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Abstract

Background/Objective—Evidence from non-human species indicate that hydration and 

arginine vasopressin (AVP) influence fuel selection, energy expenditure (EE), and food intake, but 

these relationships are unclear in humans. We sought to assess whether hydration biomarkers [24-

h urine volume (UVol) and urine urea nitrogen concentration (UUN)] and copeptin (a surrogate for 

AVP) are associated with 24-h EE, respiratory quotient (RQ), and daily energy intake (DEI).

Subjects/Methods—In a secondary analysis of collected data, we selected healthy adults 

(Group 1, n = 177) who had 24-h whole-room indirect calorimetry measurements in energy 

balance with 24-h urine collection and fasting copeptin measurements (n=117), followed by 3 days 

ad libitum food intake. A separate group (Group 2, n=284) with hydration markers and calorimetry 

measurements was also studied. The main outcome measures were 24-h RQ, 24-h EE, DEI, 

substrate oxidation.

Results—In Group 1, lower 24-h UVol and higher 24-h UUN, indicating lower hydration, were 

correlated with lower 24-h RQ (r = 0.35, p <0.0001, and r = −0.29, p = 0.0001, respectively; 

results similar in Group 2) and predicted subsequent reduced DEI (r = 0.20, p = 0.01, and r = 

−0.27, p = 0.0003, respectively), adjusted for confounders. Copeptin was independently associated 

with 24-h lipid oxidation (r = −0.23, p = 0.01). In Group 2, lower hydration was associated with 

reduced 24-h EE (24-h UVol: r = 0.29, p <0.0001; 24-h UUN: r = −0.25, p <0.0001).

Conclusions—Hydration biomarkers were associated with metabolic differences characterized 

by altered food intake, fuel selection, and possibly EE. Independently, copeptin was associated 

with higher lipid oxidation.
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Introduction

Both water and food are essential for human life. The physiological systems responsible for 

body water homeostasis and energy metabolism, rather than being independent of one 

another, are interconnected [1, 2]. Hydrational status influences various aspects of 

metabolism which are linked to weight gain [3–7]. In humans, higher respiratory quotient 

(RQ), which primarily indicates preference for carbohydrate over lipids as an oxidative fuel 

source, predicts overeating and weight gain [3–6]. Likewise, lower-than-expected 24-hour 

energy expenditure (24-h EE) and basal metabolic rate predict both weight gain [5, 7] and 

fat mass (FM) in Native Americans [5]. Though understanding hydrational factors which 

may influence metabolic fuel selection, energy expenditure (EE), and energy intake (EI), is 

important, it is unclear how hydration relates to these factors [8].

Non-human species in a water-conserving state demonstrate a shift towards greater fat 

oxidation [9, 10]. In humans, whether hydration influences fuel selection and EE is unclear. 

Water ingestion has variously been reported to increase, decrease, or have no effect on EE 

and RQ [11–15] However, these prior studies have involved small sample sizes, have been 

short-term (< 3 hours), and mostly relied upon a ventilated hood technique for EE 

measurements. Whether hydration influences fuel selection and EE over an entire day in a 

metabolic chamber during eucaloric feeding is unclear.

The impact of hydration on food intake has been studied in animal models. Multiple studies 

involving non-human species have shown diminished food intake in response to hypertonic 

saline [16, 17] and water restriction [18, 19]. In humans, the relationship between hydration 

and food intake is less clear. Studies have shown a temporal association between eating and 

drinking [20–22]. In a small study, water-restricted men reduced ad libitum food intake, 

unrelated to food palatability [20].

The internal cues linking hydrational status and EI or metabolic fuel selection are unclear. 

Arginine vasopressin (AVP), a crucial hormone regulating water balance [1], reduces food 

intake [23, 24] and influences lipid and glucose metabolism [25] in animal models. 

Copeptin, the C-terminal part of the AVP prohormone, shows good ex vivo stability in 

contrast to AVP, and is a surrogate for AVP [26]. Although both higher circulating copeptin 

[27] and higher RQ [28] each predict obesity, the relationship between copeptin and RQ is 

uncertain. In addition, whether copeptin concentration is associated with 24-h EE and food 

intake is also unclear.

Both 24-h urine volume (24-h UVol) and 24-h urine urea nitrogen concentration (24-h UUN) 

are well correlated with daily fluid intake volume [29–31]. In the present observational 

study, our first aim was to evaluate the relationship between these hydration biomarkers and 

both 24-hour EE and RQ measured in a metabolic chamber, during which diet is controlled 

but water intake is ad libitum. We studied 177 healthy adult participants identified a priori 
(Group 1) of varied racial/ethnic background (majority Native American) and found that 

lower 24-h UVol and higher 24-h UUN (both indicating a less hydrated state) were 

associated with reduced 24-h respiratory quotient (24-h RQ). Next, we confirmed this 

finding in a separate, larger group (n = 284, Group 2). Our second aim was to investigate 
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(Group 1) whether these hydrational biomarkers, reflecting a behavioral tendency to drink, 

predict subsequent EI using a 3-day vending machine paradigm, a reproducible measure of 

ad libitum food intake [32], and found that both lower 24-h UVol and higher 24-h UUN were 

associated with reduced food intake. The third aim was to evaluate if copeptin is an internal 

hormonal signal contributing to the findings observed related to the first two aims. 

Accordingly, we then measured circulating copeptin in a subgroup of Group 1 (n = 117) and 

evaluated the relationship between copeptin and 24-h EE, 24-h RQ, and ad libitum EI.

Subjects and methods

This analysis included participants who had enrolled in two ongoing natural history studies 

of energy balance. This is a secondary analysis of this collected data. Volunteers were 

healthy adults recruited from the Phoenix Area, Arizona, USA, and admitted to the clinical 

research unit for participation in one of two observational studies investigating risk factors 

for obesity and diabetes as previously described [33, 34]. All volunteers had measurements 

of 24-h UVol and 24-h UUN, and 24-h EE by indirect calorimetry via the metabolic 

chamber. Volunteers in Group 1 also had measurement of ad libitum EI. During this 

inpatient study, participants were not permitted to drink alcohol, smoke, or take any 

medications, but were allowed ad libitum fluid intake. While on the research unit, physical 

activity was restricted to light activities (e.g. playing pool, television, arts, crafts) during the 

entire time course of the study. Written informed consent was obtained prior to participation. 

The studies were approved by the Institutional Review Board of the National Institute of 

Diabetes and Digestive and Kidney Diseases.

On admission to the clinical research unit, participants received, for at least three days, a 

standard diet to meet weight maintaining energy needs (WMEN; daily kcal: 20% protein, 

30% fat and 50% carbohydrates) that was estimated based on body weight at admission and 

sex [35]. Subsequently, all volunteers underwent a 75-g oral glucose tolerance test after an 

overnight fast and were included if they were without diabetes, according to American 

Diabetes Association criteria [36].

Automated food-selection system

Ad libitum food intake was measured over 3 consecutive days using an automated vending 

machine paradigm as previously described [32, 37]. Briefly, food preferences were 

determined using a Food Preferences Questionnaire. Individuals rated each food by using a 

9-point Likert scale with 1 = dislike extremely; 5 = neutral; 9 = like extremely; the 

possibility to rate pleasantness of food items as unknown was also included. During the 3 

days of food intake assessment on the clinical research unit, participants self-selected all 

food items using a vending machine system. Each day vending machines were individually 

stocked with 40 food items and subjects had 23.5h ad-libitum access to the machines. 

Volunteers were asked to eat whenever and whatever they desired and to prepare and 

consume all foods only in a separate eating area. The weights of the consumed foods were 

used to calculate daily energy intake (DEI, kcal/d) and intake of individual macronutrients. 

This was done by using the CBORD Professional Diet Analyzer Program (CBORD, Inc., 

Ithaca, New York, USA) and the Food Processor database (ESHA version 10.0.0, ESHA 
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Research, Salem, Oregon, USA) modified to reflect the nutrient content of specific food 

items as indicated by the manufacturer. Calories derived from each individual macronutrient 

intake were calculated as 4 kcal/gram for protein and carbohydrates and 9 kcal/gram for fat.

Body composition

After an overnight fast, body composition was assessed by underwater weighing with 

simultaneous determination of residual lung volume by helium dilution as previously 

described [38] or by total body dual energy x-ray absorptiometry (DPX-L; Lunar Radiation, 

Madison, Wisconsin, USA) as previously described [39]. Absorptiometry measures were 

converged to comparable underwater weighing values as previously described [39].

Measurements in the metabolic chamber

Participants completed 24-h EE and spontaneous physical activity (SPA) measurements in a 

whole-room indirect calorimeter as previously described [38, 40]. Prescribed EI in the 

metabolic chamber provided 4 balanced meals and was reduced approximately 80% to 

account for restricted physical activity inside the chamber [41]. The meal times and foods 

for the standardized diet within the chamber are shown in the supplementary table. 

Participants were directed not to exercise (e.g. push-ups) while in the metabolic chamber, 

but may otherwise move freely about the chamber. 24-h energy balance (24-h EB) during the 

stay in the metabolic chamber was calculated as 24-EI minus the 24-h EE. Participants, who 

were allowed ad libitum water intake, were instructed to void before chamber entry and exit. 

EE-related measures and urine volume, measured volumetrically, were collected for 23.5 

hours and were extrapolated to 24 hours. Rates of 24-h carbohydrate oxidation (24-h carbox) 

and 24-h lipid oxidation (24-h lipox) were calculated from 24-h RQ, accounting for protein 

oxidation [42, 43].

Analytical procedures

Plasma glucose was measured by the glucose oxidase method (Beckman Instruments, 

Fullerton, California, USA). UUN was measured by the local hospital laboratory using the 

urease/glutamate dehydrogenase method. Fasting samples were obtained from blood 

collected in plasma heparin or serum EDTA tubes from volunteers immediately after exiting 

the chamber and stored at −70 °C. Copeptin was measured on stored samples using a 

commercially available ELISA kit (Phoenix Pharmaceuticals, Burlingame, California, 

USA); the intraassay and interassay coefficients of variation were 5.7% and 6.8% 

respectively

Statistical Analysis

SAS Software (SAS Institute Inc., version 9.4, Cary, NC, USA) was used for statistical 

analysis. A p-value <0.05 was considered statistically significant. Non-normally distributed 

data were log (natural) transformed. Differences in mean between groups (e.g. sex) were 

compared using the Student’s t-test. To test the main aims, Pearson’s correlation coefficient 

was used to quantify associations between biomarkers of interest [i.e. 24-h UVol, 24-h UUN 

(natural log), and copeptin] and residuals of outcome measures (i.e. 24-h RQ, 24-h EE, and 

DEI) adjusted for predictors (i.e. the difference between observed minus predicted outcome 
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measure using a linear function of predictors). As in Group 1, similar statistical methods 

were applied to subjects in Group 2 which was used to confirm findings involving 24-h RQ 

and 24-h EE from Group 1. Residual 24-h RQ was adjusted for age, sex, percentage body fat 

(%fat), 24-h EB, and race (Group 1 only since Group 2 included only Native American 

volunteers). Residual 24-h EE was adjusted for age, sex, race (Group 1 only), FM, fat-free 

mass (FFM), and SPA. Residual DEI was adjusted for age, sex, race, FM, FFM, and residual 

24-h EE, with and without 24-h RQ. Residual 24-h carbox, 24-h lipox, and 24-h protein 

oxidation were calculated adjusting for age, sex, race, 24-h EB, FM, FFM, and SPA. Means 

of 24-EE, DEI, carbox, lipox, and protein oxidation were added to their residuals for 

representation in the figures.

Results

The characteristics of the study groups are shown in Table 1. In the main study group (Group 

1), the average 24-h UVol was 3.100 L/d ± 1.352 L/d. The median 24-h UUN concentration 

was 402 mg/dl (interquartile range, 322 mg/dl to 561 mg/dl). As anticipated, 24-h UVol and 

24-h UUN (log) were inversely related (r = −0.63, p < 0.0001). Twenty-four-h UVol was 

greater in men (3.352 l/d ± 1.444 l/d) than women (2.677 l/d ± 1.062 l/d) (p = 0.0005). There 

were no racial differences in 24-h UVol and UUN. Twenty-four-h UVol was not associated 

with FM, FFM, and weight, each adjusted for sex. Both 24-h UVol and 24-h UUN were 

associated with %fat (r = −0.17, p = 0.03, and r = 0.19, p = 0.01) but not after adjusting for 

sex.

Relationship between hydration biomarkers and metabolic chamber measures

In Group 1, reduced 24-h UVol and higher 24-h UUN concentration were associated with 

reduced unadjusted (r = 0.36, p < 0.0001 and r = −0.25, p = 0.0006, respectively) and 

residual 24-h RQ (r = 0.35, p <0.0001, Figure 1A and r= −0.29, p = 0.0001, Figure 1B, 

respectively). Analysis of data restricted to chambers in which 24-h EE was within 20% or 

10% of EI, the results were unchanged; 24-h UVol and UUN each remained associated with 

adjusted 24-h RQ (for within 20%: r = 0.42, p <0.0001, and r = −0.27, p = 0.0007, 

respectively; for within 10%: r = 0.45, p < 0.0001, and r = −0.26, p = 0.009). Similarly, 

when the analysis included only Native Americans, both 24-h UVol and UUN remained 

associated with adjusted 24-h RQ (r = 0.25, p = 0.008, and r = −0.27, p = 0.004, 

respectively). Both 24-h UVol and UUN were not associated with 24-h EE or SPA or 

average 24-h chamber temperature (median 24.2°C, interquartile range 23.3°C to 25.3°C).

To verify the association between biomarkers of hydration with 24-h RQ, similar 

relationships were assessed in a larger, separate group of Native American participants 

(Group 2, Table 1). Lower 24-h UVol was again associated with lower unadjusted and 

adjusted 24-h RQ (r = 0.18, p = 0.003 and r = 0.20, p = 0.0007, Figure 1C). Likewise, higher 

24-h UUN was associated with lower unadjusted and adjusted 24h RQ (r = −0.21, p = 

0.0004 and r = −0.22, p =0.0002, Figure 1D). In Group 2, lower 24-h UVol and higher 24-h 

UUN each were also associated with lower residual 24-h EE adjusted for age, sex, FM, 

FFM, and SPA (Figure 2, A and B). There was no association with SPA.
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Relationship between copeptin and metabolic chamber measures

Since hydrational biomarkers were associated with 24-h RQ, we then measured copeptin in a 

subgroup of Group 1 (n=117) to assess the relationship between this surrogate for a key 

regulator (i.e. AVP) of water balance and 24-h RQ. Since mean copeptin concentration from 

serum samples (0.82 ng/ml ± 0.20 ng/ml) was greater (p < 0.0001) than mean copeptin 

concentration from plasma (0.43 ng/ml ± 0.14 ng/ml), copeptin concentration was adjusted 

for specimen type. There was no association between adjusted copeptin and storage time. 

Copeptin was not associated with age, body-mass index, FM, FFM, or %fat. Copeptin 

concentrations were not associated with 24-h UVol or 24-h UUN.

Copeptin concentration was associated with unadjusted and adjusted 24-h RQ (r = 0.20, p = 

0.03, and r = 0.22, p = 0.02, Figure 3A, respectively) and 24-h non-protein RQ (r = 0.19, p = 

0.04, and r = 0.21, p = 0.02, Figure 3B, respectively). Copeptin concentration was not 

associated with either 24-h protein oxidation or carbox (Figure 3C) but was associated with 

24-h lipox such that higher copeptin was associated with lower unadjusted and adjusted 24-h 

lipox (r = −0.20, p = 0.03, and r = −0.23, p = 0.01, Figure 3D, respectively). Further 

adjustment for lipid intake did not change the association (r = −0.21, p = 0.02)

When 24-h UVol and copeptin was included in same linear model, both 24-h UVol (beta = 

0.01 per liter, p < 0.0001) and copeptin (beta = 0.04 per ng/ml, p = 0.01) remained 

independently associated with residual 24-h RQ adjusted for age, sex, race, %fat, and 24-h 

EB (r2 = 0.20). Similarly, when 24-h UUN was included with copeptin in the same linear 

model, each remained associated with residual 24-h RQ (beta = −0.01 per 50% difference in 

24-h UUN, p = 0.0004, and beta = 0.04 per ng/ml of copeptin, p = 0.01, respectively; r2 = 

0.15).

Relationship between hydration and food intake

In bivariate analysis, both higher 24-h UVol and lower 24-h UUN predicted subsequent 

greater ad libitum DEI (r = 0.25, p = 0.0009, and r = −0.26, p =0.0005, respectively). When 

DEI was adjusted for age, sex, race, FM, FFM, and residual 24-h EE, 24-h UVol and 24-h 

UUN each predicted subsequent DEI (r = 0.20, p = 0.01, and r = −0.27, p = 0.0003, 

respectively; Figure 4, A and B). When 24-h RQ was further included in the model, the 24-h 

urine volume was no longer significantly associated with DEI. On the other hand, the 

association between 24-h UUN and DEI was attenuated but remained significant (r = −0.18, 

p =0.02) when DEI was further adjusted for 24-h RQ. 24-h UVol and UUN were associated 

with residual daily carbohydrate intake adjusted for age, sex, FM, FFM and residual 24-h EE 

(r = 0.22, p = 0.003 and r = −0.32, p < 0.0001, respectively), but not associated with EI from 

soda, fat, or protein. Copeptin concentration was also not associated with DEI.

Discussion

This study demonstrated that hydration biomarkers which reflect the tendency to conserve 

water (i.e. lower 24-h UVol and higher 24-h UUN) were associated with lower RQ. This 

association was observed in a large group, confirmed in a second larger group, and found to 

be independent of copeptin levels. Moreover, copeptin, independent of those hydration 

biomarkers, was associated with higher 24-h RQ and lower 24-h lipox. To our knowledge, 
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the relationship between these markers of water balance (i.e. copeptin, 24-h UVol, and 24-h 

UUN) and these measurements from the metabolic chamber over a 24-h period has not been 

reported in humans. Lastly, we showed that volunteers with biomarkers indicating lower 

fluid intake, also subsequently ate less using an objective measure of DEI, further 

highlighting the interdependency of food and fluid intake.

Fluid restriction reduces ad libitum EI without reducing food palatability indicating that 

there are shared mechanisms that regulate both food and water intake [20]. There may be an 

adaptive reason for a positive association between water and EI. A reduction in EI 

diminishes water movement into the gut for digestion and reduces intake of osmolytes, 

potentially worsening cellular dehydration and hyperosmolemia [17].

We observed a metabolic shift to lower RQ in association with body water conservation (i.e. 

higher 24-h UUN and lower 24-h UVol), indicating an increased reliance upon fat oxidation 

when volunteers are less hydrated. A similar reorganization in fuel selection is seen in 

animals under pressure to retain body water, usually in hot, arid environmental conditions 

[44]. Estivation is the term used to denote a variety of preservation strategies used to 

conserve water and forestall death. Animals display evidence of fuel switching during 

dehydration stress. The desert snail Otala lactea, estivating in the heat, inhibits lipogenesis 

and glycogen synthesis, resulting in a switch to fuel reserves for energy production [45]. 

Mice fed high-salt food and given salinized drinking water, exhibited an estivation-like 

phenotype and predominantly rely upon fat oxidation for energy production [10]. These 

mice also had increased protein catabolism and ureagenesis to supply urea to the renal 

medullary interstitium to support the kidney’s ability to concentrate urine. Since ureagenesis 

and gluconeogenesis are energy intensive and are in competition, the shift away from 

carbohydrate oxidation was interpreted as sparing hepatic energy for ureagenesis. In the 

current study, a shift towards lower RQ in our volunteers who were less hydrated may be 

evidence of an estivation-like phenotype. Moreover, the metabolic shift to lower RQ and 

using on-board fuel reserves may also be advantageous if food availability is low, as is 

typical during times of drought.

Estivation is also characterized by a state of light dormancy that is rapidly reversible (unlike 

hibernation) and associated with hypometabolism as a life-extending strategy [44]. A 

reduction in energy expenditure may benefit an organism in times of drought to reduce water 

loss from pulmonary respiration and reduce the need for food. We observed a lower 24-h 

energy expenditure in association with lower 24-h UVol and higher 24-h UUN only in Group 

2 but not in Group 1. The discrepant finding may be due to differences between the groups. 

Group 2 was overall less hydrated than Group 1 and had a larger sample size.

Although copeptin as a marker of AVP production was a plausible mediator between 

hydration markers and substrate oxidation, we found that the associations between and 24-h 

RQ and hydration biomarkers were independent of copeptin. However, higher copeptin itself 

was associated with higher 24-h RQ and lower 24-h lipox, independent of 24-h urinary 

hydration markers. This result is consistent with known anti-lipolytic effects of AVP that 

may occur via alteration in blood flow to different fat depots which influences release of 

fatty acids into circulation [46]. Consistent with an effect in decreasing lipid oxidation, 
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copeptin predicts incident abdominal obesity in humans [27]. Copeptin has a circadian 

rhythm in individuals [47] which was controlled for in our study as samples were collected 

fasting and at the same time in the morning after exiting the metabolic chamber. In our 

study, copeptin concentration was not correlated with 24-h UVol, consistent with what others 

have found in other populations [48]. On the other hand, a large study detected a relatively 

weak correlation (r ≈ −0.25) between copeptin and 24-h UVol [49]. The differences may be 

due to differences in sample size or copeptin assay used.

Though 24-h UVol varied widely among our participants, the average volume was greater 

than what is reported by others [50]. One possible explanation is the hot arid climate of 

Phoenix, Arizona. Alternatively, confinement in the metabolic chamber may have led to 

greater fluid intake, compared with free-living conditions. Nevertheless, we had adequate 

variability on our hydration markers to analyze associations with metabolic parameters.

A limitation of the current study is that actual water intake was not measured. Though 24-h 

UVol and UUN are well correlated with fluid intake [29, 30], they are nonetheless surrogate 

measures of water intake. It is unclear how other surrogate measures such as urine 

osmolality would compare with the urine biomarkers chosen in this study though we suspect 

that results would not differ since 24-h UVol, UUN, and urine osmolality are similarly well-

correlated with fluid intake [29, 30]. In addition, hydration can be defined in terms of total 

body water or the balance between extracellular and intracellular water. It is unclear how 

hydration defined in this way would have performed in this study since they were not 

assessed. Moreover, correlations between hydration biomarkers and 24-h RQ, 24-h EE, and 

DEI ranged from weak to moderate. Thus, these results should be confirmed by other 

laboratories. We also acknowledge that the study population were primarily Native 

Americans living in the desert, possibly limiting the generalizability of our results.

In summary, hydration markers, indicating a tendency to drink less, were associated with 

reduced ad libitum EI, supporting the interdependency between food and water intake. 

Hydration markers indicating lower hydration status were also associated with a reduced RQ 

and possibly lower 24-h EE. Together, lower hydration status is associated with metabolic 

alterations that may be indicative of an adaptive survival strategy when faced with 

inadequate environmental water. Copeptin concentration did not account for this metabolic 

reorganization though was associated with a metabolic shift to higher lipid oxidation. The 

results of this study highlight the importance of the link between water balance and energy 

metabolism.
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Abbreviations

24-h EE 24-hour energy expenditure

24-h EB 24-hour energy balance

24-h NPRQ 24-hour non-protein respiratory quotient

24-h RQ 24-hour respiratory quotient

24-h UUN 24-hour urine urea nitrogen concentration

24-h UVol 24-hour urine volume

24-h carbox 24-hour carbohydrate oxidation

24-h lipox 24-hour lipid oxidation

AVP arginine vasopressin

DEI daily energy intake

EE energy expenditure

EI energy intake

FFM fat-free mass

FM fat mass

RQ respiratory quotient

SPA spontaneous physical activity

%fat percentage body fat

References

1. Mavani GP, DeVita MV, Michelis MF. A review of the nonpressor and nonantidiuretic actions of the 
hormone vasopressin. Front Med (Lausanne). 2015;2:19. [PubMed: 25853137] 

2. Enhorning S, Melander O. The Vasopressin System in the Risk of Diabetes and Cardiorenal Disease, 
and Hydration as a Potential Lifestyle Intervention. Ann Nutr Metab. 2018;72 Suppl 2:21–7.

3. Zurlo F, Lillioja S, Esposito-Del Puente A, Nyomba B, Raz I, Saad M, et al. Low ratio of fat to 
carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. American Journal of 
Physiology-Endocrinology And Metabolism. 1990;259(5):E650–E7.

4. Piaggi P, Thearle MS, Krakoff J, Votruba SB. Higher Daily Energy Expenditure and Respiratory 
Quotient, Rather Than Fat-Free Mass, Independently Determine Greater ad Libitum Overeating. 
The Journal of Clinical Endocrinology & Metabolism. 2015;100(8):3011–20. [PubMed: 26086330] 

5. Piaggi P, Thearle MS, Bogardus C, Krakoff J. Lower energy expenditure predicts long-term 
increases in weight and fat mass. The Journal of Clinical Endocrinology & Metabolism. 
2013;98(4):E703–E7. [PubMed: 23418317] 

Chang et al. Page 9

Eur J Clin Nutr. Author manuscript; available in PMC 2020 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Pannacciulli N, Salbe AD, Ortega E, Venti CA, Bogardus C, Krakoff J. The 24-h carbohydrate 
oxidation rate in a human respiratory chamber predicts ad libitum food intake. The American 
journal of clinical nutrition. 2007;86(3):625–32. [PubMed: 17823426] 

7. Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG, et al. Reduced rate of 
energy expenditure as a risk factor for body-weight gain. New England Journal of Medicine. 
1988;318(8):467–72. [PubMed: 3340128] 

8. Stookey JJ. Negative, Null and Beneficial Effects of Drinking Water on Energy Intake, Energy 
Expenditure, Fat Oxidation and Weight Change in Randomized Trials: A Qualitative Review. 
Nutrients. 2016;8(1).

9. Hohenegger M, Laminger U, Om P, Sadjak A, Gutmann K, Vermes M. Metabolic effects of water 
deprivation. J Clin Chem Clin Biochem. 1986;24(5):277–82. [PubMed: 3734698] 

10. Kitada K, Daub S, Zhang Y, Klein JD, Nakano D, Pedchenko T, et al. High salt intake reprioritizes 
osmolyte and energy metabolism for body fluid conservation. J Clin Invest. 2017;127(5):1944–59. 
[PubMed: 28414295] 

11. Kocelak P, Zak-Golab A, Rzemieniuk A, Smetek J, Sordyl R, Tyrka A, et al. The influence of oral 
water load on energy expenditure and sympatho-vagal balance in obese and normal weight 
women. Arch Med Sci. 2012;8(6):1003–8. [PubMed: 23319974] 

12. Dubnov-Raz G, Constantini NW, Yariv H, Nice S, Shapira N. Influence of water drinking on 
resting energy expenditure in overweight children. Int J Obes (Lond). 2011;35(10):1295–300. 
[PubMed: 21750519] 

13. Boschmann M, Steiniger J, Franke G, Birkenfeld AL, Luft FC, Jordan J. Water drinking induces 
thermogenesis through osmosensitive mechanisms. J Clin Endocrinol Metab. 2007;92(8):3334–7. 
[PubMed: 17519319] 

14. Boschmann M, Steiniger J, Hille U, Tank J, Adams F, Sharma AM, et al. Water-induced 
thermogenesis. J Clin Endocrinol Metab. 2003;88(12):6015–9. [PubMed: 14671205] 

15. Sharief NN, Macdonald I. Differences in dietary-induced thermogenesis with various 
carbohydrates in normal and overweight men. Am J Clin Nutr. 1982;35(2):267–72. [PubMed: 
6801959] 

16. Watts AG, Sanchez-Watts G, Kelly AB. Distinct patterns of neuropeptide gene expression in the 
lateral hypothalamic area and arcuate nucleus are associated with dehydration-induced anorexia. J 
Neurosci. 1999;19(14):6111–21. [PubMed: 10407047] 

17. Watts AG, Boyle CN. The functional architecture of dehydration-anorexia. Physiol Behav. 
2010;100(5):472–7. [PubMed: 20399797] 

18. Bolles RC. The interaction of hunger and thirst in the rat. J Comp Physiol Psychol. 1961;54:580–4. 
[PubMed: 13870811] 

19. Finger FW, Reid LS. The effect of water deprivation and subsequent satiation upon general activity 
in the rat. J Comp Physiol Psychol. 1952;45(4):368–72. [PubMed: 12981209] 

20. Engell D Interdependency of food and water intake in humans. Appetite. 1988;10(2):133–41. 
[PubMed: 3164991] 

21. Phillips PA, Rolls BJ, Ledingham JG, Morton JJ. Body fluid changes, thirst and drinking in man 
during free access to water. Physiol Behav. 1984;33(3):357–63. [PubMed: 6514825] 

22. de Castro JM. A microregulatory analysis of spontaneous fluid intake by humans: evidence that the 
amount of liquid ingested and its timing is mainly governed by feeding. Physiol Behav. 
1988;43(6):705–14. [PubMed: 3237784] 

23. Yoshimura M, Nishimura K, Nishimura H, Sonoda S, Ueno H, Motojima Y, et al. Activation of 
endogenous arginine vasopressin neurons inhibit food intake: by using a novel transgenic rat line 
with DREADDs system. Sci Rep. 2017;7(1):15728. [PubMed: 29146932] 

24. Meyer AH, Langhans W, Scharrer E. Vasopressin reduces food intake in goats. Q J Exp Physiol. 
1989;74(4):465–73. [PubMed: 2798756] 

25. Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a 
and V1b receptors: from molecules to physiological systems. Physiol Rev. 2012;92(4):1813–64. 
[PubMed: 23073632] 

Chang et al. Page 10

Eur J Clin Nutr. Author manuscript; available in PMC 2020 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



26. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a 
stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52(1):112–9. [PubMed: 
16269513] 

27. Enhorning S, Bankir L, Bouby N, Struck J, Hedblad B, Persson M, et al. Copeptin, a marker of 
vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malmo Diet 
and Cancer Study cardiovascular cohort. Int J Obes (Lond). 2013;37(4):598–603. [PubMed: 
22614056] 

28. Zurlo F, Lillioja S, Esposito-Del Puente A, Nyomba BL, Raz I, Saad MF, et al. Low ratio of fat to 
carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol. 1990;259(5 
Pt 1):E650–7. [PubMed: 2240203] 

29. Perrier E, Vergne S, Klein A, Poupin M, Rondeau P, Le Bellego L, et al. Hydration biomarkers in 
free-living adults with different levels of habitual fluid consumption. Br J Nutr. 2013;109(9):1678–
87. [PubMed: 22935250] 

30. Perrier E, Rondeau P, Poupin M, Le Bellego L, Armstrong LE, Lang F, et al. Relation between 
urinary hydration biomarkers and total fluid intake in healthy adults. Eur J Clin Nutr. 2013;67(9):
939–43. [PubMed: 23695204] 

31. Armstrong LE, Johnson EC, Munoz CX, Swokla B, Le Bellego L, Jimenez L, et al. Hydration 
biomarkers and dietary fluid consumption of women. J Acad Nutr Diet. 2012;112(7):1056–61. 
[PubMed: 22889635] 

32. Venti CA, Votruba SB, Franks PW, Krakoff J, Salbe AD. Reproducibility of ad libitum energy 
intake with the use of a computerized vending machine system. Am J Clin Nutr. 2010;91(2):343–
8. [PubMed: 19923376] 

33. Weise CM, Hohenadel MG, Krakoff J, Votruba SB. Body composition and energy expenditure 
predict ad-libitum food and macronutrient intake in humans. Int J Obes (Lond). 2014;38(2):243–
51. [PubMed: 23736368] 

34. Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E, et al. Insulin resistance and 
insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective 
studies of Pima Indians. N Engl J Med. 1993;329(27):1988–92. [PubMed: 8247074] 

35. Ferraro R, Boyce VL, Swinburn B, De Gregorio M, Ravussin E. Energy cost of physical activity on 
a metabolic ward in relationship to obesity. Am J Clin Nutr. 1991;53(6):1368–71. [PubMed: 
2035463] 

36. Genuth S, Alberti K, Bennett P, Buse J, DeFronzo R, Kahn R, et al. Follow-up report on the 
diagnosis of diabetes mellitus. Diabetes care. 2003;26(11):3160–8. [PubMed: 14578255] 

37. Votruba SB, Kirchner H, Tschop M, Salbe AD, Krakoff J. Morning ghrelin concentrations are not 
affected by short-term overfeeding and do not predict ad libitum food intake in humans. Am J Clin 
Nutr. 2009;89(3):801–6. [PubMed: 19158212] 

38. Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C. Determinants of 24-hour energy 
expenditure in man. Methods and results using a respiratory chamber. Journal of Clinical 
Investigation. 1986;78(6):1568. [PubMed: 3782471] 

39. Tataranni PA, Ravussin E. Use of dual-energy X-ray absorptiometry in obese individuals. The 
American journal of clinical nutrition. 1995;62(4):730–4. [PubMed: 7572700] 

40. Chang DC, Piaggi P, Krakoff J. A Novel Approach to Predict 24-Hour Energy Expenditure Based 
on Hematologic Volumes: Development and Validation of Models Comparable to Mifflin-St Jeor 
and Body Composition Models. J Acad Nutr Diet. 2017;117(8):1177–87. [PubMed: 28571655] 

41. Abbott WG, Howard BV, Christin L, Freymond D, Lillioja S, Boyce VL, et al. Short-term energy 
balance: relationship with protein, carbohydrate, and fat balances. Am J Physiol. 1988;255(3 Pt 
1):E332–7. [PubMed: 3421330] 

42. Pannacciulli N, Salbe AD, Ortega E, Venti CA, Bogardus C, Krakoff J. The 24-h carbohydrate 
oxidation rate in a human respiratory chamber predicts ad libitum food intake. Am J Clin Nutr. 
2007;86(3):625–32. [PubMed: 17823426] 

43. Jequier E, Acheson K, Schutz Y. Assessment of energy expenditure and fuel utilization in man. 
Annu Rev Nutr. 1987;7:187–208. [PubMed: 3300732] 

44. Storey KB, Storey JM. Aestivation: signaling and hypometabolism. J Exp Biol. 2012;215(Pt 9):
1425–33. [PubMed: 22496277] 

Chang et al. Page 11

Eur J Clin Nutr. Author manuscript; available in PMC 2020 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



45. Ramnanan CJ, McMullen DC, Groom AG, Storey KB. The regulation of AMPK signaling in a 
natural state of profound metabolic rate depression. Mol Cell Biochem. 2010;335(1–2):91–105. 
[PubMed: 19756961] 

46. Rofe AM, Williamson DH. Mechanism for the ‘anti-lipolytic’ action of vasopressin in the starved 
rat. Biochem J. 1983;212(3):899–902. [PubMed: 6882400] 

47. Beglinger S, Drewe J, Christ-Crain M. The Circadian Rhythm of Copeptin, the C-Terminal Portion 
of Arginine Vasopressin. J Biomark. 2017;2017:4737082. [PubMed: 28656120] 

48. Meijer E, Bakker SJ, van der Jagt EJ, Navis G, de Jong PE, Struck J, et al. Copeptin, a surrogate 
marker of vasopressin, is associated with disease severity in autosomal dominant polycystic kidney 
disease. Clin J Am Soc Nephrol. 2011;6(2):361–8. [PubMed: 20930090] 

49. Meijer E, Bakker SJ, Halbesma N, de Jong PE, Struck J, Gansevoort RT. Copeptin, a surrogate 
marker of vasopressin, is associated with microalbuminuria in a large population cohort. Kidney 
Int. 2010;77(1):29–36. [PubMed: 19847155] 

50. Enhorning S, Tasevska I, Roussel R, Bouby N, Persson M, Burri P, et al. Effects of hydration on 
plasma copeptin, glycemia and gluco-regulatory hormones: a water intervention in humans. Eur J 
Nutr. 2017.

Chang et al. Page 12

Eur J Clin Nutr. Author manuscript; available in PMC 2020 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Relationships between 24-h respiratory quotient and 24-h urine volume (A, Group 1; C, 

Group 2) and 24-h urine urea nitrogen concentration (B, Group 1; D, Group 2). Pearson’s 

correlation coefficient (r) is reported along with its significance (p). 24-h respiratory quotient 

is adjusted for age, sex, race (Group 1), body fat percentage, and 24-h energy balance.
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Figure 2. 
Relationships between 24-h urine volume and urea nitrogen concentration, and 24-h energy 

expenditure. 24-h energy expenditure is adjusted for age, sex, fat-mass, fat-free mass, and 

spontaneous physical activity. Pearson’s correlation coefficient (r) is reported along with its 

significance (p).
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Figure 3. 
Relationships between copeptin and 24-h respiratory quotient (A), non-protein respiratory 

quotient (B), carbohydrate oxidation (C), and lipid oxidation (D). 24-h respiratory quotient 

and non-protein respiratory quotient are adjusted for age, sex, race, body fat percentage, and 

24-h energy balance. Pearson’s correlation coefficient (r) is reported along with its 

significance (p).
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Figure 4. 
Relationships between 24-h urine volume and urea nitrogen concentration, and total ad 

libitum food intake. Energy intake is adjusted age, sex, race, fat mass, fat-free mass, and 

residual 24-h energy expenditure (A and B). Energy intake also adjusted for 24-h respiratory 

quotient (B). Pearson’s correlation coefficient (r) is reported along with its significance (p).
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Table 1–

Characteristics of study participants

Characteristic Group 1: n=177 Group 2: n=284

Age (years), mean (SD) 35.8 (10.1) 30.0 (7.5)

Sex, n 111 M, 66 F 163 M, 122 F

Race/ethnicity, n 109 NA, 36 W, 7 B, 25 O/H 284 NA

Body weight (kg), mean (SD) 90.3 (22.2) 95.5 (24.3)

Body mass index (kg/m2), mean (SD) 31.5 (7.5) 34.2 (8.4)

Body fat (%), mean (SD) 31.0 (8.7) 33.2 (7.6)

Fat mass (kg), mean (SD) 28.8 (12.6) 32.3(13.8)

Fat-free mass (kg), mean (SD) 61.5 (13.4) 62.8 (13.3)

Glucose, fasting (mg/dl), mean (SD) 92.5 (8.8) 87.9 (8.9)

Glucose, 2-hour (mg/dl), mean (SD) 131.4 (35.3) 123.4 (32.8)

24-h EE (kcal/d), mean (SD) 2229.1 (417.4) 2373.9 (402.6)

24-h RQ, mean (SD) 0.85 (0.03) 0.85 (0.03)

24-h Non-protein RQ, mean (SD) 0.87 (0.05) 0.86 (0.03)

24-h Protein oxidation (kcal/d), mean (SD) 344.1 (115.9) 312.7 (92.6)

24-h Carbox (kcal/d), mean (SD) 1047.7 (298.3) 1061.4 (253.2)

24-h Lipox (kcal/d), mean (SD) 875.2 (397.8) 964.6 (322.3)

24-h Energy balance (kcal/d), mean (SD) −65.7 (325.6) −122.0 (245.3)

24-h Protein balance (kcal/d), mean (SD) 101 (124) 138 (94)

24-h Carb balance (kcal/d), mean (SD) 64 (260) 59 (220)

24-h Lipid balance (kcal/d), mean (SD) −207 (385) −286 (296)

SPA (%), median (IQR) 7.5 (5.9, 9.2) 7.1 (4.9, 7.8)

Ad libitum food intake (kcal/d), mean (SD) 3966.6 (1266.6) -

Soda intake (kcal/d), median (IQR) 336 (144, 528) -

24-h urine volume (l), mean (SD) 3.100 (1.352) 2.627 (1.132)

24-h UUN (mg/dl), median (IQR) 402 (322, 561) 493 (356, 589)

Copeptin (ng/ml), median (IQR) 
a 0.64 (0.44, 0.86) -

Copeptin storage (years), median (IQR)
a 6.4 (3.8, 14.2) -

SD, standard deviation; IQR, interquartile range; EE, energy expenditure; RQ, respiratory quotient; carbox, carbohydrate oxidation; lipox, lipid 
oxidation; SPA, spontaneous physical activity; UUN, urine urea nitrogen; NA, Native American; W, white; B, black; O/H, other/Hispanic;

a
n = 117

Eur J Clin Nutr. Author manuscript; available in PMC 2020 January 10.


	Abstract
	Introduction
	Subjects and methods
	Automated food-selection system
	Body composition
	Measurements in the metabolic chamber
	Analytical procedures
	Statistical Analysis

	Results
	Relationship between hydration biomarkers and metabolic chamber measures
	Relationship between copeptin and metabolic chamber measures
	Relationship between hydration and food intake
	Discussion

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1–

