., by disturbing folding processes or decreased
stability), especially if we consider the higher importance of hydrophobic interactions and
salt bridges in thermoadapted proteins compared to mesophile orthologs [29,37,42,83].

The ultimate effect of selection for halotolerance is similar. Although the exact impact
on hydrophobic characters is hard to assess, the codon usage profile of halophiles has clear
costs of higher distortion of polar and charged (isoelectric) properties. Halophilic proteins
are often characterized by ion-pair networks, and a higher abundance of acidic residues
is required to grant solubility at high intracellular K+-concentrations while hydrophobic
cores become weaker [25,34,38,39]. These strategies suggest that the importance of polar
properties outweigh other effects (including hydrophobic fidelity). Hence, codon usage of
halophiles might be just as suboptimal as thermophiles at retaining biologically relevant
physicochemical patterns.

These observations may partly explain why thermophiles [84–86] and halophiles [87,88]
possess remarkably low mutation rates compared to other taxa. The strong selection patterns
against mutations primarily encountered in these extremophiles might be caused by the
relative inefficiency of codon usages in these environments, for which the genetic code seems
especially ill-suited with regard to mutational robustness. Therefore, in these species, the
increased fidelity of replication could exist as an adaptation to avoid these harsh fitness costs
posed by the more adverse effects of genomic mutations. To put it differently, if mutations
have milder fitness consequences, then higher mutation rates are tolerated (which is the case
for mesophiles). Per generational mutation rates, for example, are higher for longer living
organisms having lower population sizes (such as ourselves), compared to short lived, but
numerous organisms (such as bacteria) because lower population sizes make some of the
slightly deleterious mutations nearly neutral [89,90].

4.2. GC-Content and Its Effect on Distortions

For the effect of GC-content, our models predict significant effects in distortions
of hydrophobic attributes (hydropathy and polar requirement). The hydrophobic core
and hydrophobic interactions are generally regarded as the primary guides of protein
folding [91–93], further supplemented by the fact that secondary structures can often be
described and predicted according to these properties [94]. Therefore, our results suggest
that GC-bias (and related factors) might have a secondary impact on mutational robustness.

Unfortunately, the exact effect on hydrophobicity is difficult to entangle in this study,
albeit a slightly pronounced AT-bias is the most likely to minimize distortion. This could
be in accord with an earlier analysis accounting for phylogenetic bias in a small sample
of prokaryotes [69], and other observations attesting for a general AT-biased substitution
pattern [57–59]. If that is the case, an A/T-mutation should be more likely to fix due to
its lower risk of perturbing hydrophobic patterns in proteins. For the record, however,
we mention that there are other mechanisms consistent with AT-bias [95], and the an-
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tagonistic responses of hydropathy and polar requirement found in this study demand
further analysis.

Other effects of genomic GC-composition could indicate more specific needs. We also
find that a higher usage of G and C can minimize distortion in isoelectric properties. As
discussed earlier, the molecular strategy of halophiles might require lower distortion in
this feature, while the underlying environmental selection acts against that. In this regard,
the elevated GC-bias typical of halophiles [25,30] is likely to be a resulting side-effect of an
already strong counterbalancing pressure to mitigate the distortive effects of mutations
by exploiting the degeneracy of the genetic code along with the flexibility in the choice of
physiochemically similar amino acids. The remaining negative effects along the salinity
gradient (Figure 1) could show the insurmountable limits of the mapping. This again
emphasises that causal relationships between the nucleotide and amino acid compositions
cannot be completely separated; they depend on various evolutionary and environmental
factors [26,32,45,82,96–99] and there are additional trade-offs between these two, especially
in genomes with more extreme nucleotide compositions [51].

4.3. Limitations of the Current Model and Future Prospects

As with all computational models, our framework also works with simplifying as-
sumptions. Here, we focused on the effects propagated by genomic mutations. On this
level, the probability that a triplet ci is substituted by cj does not depend on which base
is mutated, whereas misread probabilities clearly depend on the position in the event of
mistranslation [8,18,100], which is an additional, albeit not constant and not hereditary,
level of distortion.

Another obvious caveat is the assumption that translation mechanisms are uniform
across the Tree of Life. Although the genetic code is quasi-universal, the entire apparatus of
protein synthesis is not. There could be many species-specific adaptations to compensate
for environmental conditions or other codon usage defining effects, for which our analysis
cannot account. In this regard, we have already proposed the lowered mutation rate as a
likely environment-specific mechanism to optimize translation in certain extremophiles, but
other species-specific adaptations could exist to compensate for environmental conditions
or biased genomic composition.

We also operate under the assumption that all proteins are expressed at the same level.
That is an obvious simplification. The expression levels have evolutional importance [101]
related to thermophilic properties [102] and misfold chance [103], emphasizing that the
genetic code cannot be understood without the other structural aspects of proteins (e.g.,
change in folding free energy [18,100]). We also note that, compared to other prokaryotes,
thermophiles and halophiles possess elevated rates of horizontal gene transfer [104–106].
Using complete proteomes might interfere with the analysis due to recently acquired genes
in these taxa, and a succeeding study focusing on core genes is needed. We believe that
upcoming models will be able to address some of the issues by comparing the mutational
effects on more local structures (e.g., active sites or aligned sequences). In this regard,
employing mixed models on a small subset of protein families responsible for core functions
(e.g., translation, transcription, and replication) is already underway.

4.4. Implications of the Non-Extremophile Optimality of the Genetic Code and Codon Usage

The evolution of genetic code was a long process likely to be affected by multiple driv-
ing forces (e.g., stereochemical affinity between codons and attributed amino acids [4,5] or
coevolution between the biosynthetic paths of amino acids and cognate codons [6,7]). From
start to finish, it cannot be understood solely by natural selection increasing mutational
robustness [14]. At first, this feature might have been only a consequence of evolution
based on other mechanisms [107–111]. Notwithstanding, the definitive version of the
genetic code appears to be a near-optimal robust mapping, because the majority of, but not
all [12,13], alternative codes fall short of such error minimalizing capacity [8,9]. Hence, the
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environment preference of the genetic code could potentially help us to reconstruct its late
phase of development along with the conditions that might have witnessed its finalization.

Our most striking result is that this final snapshot of the genetic code seems to be less
compatible with codon usages associated with high temperature. In terms of accuracy, its or-
ganization prefers a moderate, mesophilic environment instead. This observation not only
contradicts earlier analyses suggesting extremophilic preference of the code [46,47,112,113],
but also seem to go against influential phylogenies that provided intuitive evidence of an
extremophile LUCA by placing thermophiles as the most basal groups [114–117].

The common thermophilic ancestor, however, is only one side of the coin. It facilitates
a somewhat overreaching logic that the cradle of life, including the development of the
genetic code, was always associated with “infernal” environments of the Archean Earth.
Even the alleged thermophilic nature of LUCA is questionable, as rRNA and protein
sequences indicate that hyperthermophilic features of basal clades are actually parallel
adaptations, while the original root could have been non-thermophilic [118–121].

Whether LUCA was thermophilic or not, the standard genetic code is likely to give
a more complete picture of the story. LUCA was not the first living organism, nor the
one in which the genetic code evolved. Considerable time and environmental change
may have occurred between the first fully peptide-DNA based, translationally capable cell
and LUCA. The Late Heavy Bombardment (~4 Gyr ago), around which the LUCA was
recently dated [122], could be one probable cause of thermophilic lifestyles appearing as
an ancestral feature. Such a global cataclysm might have eradicated all surface life adapted
to moderate temperatures, leading to an early extinction event and a lack of information
on an ancient mesophilic biosphere favoured by the genetic code. There is, moreover,
tentative evidence of a period with a cooler Earth having a solid crust and liquid water
4.5 Gyr ago [123] due to the relatively lower output of the young Sun [124,125], which
could support the existence of such early moderate environments. Our results are entirely
consistent with this scenario, opening up the possibility of a mesophilic phase in the early
history of Life.

We must, however, emphasize that our results do not in any way imply that Life or
the primordial genetic code originated in a cold or mesophilic environment. We analysed a
final state of the genetic code that could only provide a glimpse into an era of its final stage,
much later than the Origin of Life or a primordial genetic code, but somewhere before
LUCA. We assume only that the canonical genetic code was “frozen” while it documented
the ruling conditions. This period could have been preceded and followed by periods with
significantly different environmental conditions.

Additionally, there is another aspect of mesophilic optimality that should hold even
if our naive conjectures are false. This pertains to the history after LUCA and involves
the perks of relaxed selection in mesophilic environments due to its better fit with the
genetic code. The distortions of mesophilic codon usages have shown that they are not as
sensitive to mutations. This not only means that low temperature ranges allow for a much
more economic replication, e.g., less sophisticated replicases or proofreading capacities
leading to higher mutation rates. In these environments, it also becomes easier to explore
the sequence space of proteins without serious fitness consequences, whereas without
mesophilic niches, the structural constraints [126] and low substitution rates required
at higher temperature [84,86] should have hindered the long-term evolvability and the
colonization of variable environments [127].

Somewhere after LUCA, the environment cooled gradually in the interval from 3.5
to 0.5 Gyr ago according to an analysis of elongation factors [128], allowing the offspring
of LUCA to adapt and colonize colder niches. This might have happened at a relatively
fast pace thanks to this specific code that prefers a mesophilic environment. We can only
imagine how differently (e.g., at what other rate) Life might have evolved and radiated
with a different codon to amino acid mapping.
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11. Wnętrzak, M.; Błażej, P.; Mackiewicz, D.; Mackiewicz, P. The optimality of the standard genetic code assessed by an eight-objective

evolutionary algorithm. BMC Evol. Biol. 2018, 18, 192. [CrossRef]
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