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Abstract
Background.  The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) causes resistance of 
tumor cells to alkylating agents. It is a predictive biomarker in high-grade gliomas treated with temozolomide, 
however, there is no consensus on which test method, methylation sites, and cutoff values to use.
Methods.  We performed a Cochrane Review to examine studies using different techniques to measure MGMT 
and predict survival in glioblastoma patients treated with temozolomide. Eligible longitudinal studies included (i) 
adults with glioblastoma treated with temozolomide with or without radiotherapy, or surgery; (ii) where MGMT 
status was determined in tumor tissue, and assessed by 1 or more technique; and (iii) where overall survival was 
an outcome parameter, with sufficient information to estimate hazard ratios (HRs). Two or more methods were 
compared in 32 independent cohorts with 3474 patients.
Results.  Methylation-specific PCR (MSP) and pyrosequencing (PSQ) techniques were more prognostic than 
immunohistochemistry for MGMT protein, and PSQ is a slightly better predictor than MSP.
Conclusions.  We cannot draw strong conclusions about use of frozen tissue vs formalin-fixed paraffin-embedded 
in MSP and PSQ. Also, our meta-analysis does not provide strong evidence about the best CpG sites or threshold. 
MSP has been studied mainly for CpG sites 76-80 and 84-87 and PSQ at CpG sites ranging from 72 to 95. A cutoff 
threshold of 9% for CpG sites 74-78 performed better than higher thresholds of 28% or 29% in 2 of the 3 good-
quality studies. About 190 studies were identified presenting HRs from survival analysis in patients in which MGMT 
methylation was measured by 1 technique only.
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Key Points

• Largest meta-analysis of predictive value of MGMT test methods, cutoff 
methylated/unmethylated status, and CpG sites.

• Comparison of studies using 2 or more MGMT test methods.

• Methylation-specific PCR and pyrosequencing techniques best prognosticators.

The IDH (isocitrate dehydrogenase) wild-type glioblastoma 
(glioblastoma multiforme [GBM]) is the most common pri-
mary brain tumor in adults, with an annual incidence of 
approximately 3/100 000 population. The standard therapy 
is surgical resection followed by radiotherapy and adju-
vant treatment with temozolomide, an alkylating agent. 
The median overall survival is 9.9  months for people 
treated with surgery plus radiotherapy and 15 months for 
people treated with surgery, radiotherapy, and chemo-
therapy.1 For people with IDH-mutant glioblastomas, me-
dian overall survival is 24 months for people treated with 
surgery and radiotherapy, and 31 months for people treated 
with surgery, radiotherapy, and chemotherapy.1 The cyto-
toxic effects of temozolomide are exerted by induction of 
O6-methylguanine and are counteracted by the repair en-
zyme O6-methylguanine-DNA methyltransferase (MGMT).2 
Expression of MGMT is highly regulated by epigenetic silen-
cing of the MGMT gene promoter and thus the MGMT pro-
moter methylation status is a widely used predictive marker 
for high-grade gliomas undergoing therapy with alkylating 
agents. However, MGMT methylation status does not al-
ways reflect gene expression, so the exact mechanism by 
which MGMT promoter methylation improves response to 
alkylating therapy is still unknown.

MGMT promoter methylation status testing is essen-
tial to inform treatment decisions in certain patients 
with GBM. For example, treating elderly patients with 
an unmethylated MGMT promoter with temozolomide 
has been shown to be detrimental when single-agent 
temozolomide chemotherapy was compared to radio-
therapy.3,4 On the basis of these findings, professional 
bodies, such as the European Association for Neuro-
Oncology (EANO), recommend evaluation of MGMT 
promoter methylation status in elderly people,5 and The 

National Institute for Health and Care Excellence (NICE) re-
commends that all high-grade gliomas are tested.6 Most 
non-elderly (aged under 65  years) people are currently 
treated with temozolomide chemotherapy regardless of 
MGMT promoter status, due to the lack of alternative treat-
ments.7 However, MGMT promoter status is still a useful 
prognostic marker that may impact clinical management 
and may also be used for recruitment into clinical trials for 
novel therapies.

A number of methods have been established to as-
sess MGMT promoter methylation status: methylation-
specific PCR (MSP), quantitative (real-time) MSP, such 
as MethyLight MSP, pyrosequencing (PSQ), bead array, 
methylation-specific multiplex ligation-dependent probe 
amplification (MS-MLPA)-PCR with high-resolution 
melting (HRM), co-amplification at lower denaturation 
temperature (COLD)-PCR, and digestion-based assays. 
Immunohistochemical detection of the MGMT protein or 
enzymatic activity has also been used as a proxy for meth-
ylation status. However, internationally accepted con-
sensus about the most appropriate diagnostic method 
for MGMT promoter status is lacking.8 MSP was used to 
assess MGMT promoter status in the landmark study by 
Hegi et al.9 The choice of technique to assess MGMT pro-
moter status in practice also depends on the amount and 
quality of the DNA sample(s) (eg, formalin-fixed paraffin-
embedded (FFPE) vs frozen tissue-derived DNA), the ro-
bustness and simplicity of the method, the availability of 
equipment and reagents necessary for each of the tech-
niques, cost, and experience. In the last United Kingdom 
National Quality Assessment (UK NEQAS) External Quality 
Assessment report, of 18 UK laboratories, 10 used PSQ, 
5 MSP, 2 HRM, and 1 MS-MLPA. MGMT promoter meth-
ylation can also be determined with Illumina bead chip 

Importance of the Study

It is important to reach a consensus of the best 
method(s) for assessing MGMT methylation status, 
based on the prognostic value of each method in 
predicting overall survival in people with glioblas-
toma treated with temozolomide. Currently, there is no 
consensus which CpG sites in the MGMT promoter 
region to be analyzed and which are the most rele-
vant cutoffs to determine methylated vs unmethylated 
status for quantitative tests. Previous systematic re-
views have assessed the prognostic value of MGMT 

promoter status assessed by a specific technique, for 
example, by pyrosequencing or methylation-specific 
PCR. However, no review has quantitatively determined 
which method correlates best with prognosis (although 
a previous study provided a narrative overview). In 
our Cochrane Review, we address a research priority 
question identified by the James Lind Alliance Neuro-
Oncology Priority Setting Partnership—an organization 
joining academics, patients, carers, and clinicians to 
set research priorities in different fields.

arrays, an increasingly popular method for brain tumor 
classification based on the epigenetic profile.10,11 All tech-
niques can only interrogate methylation status in specific 
regions within the MGMT promoter, and the effect of meth-
ylation status at different sites on prognosis is not well un-
derstood. In addition, some of the techniques quantify the 
amount of methylation present, and there is no consensus 
regarding the cutoff for categorizing methylation status.

We undertook a Cochrane Review12 to assess which way 
of measuring methylation of the MGMT promoter best pre-
dicts survival when people with glioblastoma are treated 
with temozolomide. The present article provides a sum-
mary of the key findings from the Cochrane Review.

Methods

Study Eligibility

Longitudinal studies of (i) adults (18 years and older) with 
(ii) first occurrence or recurrent glioblastoma, (iii) treated 
with temozolomide, and (iv) optionally concomitant and 
adjuvant therapies in addition to temozolomide, such as 
surgery or radiotherapy or both) (v) for whom the MGMT 
status was assessed by 1 or more techniques on tumor 
tissue, (vi) taken prior to treatment, but (vii) not in other 
types of samples such as blood samples, or by neuro-
imaging, were eligible for inclusion. Forms of glioma other 
than glioblastoma could be represented only if they consti-
tuted less than 10% of the total cases.

Eligible studies had to assess MGMT promoter meth-
ylation status in tumor tissue by 1 or more techniques. 
Eligible techniques included, but were not restricted to, (i) 
MSP; (ii) quantitative MSP (real-time PCR or MethyLight 
methylation-specific quantitative PCR); (iii) methylation-
specific sequencing, including PSQ; (iv) bead array; (v) 
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adjuvant therapies in addition to temozolomide, such as 
surgery or radiotherapy or both) (v) for whom the MGMT 
status was assessed by 1 or more techniques on tumor 
tissue, (vi) taken prior to treatment, but (vii) not in other 
types of samples such as blood samples, or by neuro-
imaging, were eligible for inclusion. Forms of glioma other 
than glioblastoma could be represented only if they consti-
tuted less than 10% of the total cases.

Eligible studies had to assess MGMT promoter meth-
ylation status in tumor tissue by 1 or more techniques. 
Eligible techniques included, but were not restricted to, (i) 
MSP; (ii) quantitative MSP (real-time PCR or MethyLight 
methylation-specific quantitative PCR); (iii) methylation-
specific sequencing, including PSQ; (iv) bead array; (v) 

MS-MLPA; (vi) PCR with HRM; (vii) COLD-PCR; and (viii) 
digestion-based assays. We also included studies as-
sessing (ix) MGMT expression (eg, immunohistochemistry 
[IHC] for protein expression, (x) mRNA levels, or (xi) MGMT 
enzymatic activity. Studies not reporting the test methods 
were excluded. Studies had to report a hazard ratio (HR), 
or data sufficient to allow a HR to be calculated. All tech-
niques are listed in Table 1.

Search Methodology

Electronic searches were performed on the following data-
bases up to December 2018: Ovid MEDLINE, PubMed (NOT 
MEDLINE), Ovid Embase, BIOSIS, and Web of Science 
Conference Proceedings Citation Index (CPCI-S). No re-
strictions were applied to language or date of publication. 
Other resources for searches were meeting abstracts from 
the Society of Neuro-Oncology (SNO), EANO, and the 
Japan Society for Neuro-Oncology (JSNO), retrieved via 
the CPCI-S. We examined the reference lists of included 
studies and of systematic reviews that have assessed the 
prognostic value of MGMT promoter status overall43 or as 
assessed by a specific technique; for example, by PSQ44 or 
MSP.45

Study Selection and Data Extraction

We used EPPI-Reviewer 4 (https://eppi.ioe.ac.uk) for pro-
cesses of screening and selection of studies and for part of 
the data extraction the review.46 Data were extracted and 
further analyzed in Microsoft Excel. Two review authors 
(“reviewers”) independently screened titles and abstracts 
of all identified search results and determined whether 
full texts should be retrieved. Then, 2 reviewers inde-
pendently assessed the full-text articles. Disagreements 

  
Table 1 Summary of the Characteristics of the Included Studies Comparing 2 and More Techniques

Technique Abbreviation No. of Studies References

Pyrosequencing PSQ 20 13–27

Methylation-specific PCR MSP 17 10,13,16–19,21–37

Immunohistochemistry IHC 9 13,18–20,22,26,31,33,36,38,39

Quantitative MSP qMSP 8 13,16,19,20,24,29,37,40

PCR with high-resolution melting HRM-PCR 3 13,16,35

Bead array  2 10,41

PCR targeting mRNA PCR-mRNA 2 20,30,38

Methylation-specific multiplex ligation-dependent probe amplifica-
tion

MS-MLPA 1 34

Methylation-specific restriction enzyme quantitative PCR MS-RE-qPCR 1 42

Methyl-beaming  1 42

Quantitative fluorescence immunohistochemistry QF-IHC (AQUA) 1 29

Double immunofluorescence  1 NS cohort15, RSD cohort15

qMSP combined with PSQ  1 22

qMSP combined with sequencing  1 27

Abbreviations: NS, Nordic Study; RSD, Region of Southern Denmark.

  

https://eppi.ioe.ac.uk
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were resolved either by consensus or by consulting a 
third reviewer. A Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) flow diagram was 
established (Figure 1) to describe the flow of information 
through the different phases of the review.

Full data extraction, risk-of-bias assessment, and syn-
thesis were performed on studies that evaluated MGMT 
promoter methylation status using 2 or more methods, 
enabling comparisons of methods to be made using 

the same samples of patients. Two reviewers independ-
ently performed data extraction on each of these articles. 
Disagreements were resolved by consensus, and a third 
reviewer was consulted when necessary. Table 2 lists the 
items extracted.

We treated each method for determining MGMT pro-
moter methylation status as a separate prognostic factor 
and extracted preferentially an unadjusted HR and its con-
fidence interval (CI) for each method. Where unadjusted 

  
5494 records identified through database searching

Ovid MEDLINE (1946 to 4-Dec-2018), n = 1500
PubMed NOT MEDLINE (4-Dec-2018), n = 101
Ovid Embase (1980 to 2018, Week 49), n = 2983
BIOSIS (1969 to 3-Dec-2018), n = 790
CPCI-S (1900 to 3-Dec-2018), n = 120

3357 record after
duplicates removed

3357 record
screened

1590 records excluded

Records excluded = 1526

Full-text articles excluded, with reasons (n = 7)
[see characteristics of excluded studies table]

Other-1 (n = 846)
[Some studies excluded with multiple reasons]

Wrong study design (67)

Wrong outcome (258)

Wrong population (453)

Wrong publication type (28)

MGMT measurement (241)

Other-2 (n = 673)

Conference abstracts (no eligible data) (608)
Single technique: HR not repoeted/can’t be
calculated (49)
Linked to another paper (5)
Other (11)

+ Awaiting Classification, n = 17

+ Ongoing Studies, n = 1
1767 full-text articles
assessed for eligibility

223 articles includes
in the review

190 articles providing
quantitative infotmation on
studies of a single method

32 seperate cohorts
(described in (33 + 20)
articles) on which multiple
methods were evaluated
using hazard ratios
(included in the
quantitative analyses)

20 additional informative
articles from references to
included studies

Fig. 1 Study flow diagram illustrating the selection process of records identified in the search.
  



1461Brandner et al. Meta-analysis of the predictive value of MGMT promoter methylation
N

eu
ro-

O
n

colog
y

  
5494 records identified through database searching

Ovid MEDLINE (1946 to 4-Dec-2018), n = 1500
PubMed NOT MEDLINE (4-Dec-2018), n = 101
Ovid Embase (1980 to 2018, Week 49), n = 2983
BIOSIS (1969 to 3-Dec-2018), n = 790
CPCI-S (1900 to 3-Dec-2018), n = 120

3357 record after
duplicates removed

3357 record
screened

1590 records excluded

Records excluded = 1526

Full-text articles excluded, with reasons (n = 7)
[see characteristics of excluded studies table]

Other-1 (n = 846)
[Some studies excluded with multiple reasons]

Wrong study design (67)

Wrong outcome (258)

Wrong population (453)

Wrong publication type (28)

MGMT measurement (241)

Other-2 (n = 673)

Conference abstracts (no eligible data) (608)
Single technique: HR not repoeted/can’t be
calculated (49)
Linked to another paper (5)
Other (11)

+ Awaiting Classification, n = 17

+ Ongoing Studies, n = 1
1767 full-text articles
assessed for eligibility

223 articles includes
in the review

190 articles providing
quantitative infotmation on
studies of a single method

32 seperate cohorts
(described in (33 + 20)
articles) on which multiple
methods were evaluated
using hazard ratios
(included in the
quantitative analyses)

20 additional informative
articles from references to
included studies

Fig. 1 Study flow diagram illustrating the selection process of records identified in the search.
  

HRs were not reported directly, we obtained them from re-
ported individual participant data (IPD), reported adjusted 
HR’s or reconstructed IPD from published Kaplan-Meier 
survival curves.47 When IPD or reconstructed IPD available 
for 3 or more groups, the groups were combined to enable 
2-way comparison (eg, by comparing “unmethylated” with 
combined “weakly methylated” and “methylated”).

For studies that evaluated MGMT promoter methyla-
tion status using only a single method, a single reviewer 
extracted information on author, year, country, follow-up, 
number of participants, tumor type, IDH mutation status, 
and MGMT technique.

Assessment of Risk of Bias

The risk of bias in studies evaluating MGMT promoter 
methylation status of the same patients using at least 2 
methods was assessed with a modified version of the 

Quality in Prognosis Studies (QUIPS) tool,48 across the 
domains: study participation, subsequent treatment, out-
come measurement, prognostic factor measurement, 
study attrition, adjustment for other potential prognostic 
factors (where relevant), and selective reporting.

Data Synthesis and Meta-Analysis

The prognostic ability of each individual method was quan-
tified using a HR for overall survival, presented with a 95% 
CI. Comparisons of tests were restricted to those that could 
be made on the same patients within the same study. The 
directions of HRs were harmonized to reflect a better out-
come with a greater HR. Where 5 or more studies had com-
pared the same pair of techniques on the same patients, 
we computed ratio of hazard ratios (RHR), and combined 
these across studies using standard random-effects meta-
analysis methods.49 We evaluated certainty in the evidence 
following the GRADE framework.50

  
Table 2 Parameters Captured and Assessed for Each Included Study of 2 or More Methods

Study characteristics Author

 Year

 Country

 Length of follow-up

 Study dates

 Study design

Population characteristics Number of participants

 Population source and setting

 Timing of MGMT promoter methylation assessment

 Inclusion/exclusion criteria

 Tumor type

 Age

 Gender

 Karnofsky performance status

 Extent of resection

 Treatment regimen

 Length of time between neurosurgery and start of 
treatment

 IDH mutation status

 First diagnosis or recurrent disease

 Deaths during follow-up

 Prevalence of MGMT promoter methylation (by each 
technique

Method(s) of MGMT promoter methylation assess-
ment

Technique

 Tumor sample type (ie, FFPE or frozen tissue)

 Region/CpGs analyzed (for PCR-based tests); anti-
body used (for immunohistochemistry

 Cutoff/threshold used to determine MGMT promoter 
methylation status (where relevant)

Outcome assessment Timepoint from which overall survival is measured

Missing data Number of participants with any missing data

Abbreviations: FFPE, formalin-fixed paraffin-embedded; IDH, isocitrate dehydrogenase; MGMT, O6-methylguanine-DNA methyltransferase.
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CpGs Sym 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

3

3 MS-RE-qPCR
MS-RE-qPCR

1 Beadarray 1

1 MSP 11111 111

2 Bead array 1

2 Bead array 2222222

2 PSQ 22222

15 Methyl-Beaming 15 15 15 15 15

15 PSQ 15 15 15 15 15 15

16 MSP 16 16 16 16 16 16 16 16 16

16 MSP 16 16 16 16 16 16 16 16 16

16 PSQ
16 PSQ
14 QF-IHC(AQUA)
14 qMSP
12 PSQ 12 12 12 12 12 12 12 12

12 PSQ 12 12 12 12 12 12 12 12

17 PSQ 17 17 17 17

17 PSQ 17 17 17 17 17 17 17 17

17 PSQ 17 17 17 17

17 PSQ 17 17 17 17 17 17 17

17 PSQ 17 17 17 17 17

17 PSQ 17 17 17 17

18 DIF
18 PSQ 18 18 18 18 18

18 DIF
18 PSQ 18 18 18 18 18

19 PSQ 19 19 19 19 19 19 19 19 19 19 19 19

19 PSQ 19 19 19 19 19 19 19 19 19 19 19 19

19 PSQ 19 19 19 19 19 19 19 19 19 19 19 19

19 PSQ 19 19 19 19 19 19 19 19 19 19 19 19

19 PSQ 19 19 19 19 19 19 19 19 19 19 19 19

19 PSQ 19 19 19 19 19 19 19 19 19 19 19 19

10 IHC
10 mRNA
10 MSP
20 MSP 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

20 MSP 20 20 20 20 20 20 20 20 20

20 PCR with HRM 20 20 20 20 20 20 20 20 20 20 20 20

20 PSQ 20 20 20 20 20

20 PSQ 20 20 20 20 20

20 PSQ 20 20 20 20 20

20 PSQ 20 20 20 20 20

20 PSQ 20 20 20 20 20

20 PSQ 20 20 20 20

20 PSQ 20 20 20 20

20 PSQ 20 20 20 20

20 PSQ 20 20 20 20

20 qMSP 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

21 IHC
21 MSP 21 21 21 21 21 21 21 21 21

21 PSQ 21 21 21 21

21 qMSP 21 21 21 21 21 21 21 21

13 IHC
13 MSP 13 13 13 13 13 13 13 13 13

13 PSQ 13

13 PSQ 13

13 PSQ 13

13 PSQ 13

13 PSQ 13

13 PSQ 13 13 13 13 13

13 qRT-PCR
13 SQ-MSP 13 13 13 13 13 13 13 13 13

22 MSP 22 22 22 22 22 22 22 22 22

22 PSQ 22 22 22 22 22 22 22

9 IHC
9 PSQ
9 qMSP-PSQ
9 qMSP-PSQ
9 qMSP-PSQ
23 IHC
23 MSP 23 23 23 23 23 23 23 23 23

23 PSQ 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

24 MSP 24 24 24 24 24 24 24 24 24

24 MSP 24 24 24 24 24 24 24 24 24

24 PSQ 24 24 24 24 24 24 24 24 24

24 PSQ 24 24 24 24 24 24 24 24 24

6 IHC
6 MSP 66666 666

4 MSP 44444

4 PSQ 44444

7 IHC
7 MSP 77777 777

8 FSQ-MS-PCR 88888 8888

8 FSQ-MS-PCR 88888 8888

11 MS-MLPA
11 MS-MLPA
11 MSP 11 11 11 11 11 11 11 11

25 PSQ 25 25 25 25 25

25 PSQ 25 25 25 25 25

25 PSQ 25 25 25 25 25

25 PSQ 25 25 25 25 25

25 PSQ 25 25 25 25 25

25 PSQ 25 25 25 25 25

25 PSQ 25 25 25 25 25

25 PSQ 25 25 25 25 25

25 PSQ 25 25 25 25 25

25 PSQ 25 25 25 25 25

25 PSQ 25 25 25 25

25 PSQ 25 25 25 25

25 25 25 25 25 25 25 25 25 25

25 25 25 25 25 25 25 25 25 25

25 25 25 25 25 25 25 25 25 25

25 25 25 25 25 25 25 25 25 25

25 SQ-MSP
SQ-MSP

SQ-MSP

SQ-MSP
SQ-MSP

25 25 25 25 25 25 25 25 25

26 IHC
26 MethylLight-MSP 26 26 26 26 26 26 26 26 26 26 26 26

26 MSP 26 26 26 26 26 26 26 26 26

26 PCR with HRM 26 26 26 26 26 26 26 26 26 26 26 26 26 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26

26 PSQ 26 26 26 26 26

26 PSQ 26 26 26 26 26

26 PSQ 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26

26 PSQ 26 26 26 26 26

26 PSQ 26 26 26 26

26 PSQ 26 26 26 26 26

26 PSQ 26 26 26 26 26

26 PSQ 26 26 26 26 26

26 PSQ 26 26 26 26 26

26 PSQ 26 26 26 26 26

26 PSQ 26 26 26 26 26 26

26 PSQ 26 26 26 26 26

27 PSQ 27 27 27 27 27

27 PSQ 27 27 27 27 27

27 PSQ 27 27 27 27 27

29 MSP 29 29 29 29 29 29 29 29 29

29 PSQ 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29

30 MSP 30 30 30 30 30 30 30 30 30

30 PCR with HRM 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

30 PCR with HRM 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

30 PCR with HRM 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

30 PCR with HRM 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

30 PCR with HRM 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

31 IHC
31 MSP 31 31 31 31 31 31 31 31 31

32 MSP 32 32 32 32 32 32 32 32 32

32 MSP 32 32 32 32 32 32 32 32 32

32 MSP 32 32 32 32 32 32 32 32 32

32 MSP 32 32 32 32 32 32 32 32 32

32 MSP 32 32 32 32 32 32 32 32 32

3 Almuqate 2018
1 Bady 2012 (M-GBM)
2 Bady 2012/Etcheverry 2010 (E-GBM)

15 Barault 2015
16 Barbagallo 2014
14 Bell 2017
12 Brigliadori 2016

17

Chai 2018 (7-site cohort)
Chai 2018 (8-site cohort)

18

Dahlrot 2018 (NS cohort)
Dahlrot 2018 (RSD cohort)

19 Dunn 2009
10 Felsberg 2009
20 Havik 2012/Johannessen 2018
21 Hsu 2015/2017
13 Karayan-Tapon 2010
22 Kim 2016
9 Kristensen 2016

23 Lalezari 2013
24 Lattanzio 2015
6 Lechapt-Zalcman2012
4 McDonald 2013
7 Melguizo 2012
8 Nguyen 2015

11 Park 2011
26 Quillien 2012/2014 (test)
27 Quillien 2014 (validation)
25 Quillien 2016/2017
29 Thon 2017
30 Yamashita 2018
31 Yang 2012
32 Yoshioka 2018

Technique

Test Symbol

Beadarray

DIF

FSQ-MS-PCR

IHC

MethyI-Beaming

MethylLight-MSP

mRNA

MS-MLPA

MSP

MS-RE-qPCR

PCR with HRM

PSQ

QF-IHC(AQUA)

qMSP

qMSP-PSQ

qRT-PCR

SQ-MSP

Fig. 2 Schematic overview of the CpG sites tested in the different publications. The first column is a color-coded representation of the authors, 
which are shown in the inset on the right. The CpG sites are listed in numerical order, corresponding to the iterative positions relative to transcrip-
tion start. The corresponding sites, test methods, and thresholds are shown in detail in the Supplementary data. Each row represents a distinct 
method and where applicable, different CpG sites or thresholds. Rows with blank cells (ie, no color-coded CpG sites) indicate that a method was 
not PCR-based test or that CpG information is not available. For studies using PCR primers as described by Esteller et al.51 CpG site location is 
based on Malley et al.52
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Additional Analyses

The full Cochrane Review includes more details of the 
methods and further analyses including adjusted HRs 
(examining the prognostic value of tests in addition to age 
and extent of resection) and sensitivity analyses. In addi-
tion, it collates information about the UK costs of the main 
techniques and cost comparison ratios.12

Results

Results of the Search

The search identified 5494 records, of which 223 were in-
cluded in the review (see Figure 1). These comprised 32 
separate cohorts of patients (“studies”) where 2 or more 
methods were compared, including studies comparing 
different variants of the same technique. About 190 fur-
ther articles describing single-technique studies were 
also included and are described in a separate section 
below.

Characteristics of the Included Studies

The 32 studies included a total of 3474 participants. The 
techniques investigated and the corresponding references 
are listed in Table 1. All studies had a standard cohort de-
sign. Studies were undertaken in Europe (n  =  19), North 

America (n = 2), East Asia (n = 8), Australia (n = 1), or in 
multiple countries (n = 2). Average patient age ranged from 
44 to 64, with an overall male: female ratio of 1.5:1. The vast 
majority were patients with glioblastomas, predominantly 
undergoing total resection. Figure 2 illustrates the CpG 
sites targeted in the studies. The Supplementary data pro-
vide a comprehensive overview of the data from all indi-
vidual comparison studies.

Findings: Comparisons of Different Techniques

The 160 extracted HRs are reported in the Supplementary 
data and summarized in Table 3. In all cases, the estimated 
HR is above 1, indicating higher hazard of death in those 
with unmethylated MGMT promoters. In the vast majority 
of cases, the lower limit of a 95% CI for the HR is above 1, 
confirming the prognostic value of MGMT promoter meth-
ylation status. When examining these results, we empha-
size that comparisons should only be made of different 
methods within studies. HRs should not be compared 
across studies because there are many (more substantial) 
differences between these results than the choice of tech-
nique, tumor sample, CpG islands, or thresholds.

Meta-analysis of RHR (Table 3) shows that MSP (CpG 
sites 76-80 and 84-87) is more prognostic than IHC (varying 
thresholds) with RHR  =  1.31 (95% CI: 1.01-1.71). Since a 
large majority of MSP studies had examined CpG sites 
76-80 and 84-87,52 we were unable to compare alternative 
CpG sites for MSP. We also found evidence that PSQ is 

  
Table 3 Summary of Findings of Comparisons of Methods for Measuring MGMT Promoter Methylation Status

Technique 1 Technique 2 RHR (95% CI) Partici-
pants

Studies Certainty of 
Evidence

Reason for Down Rating

MSP IHC 1.31 (1.01-1.71) 913 7 Moderate Imprecision

PSQ IHC 1.36 (1.01-1.84) 871 5 Low Imprecision and indirectness (due to variability in 
CpG sites and thresholds used for PSQ)

PSQ MSP 1.14 (0.87-1.48) 1119 9 Low Imprecision and indirectness (due to variability in 
CpG sites and thresholds used for PSQ)

PSQ PSQ (variant 
of)

Not estimated 876 11 Very low Serious risk of bias, imprecision, inconsistency, 
and indirectness

qMSP MSP of PSQ Not estimated 765 7 Very low Risk of bias, imprecision, inconsistency, and indi-
rectness

Bead array MSP of PSQ Not estimated 81 2 Very low Serious imprecision, inconsistency, and indirect-
ness

PCR-mRNA MSP or PSQ Not estimated 148 2 Very low Imprecision, inconsistency, and indirectness

MS-MLPA MSP or PSQ Not estimated 48 1 Very low Serious risk of bias, serious imprecision, incon-
sistency, and indirectness

PCR-HRM MSP or PSQ Not estimated 309 3 Very low Risk of bias, serious imprecision, inconsistency, 
and indirectness

Others MSP or PSQ Not estimated 1209 7 Very low Serious imprecision, inconsistency, and indirect-
ness

Abbreviations: CI, confidence interval; RHR, ratio of hazard ratios; for technique abbreviations, see Table 2.
The outcome being predicted is overall mortality (time to death). Grades of evidence: high quality, further research is very unlikely to change our con-
fidence in the conclusion; moderate quality, further research is likely to have an important impact on our confidence in the conclusion; low quality, 
further research is very likely to have an important impact on our confidence in the conclusion; very low quality, we are very uncertain about the 
conclusion.

  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab105#supplementary-data
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more prognostic than IHC (RHR = 1.36; 95% CI: 1.01-1.84), 
although studies of PSQ feeding into this analysis had tar-
geted different CpG sites. While there is a consistent pat-
tern that PSQ seems to be a slightly better predictor than 
MSP, there is no strong statistical evidence to confirm this 

(RHR = 1.14; 95% CI: 0.87-1.48). The CpG sites targeted by 
PSQ ranged between 72 and 95, and several studies had 
examined sites 74-78. There was a suggestion that PSQ 
(mainly at CpG sites 74-78, but with varying thresholds) is 
slightly more prognostic than MSP (sites 76-80 and 84-87).

  

Participant
selection

Subsequent
treatment

Outcome 
measurement

Almuqate 2018

Bady 2012 (M-GBM)

Barault 2015

Barbagallo 2014

Bell 2017

Brigliadori 2016

Chai 2018 (7-site cohort)

Chai 2018 (8-site cohort)

Dahlrot 2018 (NS cohort)

Dahlrot 2018 (RSD cohort)

Dunn 2009

Felsberg 2009

Havik 2012/Johannessen 2018

Hsu 2015/2017

Karayan-Tapon 2010

Kim 2016

Kristensen 2016

Lalezari 2013

Lattanzio 2015

Lechapt-Zalcman 2012

McDonald 2013

Melguizo 2012 

Nguyen 2015

Park 2011 

Quillien 2012/2014 (test) 

Quillien 2014 (validation)

Quillien 2016/2017

Thon 2017

Yamashita 2018

Yang 2012

Yoshioka 2018

Risk of bias
Study ID (author/year) Colour code

Bady 2012/Etcheverry 2010 (E-GBM)

Fig. 3 Study-level risk-of-bias assessments for studies comparing 2 or more methods. participant selection, subsequent treatment, and out-
come. Green (+) = low risk of bias; Yellow (−) = unclear risk of bias. The color codes of the individual studies correspond to those in Figure 1. 
Abbreviations: GBM, glioblastoma multiforme; NS, Nordic Study; RSD, Region of Southern Denmark.
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We did not perform formal analyses to investigate 
whether heterogeneity in HRs may have been due to age, 
extent of tumor resection, Karnofsky performance status, 
IDH status, first diagnosis vs recurrence, start and length 
of follow-up, due to the very limited replication of specific 
methods, and large amounts of missing data for many of 
these study characteristics.

Many variants of PSQ have been compared, although we 
did not see any strong and consistent messages from the 
results. Thresholds varied substantially (from 4% to 25% 
for single CpG sites; and from 2.68% to 35% for multiple 
CpG sites). Two of the three studies with low (or unclear) 
risk of bias that compared different thresholds found that a 
9% threshold was more prognostic than higher thresholds 
(of 28% or 29%; see top 2 results in Figure 4). We are un-
able to draw strong conclusions about use of frozen tissue 
vs FFPE in MSP, although 1 study observed that MSP was 
more prognostic when based on frozen tissue. No clear 
difference was apparent between using PSQ on FFPE vs 
frozen tissue.

Risk-of-Bias Assessment and Certainty in the 
Evidence

We present results of the risk-of-bias assessment for the 
3 domains that apply to the whole studies in Figure 3. All 
studies were assessed to be at low or unclear risk of bias for 
participant selection. All studies except one were assessed 
as at low risk of bias arising due to variation in subsequent 
treatment after collection of the tumor sample. All studies 
were assessed to be at low risk of bias in measurement of 
the outcome (all-cause mortality). The other aspects of the 
risk-of-bias assessment apply to individual results. We were 
mostly free of concerns about risk of bias in the domains 
for study attrition, problems with other prognostic factors 
adjusted for, and selective reporting. For some results, the 
threshold used to classify methylation status was derived 
from the data, leading to a high risk of bias. The result-level 
risk-of-bias assessments for studies examining PSQ are in-
cluded in Figure 4. Table 3 summarizes the certainty of the 
evidence from comparative studies, grouped by technique.

  
Table 4 Characteristics of Studies Examining MGMT Promoter Methylation With 1 Technique Only

Study Parameter Characteristics No. of Studies

Total number of studies  190

Reporting follow-up information  54

Reporting follow-up range  29

Reporting data on IDH1/IDH2 mutation  62

 All IDH wild type 11

 IDH mutation present (0.7%-73.4%) 47

 No IDH mutation reported 3

Reporting tumor type Glioblastomas only (all studies) 183

 Glioblastoma: supratentorial 9

 Glioblastoma: primary 23

 Glioblastoma: primary, supratentorial 1

 Glioblastoma: recurrent 4

 Mixed glioma + gliosarcoma 6

 Gliosarcoma only 1

Test method MSP 94

 PSQ 27

 qMSP (real-time PCR or MethyLight) 22

 Bead array 10

 MS-MLPA 4

 HRM-PCR 3

 MGMT protein (IHC) 21

 MGMT protein (Western blot) 1

 mRNA 4

Abbreviations: HRM-PCR, PCR with high-resolution melting; IDH, isocitrate dehydrogenase; IHC, immunohistochemistry; MGMT, O6-
methylguanine-DNA methyltransferase; MS-MLPA, methylation-specific multiplex ligation-dependent probe amplification; MSP, methylation-specific 
PCR; PSQ, pyrosequencing; qMSP, quantitative methylation-specific PCR.
As per the study protocol, the results of these studies were not examined, because comparisons of HRs across studies would not provide reliable 
indicators of differences between the methods.
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Fig. 4 Hazard ratios from studies comparing different methods for PSQ. Hazard ratios from studies comparing different methods for PSQ. The 
scale on the bottom of the figure indicates the hazard ratio. Abbreviations: CI, confidence interval; CpG, 5′-cytosine-phosphate-guanine-3′; FFPE, 
formalin-fixed paraffin-embedded; NR, not reported; PF, prognostic factor; PSQ, pyrosequencing; RoB, risk of bias.
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Studies Examining Only a Single Technique

About 190 articles described studies presenting HRs from 
survival analysis in patients in which MGMT methylation 
was measured by 1 technique, and studies in which more 
than 1 technique was used but only MGMT methylation data 
from 1 method were used in the survival analysis (Table 4). 
These studies included a total of 27 710 participants (range 
6-1395). They were conducted in Italy (n = 29), multiple coun-
tries (n = 23), Germany (n = 21), the United States (n = 20), 
Japan (n = 18), China (n = 17), South Korea (n = 11), France 
(n = 9), Denmark (n = 8), Spain (n = 8), the United Kingdom 
(n = 6), India (n = 3), Switzerland (n = 3), Australia, Belgium, 
Czech Republic, Egypt, Taiwan (n = 2), and 1 study each in 
Canada, Portugal, Netherlands, and Tunisia.

Discussion

We took a systematic approach to identifying, appraising, 
and collecting information from the evidence and assessed 
risk of bias and applicability concerns using a modification 
of QUIPS specific to the topic of the Cochrane Review.48 
This is the first systematic review to our knowledge that 
compares methods for categorizing tumors as methylated 
in relation to their ability to predict survival in patients 
with glioblastoma. Unsurprisingly, among methods for 
assessing MGMT status in glioblastoma patients treated 
with temozolomide, PSQ and MSP appear to be more 
prognostic for overall survival than IHC. While there is a 
consistent pattern that PSQ seems to be a slightly better 
predictor than MSP, there is no strong statistical evidence 
to confirm this. Moreover, there is no strong evidence to 
draw conclusions with confidence about the best CpG sites 
or thresholds for quantitative methods. In our study, MSP 
has been studied mainly for CpG sites 76-80 and 84-87 and 
PSQ at CpG sites ranging from 72 to 95. A cutoff threshold 
of 9% for CpG sites 74-78 was found to perform better than 
higher thresholds of 28% or 29% in 2 of the 3 good quality 
studies making such comparisons.13,14,53

To ensure fair comparison of methods, we assessed 
comparisons on the same patients and tumors within a 
study. A large variety of variants have been examined, par-
ticularly the use of different CpG sites and thresholds for 
PSQ, as well as a mixture of use of FFPE and frozen tumor 
samples. There was only a small amount of direct replica-
bility across studies, meaning that firm conclusions were 
difficult to draw.

We limited eligibility for the review to studies that re-
ported HRs or data sufficient for us to estimate them. In 
many instances, we reconstructed time-to-event data from 
Kaplan-Meier curves, allowing us to include 14 studies that 
we would not have included otherwise. However, there 
were still a small number of studies that had sought to 
compare methods but not presented data compatible with 
computation of HRs, which therefore did not meet our eli-
gibility criteria.

We listed brief details of articles describing studies 
examining only 1 technique in the full Cochrane Review, 
although these were not included in the final meta-
analysis (Table 4 and reference 12). Among the studies 
that compared multiple techniques, we observed that HRs 

varied markedly across studies, and we were unwilling to 
make naive indirect comparisons of techniques across dif-
ferent studies and we are presenting quantitative results 
for these studies.12

We rated the evidence for the comparison between MSP 
and IHC as of “moderate certainty,” and the evidence for 
comparisons of PSQ with MSP or IHC as of “low certainty” 
(Table 3). All other comparisons we rated as “very low cer-
tainty.” Although risk-of-bias and publication bias were not 
major concerns for us, we rated down many of our assess-
ments because there was a wide variety of different CpG 
sites and thresholds investigated, without systematic repli-
cations of findings using the same methods across studies. 
The amount of evidence is small, with only tens or at most 
the low hundreds of participants contributing to evidence 
for many of the techniques.

The evidence identified was generally applicable to clinical 
practice. We included only studies in which at least 90% of pa-
tients had glioblastoma, and nearly all patients were treated 
with temozolomide. We focused on overall survival only, so 
are unable to draw conclusions about using techniques to 
predict progression-free survival. The decision which method 
to use in clinical practice however is not necessarily guided 
by best predictive value but is influenced by cost, turnaround 
time, availability of equipment: PSQ, the most quantitative 
method can be limited by the availability of equipment, while 
qMSP, a commonly used method, cannot accurately quantify 
heterogeneously methylated CpG sites.

Further large studies examining the use of different tech-
niques, using pre-defined threshold values for interpre-
tation, would provide valuable new information on these 
methods, and our review reflects the reality that it may be 
challenging to reach a consensus for the best method of 
MGMT promoter methylation testing.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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