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Abstract

Pain and depression are complex disorders that frequently co-occur, resulting in diminished

quality of life. The habenula is an epithalamic structure considered to play a pivotal role in

the neurocircuitry of both pain and depression. The habenula can be divided into two major

areas, the lateral and medial habenula, that can be further subdivided, resulting in 6 main

subregions. Here, we investigated habenula activation patterns in a rat model of neuropathic

pain with accompanying depressive-like behaviour. Wistar rats received active surgery for

the development of neuropathic pain (chronic constriction injury of the sciatic nerve; CCI),

sham surgery (surgical control), or no surgery (behavioural control). All animals were evalu-

ated for mechanical nociceptive threshold using the paw pressure test and depressive-like

behaviour using the forced swimming test, followed by evaluation of the immunoreactivity to

cFos—a marker of neuronal activity—in the habenula and subregions. The Open Field Test

was used to evaluate locomotor activity. Animals with peripheral neuropathy (CCI) showed

decreased mechanical nociceptive threshold and increased depressive-like behaviour com-

pared to control groups. The CCI group presented decreased cFos immunoreactivity in the

total habenula, total lateral habenula and lateral habenula subregions, compared to controls.

No difference was found in cFos immunoreactivity in the total medial habenula, however

when evaluating the subregions of the medial habenula, we observed distinct activation pat-

terns, with increase cFos immunoreactivity in the superior subregion and decrease in the

central subregion. Taken together, our data suggest an involvement of the habenula in neu-

ropathic pain and accompanying depressive-like behaviour.

Introduction

Neuropathic pain is a disorder with a prevalence of 7–10% [1] that results in great suffering in

patients and a significant burden to the healthcare system [2]. Similarly, depression affects

approximately 6% of adults worldwide [3]. Interestingly, patients with debilitating pain often
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present with depressive symptoms [4–6], while individuals who are depressed also demon-

strate an exacerbated pain perception [7, 8]. Hence, pain-associated depression refers to a

complex disorder in which persistent pain and major depressive disorder co-occur, displaying

synergic symptoms [9, 10]. Because of this synergism, pain and depression treatments rely on

similar mechanisms [11].

It has been proposed that the neuroanatomical bases of pain and depression involve similar

brain areas, such as the thalamus, amygdala and habenula [12–16]. The thalamus is a key area

in the ascending pain pathway (i.e. spinothalamic tract) and also thought to be critically

involved in depressive symptoms [14, 17]. Distinct amygdala subregions have been shown to

be involved in the expression of depressive-like behaviours in rodent models of neuropathic

pain [15]. Specifically, the anterior and posterior portions of the basolateral nucleus of the

amygdala (BLA) and the central portion of the central nucleus of the amygdala (CeA) are

involved in the neurocircuitry underlying neuropathic pain and the pharmacological inactiva-

tion of these areas reverses hyperalgesia, allodynia and depressive-like behavior in animals

with peripheral neuropathy [15].

The habenula (Hb), an epithalamic structure of the limbic system, plays a key role in the

endocrine system, reward, addiction, pain, and depressive behaviours [12, 13, 18]. The Hb can

be divided into lateral (LHb) and medial (MHb) parts, based on cell type and connectivity pat-

tern [19, 20]. The LHb can be further subdivided into lateral (LHbL) and medial (LHbM)

regions, while the MHb can be parcellated into superior (MHbS), inferior (MHbI), central

(MHbC), and lateral (MHbL) regions [20–23]. The LHb sends several outputs to the raphe

nuclei and ventral tegmental area [24], which are strongly related to analgesia [25] and have

been proposed to play a prominent role in pain processing [26, 27], and in depressive-like

behaviours in models of neuropathic pain [15, 28, 29]. Increased LHb activity is associated

with depressive behaviours [30, 31] via increased GABAergic neurotransmission, resulting in

inhibition of the dopaminergic and serotonergic systems [32, 33], which are involved in mech-

anisms of pain and depressive symptoms [28]. Furthermore, pharmacological inhibition of the

lateral habenula improves depressive-like behaviour in a rat model of depression [16].

The MHb has been implicated in stress, depression, memory processing, and nicotine with-

drawal syndrome [30, 34–36] and has a potential role in pain control [37]. Kim and Chang (2005)

suggested that MHb may mediate LHb activity by “boutons en passant” synapses from the MHb

to the LHb [38]. The MHb is believed to receive inputs from different areas within the limbic sys-

tem and projects to the interpeduncular nucleus (IPN), which in turn projects to specific areas of

the limbic system, thought to be involved in both pain and depressive behaviours [19, 39], includ-

ing the serotonergic raphe nuclei [40, 41]. The IPN receives input from the MHbS via substance P

and from the MHbI via acetylcholine [42–45]. High levels of mu opioid receptor (MOR) can be

found in cholinergic neurons in the MHb [46, 47] and are also distributed along the MHb-IPN

pathway, co-localizing with substance P [48]. Interestingly, elevated expression of substance P was

observed in the MHb-IPN connection in animals presenting depressive-like behaviours, and

MHb lesions were sufficient to suppress these behaviours [49].

In this study, we aimed to investigate the activation pattern of the LHb and MHb and its

subareas (LHbL, LHbM, MHbS, MHbI, MHbC, and MHbL) in a preclinical rat model of neu-

ropathic pain accompanied by depressive-like behaviour.

Materials and methods

Animals

Seventeen male Wistar rats (200–250 g) were used in this study. All animals were maintained

in regular rat cages (2–3 rats/box) with wood shavings and free access to water and rat chow

PLOS ONE Habenula activation patterns in neuropathic pain

PLOS ONE | https://doi.org/10.1371/journal.pone.0271295 July 12, 2022 2 / 12

Competing interests: The authors declare no

commercial or financial relationships that could be

construed as potential conflicts of interest.

https://doi.org/10.1371/journal.pone.0271295


pellets under a 12h light/dark cycle and controlled temperature (22±2˚C). Before the experi-

mental procedures, animals were allowed to habituate to the animal facility for one week. The

protocols used in this project were approved by the Ethics Committee on the Use of Animals

for Research of the Hospital Sı́rio-Libanês (Brazil, CEUA# 2014/07) and were conducted and

reported in accordance with the ARRIVE guidelines (http://www.nc3rs.org.uk/arrive-

guidelines).

Experimental design

After habituation to the animal facility, animals were habituated to the paw pressure test (PPT)

apparatus (10 minutes). On the next day, baseline measures of mechanical nociceptive thresh-

olds were obtained for all animals, followed by random allocation into three groups: I. naive

(n = 6, no surgery); II. false-operated (FOP, n = 6, sham surgery); and III. chronic constriction

injury (CCI, n = 5; active surgery) and surgery. After 13 days, animals were habituated to the

forced swimming test (FST). On the last day (day 14 after surgery) all animals were evaluated

in the Open Field Test (OFT), PPT and FST. Ninety minutes after behavioural tests, the ani-

mals were transcardially perfused, and brains were recovered for histological analysis. Fig 1A

illustrates the study timeline.

Peripheral neuropathy surgery

The CCI model was established as previously described [15, 50, 51]. Briefly, rats were anaesthe-

tised with Isoflurane (4–5% induction, 2–3% maintenance), the right sciatic nerve was

exposed, and four ligatures (1–1.5 mm apart) were loosely tied around the nerve using 4.0 Cat-

gut chromic sutures. FOP rats were anaesthetised, and the right sciatic nerve was exposed, but

there was no constriction of the nerve. Naive rats received no surgery.

Evaluation of nociceptive threshold–Paw pressure test

The mechanical nociceptive threshold was determined using a PPT apparatus (EEF-440,

Insight, SP, Brazil), as previously described [52]. Briefly, the hind paw of the animal was placed

into the apparatus, and the force (in grams) required to induce a paw withdrawal response rep-

resented the mechanical nociceptive threshold. All animals were habituated to the apparatus

before testing, by handling the animals and simulating the test without applying paw pressure.

The PPT was conducted on all animals at baseline and last time point. A significant reduction

in mechanical nociceptive thresholds represented neuropathic pain.

Evaluation of depressive-like behaviour–Forced swimming test

Depressive-like behaviour was determined using the FST, as previously described [53]. A

cylindrical tank (30 cm diameter × 60 cm height) was filled with 30 cm high lukewarm water

(24±1˚C), and animals were gently placed on the water. All animals were habituated to the

FST for 15 minutes one day before testing. On the last day, all animals were tested in the FST

for 5 minutes. Immobility time (in seconds) was determined by measuring the time during

which no additional activity was observed other than the movements necessary to keep the

head above the water surface. Increased time spent immobile characterized depressive-like

behaviour.

Evaluation of locomotor activity–Open Field Test

The OFT was used to evaluate locomotor behaviour as a control for possible locomotor

impairment that could confound the results of the remaining behavioural tests. The PFT
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apparatus consists of a 60x60x50 dark grey Formica box. No habituation to the test is required.

During the test, each animal was placed in the centre of the apparatus and allowed to freely

explore for 5 min. The behaviour was video-recorded and the total distance travelled during

the test was evaluated by a blind observer. After the end of the test, the open field was cleaned

with 5% ethanol and subsequently dried with a cloth

Histological analysis–Immunohistochemistry for cFos and Nissl-staining

The immunohistochemistry (IHC) protocol was performed as previously described [15, 51].

Briefly, brains were frozen cut in sequential 30μm-thick slices. Brain slices were then washed

in buffer and incubated overnight at 4˚C with rabbit anti- cFos primary antibody (1:20000;

Ab-5, Calbiochem, CA, USA) followed by incubation with biotinylated secondary antibody

Fig 1. Methods of study. A. Experimental design. After habituation to the animal facility, Wistar rats habituated to the

paw pressure test (PPT) and, on the following day, were evaluated for baseline measures of mechanical nociceptive

threshold. Animals were then randomly allocated into three groups (i.e. naive [no surgery], false-operated, and chronic

constriction injury [active surgery]), followed by the assigned surgery. Thirteen days after the baseline measure,

animals were habituated to the Forced Swimming Test (FST). On the following day, animals were tested in the Open

Field Test (OFT) and final measures of the PPT and FST were taken. B. Photomicrography of a Nissl-stained coronal

slice, showing the lateral and medial habenula and its subdivisions. Abbreviations: LHbL: Lateral subdivision of the

lateral habenula. LHbM: Medial subdivision of the lateral habenula. MHbS: Superior subdivision of the medial

habenula. MHbI: Inferior subdivision of the medial habenula. MHbL: Lateral subdivision of the medial habenula.

MHbC: Central subdivision of the medial habenula. sm: stria medullaris.

https://doi.org/10.1371/journal.pone.0271295.g001
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(1:200; donkey anti-rabbit IgG, Jackson ImmunoResearch, PA, USA) and avidin-biotin com-

plex (1:100; ABC Elite kit, Vector Laboratories, CA, USA). The antibody complex was visual-

ized by exposure to a chromogen solution containing 0.05% diaminobenzidine

tetrahydrochloride (DAB, Sigma-Aldrich, MO, USA) and 0.01% hydrogen peroxide in the

buffer. Images were captured using a light microscope (E1000, Nikon, NY, USA), and cFos

immunoreactivity (cFos-IR) of the Hb was evaluated by a blinded observer at 10x magnifica-

tion. Adjoining Nissl-stained sections provided the histological landmarks for the accurate

identification and delineation of the LHb (LHbL and LHbM) and of the MHb (MHbS, MHbI,

MHbC, MHbL) regions (Bregmas: -3.00 mm to -4.36 mm of the Paxinos and Watson Atlas

[54]; Fig 1B).

Statistical analyses

Data are presented as the mean ± standard error of the mean (SEM). Statistical analyses were

conducted using GraphPad Prism software (version 5.0; GraphPad Software Inc., CA, USA).

Normal distribution was confirmed for all variables using the Kolmogorov-Smirnov test.

Mechanical nociceptive thresholds were analyzed with two-way repeated measures analysis of

variance (ANOVA), followed by Tukey’s post-hoc test. Immobility time in the FST and total

distance travelled in the OFT were evaluated with one-way ANOVA, followed by Tukey’s

post-hoc test, where applicable. cFos-IR was normalized by defining the naive group as 100%,

and analyzed using one-way ANOVA, followed by Tukey’s post-hoc test. For all tests, statisti-

cal significance was set at p<0.05. Power analysis was performed to assess the power of this

study, as previously described [55]. Considering the mechanical nociceptive threshold in the

PPT the primary outcome measure, and power (1-β) set at 0.80 (i.e. 80% power) and α = 0.05

(i.e. significance level of p<0.05), the analysis resulted in a minimum sample size of 4.2 ani-

mals per/group.

Results

The CCI group showed a significant decrease in the mechanical nociceptive threshold at the

final measurement (F(2,14) = 29.92, p<0.001, Fig 2A, Table 1) and a significant increase in

immobility time in the FST (F(2,12) = 114.8, p<0.001, Fig 2B, Table 1), compared to control

Fig 2. Behavioural results. A. Mechanical Nociceptive Threshold (g) in the paw pressure test before randomization (baseline measure)

and after 14 days (final measure). A significant reduction in mechanical nociceptive thresholds represents neuropathic pain. B.

Immobility time (s) in the Forced Swimming Test, evaluated 14 days after group allocation. Increased time spent immobile characterized

depressive-like behaviour. Values are presented as mean ± SEM. ���p< 0.001. Abbreviations: FOP: false-operated, CCI: chronic

constriction injury.

https://doi.org/10.1371/journal.pone.0271295.g002
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groups. No differences between groups was observed in the total distance travelled in the OFT

(F(2,14) = 0.998, p>0.05, Table 1).

A significant reduction in cFos-IR were observed in the CCI group in the total Hb (F(2,14) =

4.696, p<0.05, Fig 3A, Table 1) when compared to naive controls. There was also a significant

reduction in cFos-IR in the total LHb (F(2,14) = 7.032, p<0.01, Fig 3B, Table 1), subregions

LHbL (F(2,14) = 4.512, p<0.05, Fig 3C, Table 1), LHbM (F(2,14) = 4.248, p<0.05, Fig 3D,

Table 1), in the CCI group compared to FOP and naive groups. When evaluating the sub-

regions of the MHb, we observed a significant reduction in cFos-IR in the MHbC (F(2,12) =

17.84, p = 0.0011, Fig 3E, Table 1) and significant increase in cFos-IR in the subregion MHbS

(F(2,13) = 6.574, p = 0.013, Fig 3F, Table 1), in the CCI group compared to FOP and naive

groups. No differences in cFos-IR were observed between groups when evaluating total MHb

(F(2,11) = 0.326, p = 0.72, Table 1), subregion MHbL (F(2,14) = 0.611, p = 0.55, Table 1) and sub-

region MHbI (F(2,13) = 0.087, p = 0.91; Table 1).

Discussion

In this study we described the activation pattern of the Hb, and its subregions, in a preclinical

neuropathic pain model accompanied by depressive-like behaviour. Clinical and preclinical

studies have provided evidence of the involvement of the Hb in pain and depressive behav-

iours. Using functional magnetic resonance imaging, (fMRI), Shelton and colleagues (2012)

showed bilateral Hb activation during noxious stimulation, suggesting the Hb to be involved

in the pain processing network [27]. In an examination of transient effects of deep brain stimu-

lation in the Hb, Zhang and colleagues showed that one of the most common transient effects

associated with increased voltage was pain [56]. Preclinical studies have demonstrated that the

electrical stimulation of the Hb, or intra-nuclear morphine injections have been shown to

induce analgesia [57, 58], while lesions restricted to the MHb, to the IPN, or to the fibre bundle

connecting these structures, increase pain sensitivity [59]. Furthermore, significant reductions

in LHb activation patterns were also observed in animal models of diabetes-induced neuro-

pathic pain [60] and tail pinch intermittent stressor [61]. In line with these findings, in this

Table 1. Mean and standard deviation—behaviour and habenula c-fos immunoreactivity.

Variable Naive FOP CCI

Paw Pressure Test 60.83±5.85 63.33±4.08 30.00±6.12���

Forced Swimming Test 15.50±5.68 19.00±7.75 92.80±27.96���

Open Field Test 731.67±82.80 841.67±145.66 758.00±183.36

Total Habenula 100±12.5 64.5±30.4 55±12�

Total Lateral Habenula 100±8.4 45.7±13.9 33.2±13.8��

Lateral Habenula–Lateral 100±13.2 43.6±16.1 33.4±15.3�

Lateral Habenula—Medial 100±7.4 49.9±12.8 29.4±14.5�

Total Medial Habenula 100±24.8 84.5±40.1 79.9±15.6

Medial Habenula—Superior 100±26.5 222±60.4 454.2±65�

Medial Habenula—Central 100±12.3 82.7±22.8 53.4±5.4���

Medial Habenula—Lateral 100±15.7 76.5±20.7 93.8±8.7

Medial Habenula—Inferior 100±35.9 81.6±8.82 44.0±7.34

Abbreviations: FOP: false-operated, CCI: chronic constriction injury

�p<0.05

��p<0.01

���p<0.001

https://doi.org/10.1371/journal.pone.0271295.t001
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study we observed a significant reduction in cFos-IR in the LHb and subdivisions in animals

with neuropathic pain accompanied by depressive-like behaviours. It is important to highlight

that with our methodology, we are able to determine the stimulus-induced nociception at day

14 post surgery, but not to perform an ongoing evaluation of pain throughout the study [62,

63]. Also, the increased time in immobility observed in the CCI group is not a result of

impaired locomotor activity, as no differences were observed between groups in the OFT. As

both pain and depression are observed simultaneously, it is not possible to depict which com-

ponent is more relevant for the cFos expression pattern observed in the Hb. A study focusing

on pharmacological manipulations (e.g. use of antidepressants) could provide some insight

into this aspect.

Fig 3. cFos immunoreactivity (cFos-IR) pattern in the habenula. A. Total Habenula (tHb) cFos-IR. B. Total Lateral Habenula (tLHb)

cFos-IR. C. cFos-IR in the lateral subregion of the LHb (LHbL). D. cFos-IR in the medial subregion of the LHb (LHbM). E. cFos-IR in

the central subregion of the medial habenula (MHbC). F. cFos-IR in the superior subregion of the medial habenula (MHbS).

Abbreviations: FOP: false-operated group, CCI: chronic constriction injury group. Values are presented as normalized mean±SEM.
�p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0271295.g003
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It has been shown that patients diagnosed with major depressive disorder [64] and in psy-

chiatric disorders that present depressive components [65, 66] present with altered habenula

volume. Furthermore, deep brain stimulation of the habenula results in symptom alleviation

in depressive patients [67, 68]. It has been shown that the LHb is involved in effort-based deci-

sion-making, a key contributor to willingness to exert physical effort in psychiatric conditions

[69]. Han and colleagues (2017) showed a down-regulation of cholinergic genes in the Hb of

animals exposed to the chronic restraint stress model of depression [70]. Previous studies have

also shown increased metabolic activity in the MHb of a genetic rat model of helpless behav-

iour [30] and rats exposed to the chronic unpredictable mild stress paradigm [49].

Although we did not observe a significant difference between groups in cFos-IR of the total

MHb, when analyzing its subregions, we noted a distinct activation pattern, with the CCI

group presenting increase cFos-IR in the MHbS and reduced cFos-IR in the MHbC. These

results suggest heterogeneity in the MHb subregions and highlight the importance of further

investigating the role of MHb subareas in depressive behaviours. While the MHbS consists

exclusively of densely packed glutamatergic neurons that strongly express interleukin-18,

MHbC is composed of neurons that either co-express substance-P and glutamate, or acetyl-

choline and glutamate [21, 71]. Efferents from the MHb forms the core aspect of the fasciculus

retroflexus, with dorsal projections reaching lateral aspects of the IPN, medial projections

reaching the ventral aspect of IPN and lateral projections ending on the dorsal aspect of IPN

[19]. It is believed that glutamatergic projections from the MHb terminate in the IPN, cholin-

ergic and substance P-ergic projections through the IPN and indirect connections terminate

in the VTA, and additional projections from the MHb reaches the raphe nuclei and LHb [38,

72]. These connections suggest a possible modulatory role of both the MHbS and MHbC on

serotonin, IPN and LHb function, and of the MHbC on dopamine [72]. This work sheds light

on the involvement of the Hb in the neural-network of neuropathic pain and accompanying

depressive-like behaviour. Further studies are necessary to better understand the neurobiologi-

cal mechanisms underlying neuropathic pain and depression.
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