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Abstract Although currently available therapies for chronic
hepatitis B virus infection can suppress viremia and provide
long-term benefits for patients, they do not lead to a functional
cure for most patients. Advances in our understanding of the
virus-host interaction and the recent remarkable success of
immunotherapy in cancer offer new and promising strategies
for developing immune modulators that may become impor-
tant components of a total therapeutic approach to hepatitis B,
some of which are now in clinical development. Among the
immunomodulatory agents currently being investigated to
combat chronic HBV are toll-like receptor agonists, immune
checkpoint inhibitors, therapeutic vaccines, and engineered T
cells. The efficacy of some immune modulatory therapies is
compromised by high viral antigen levels. Cutting edge
strategies, including RNA interference and CRISPR/Cas9,
are now being studied that may ultimately be shown to
have the capacity to lower viral antigen levels sufficiently
to substantially increase the efficacy of these agents. The
current advances in therapies for chronic hepatitis B are
leading us toward the possibility of a functional cure.
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Introduction

With an estimated 240 million people worldwide chronically
infected with hepatitis B virus (HBV), it is among the leading
causes of liver disease, cirrhosis, and hepatocellular carcino-
ma [1]. Current treatments for HBV can suppress viral repli-
cation but rarely result in a cure and often require prolonged
and possibly lifelong administration. Newer and more effec-
tive therapies are needed to achieve sustained and durable
remission and potentially even a functional cure for the ma-
jority of patients.

Brief Overview of HBV Virology

HBYV belongs to the Hepadnaviridae family. The HBV vi-
rions, also known as Dane particles, contain a lipid-derived
viral envelope with embedded viral surface proteins (hepatitis
B surface antigen/HBsAg) and an interior nucleocapsid pro-
tein (hepatitis B core antigen/HBcAg) that forms an icosahe-
dral shell which harbors a partially double-stranded, relaxed
circular DNA genome [2]. Upon infection of target hepato-
cytes, the viral genome is released into the cytoplasm,
transported to the nucleus, and then converted to a
minichromosome known as the covalently closed circular
DNA (cccDNA). This cccDNA acts as a template for multiple
viral mRNA transcripts synthesized via host RNA polymerase
II. However, only the pre-genomic RNA (pgRNA) is incorpo-
rated into the nucleocapsid together with the HBV
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polymerase. After viral pgRNA encapsidation, a somewhat
complex replication scheme involving reverse transcription
generates the relaxed circular DNA, and the genomic RNA
is degraded. The unusual stability of the cccDNA due to fold-
ing, episomal changes, and modifications is thought to be one
major reason for the persistence of HBV. The other reason for
persistence is that HBV has the ability to train and evade the
host immune responses which ultimately are required for viral
control, viral clearance, and possibly a cure. People who re-
cover from acute HBV infection typically achieve HBsAg
loss, with antibody to HBsAg (anti-HBs) seroconversion in-
dicating a high level of immune control. Even these patients,
however, harbor cccDNA and pre-genomic viral transcripts in
hepatocyte nuclei for life [2, 3], potentially leading to reacti-
vation when such patients undergo chemotherapy or other
immunosuppressive therapies [4] or when those with hepatitis
C virus (HCV) coinfection are treated with HCV direct acting
antiviral agents [5]. Thus, most experts now agree that while
an absolute “sterilizing” cure of HBV that eliminates all forms
of HBV replication intermediates including cccDNA will be
very difficult to achieve, a functional cure in which patients
achieve sustained absence of HBV viremia and loss of HBsAg
after a defined course of therapy and are returned to a state of
health equivalent to that of a person who spontaneously re-
covers from acute HBV infection may be an achievable goal
with the next wave of new HBV therapies. Immunomo
dulating therapies, the topic of discussion in this review, are
likely to be an important component of these new therapeutic
options.

Current Therapies

Current first-line therapies for chronic hepatitis B remain lim-
ited to pegylated interferon-alpha (PEG-IFN-«) and
nucleos(t)ide analogues (NAs). NAs inhibit the reverse tran-
scriptase activity of the HBV polymerase and lead to a rapid
decrease in HBV viremia [6]. These agents, however, have
little if any effect on the immune system and offer at best slight
reductions of cccDNA and thus result in a very low rate of
HBeAg and HBsAg loss and rarely achieve anti-HBe and anti-
HBs seroconversion [6]. The other first-line therapy, the im-
mune modulatory agent IFN-«, or the pegylated version PEG-
IFN-«, belongs to a class of antiviral cytokines which are
proteins naturally secreted by the host during viral infections.
Despite its discovery almost 60 years ago [7], the molecular
mechanisms by which IFN-o exerts its antiviral effects are
still poorly defined given its pleiotropic effects that result in
stimulation of both the innate and adaptive immune systems.
Compared to the nucleos(t)ide analogues, treatment with
PEG-IFN-« results in slower clearance of HBV viremia but
a higher, although still modest, rate of HBeAg and HBsAg
loss and anti-HBe and anti-HBs seroconversion [8]. Lengthier
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treatment with IFN has been shown to achieve higher rates of
HBsAg loss. In a small study of 10 HBV patients who were
HBsAg-positive and HBeAg-negative with fully suppressed
HBV DNA for at least 3 years, the addition of peg-IFN to
standard treatment with nucleos(t)ide analogues led to a loss
of HBsAg in 40 % of patients at 48 weeks and in 60 % of
patients at 96 weeks with no relapse during 12—18 months of
follow-up; HBsAg to anti-HBs seroconversion was observed
in two patients [9+].

IFN-« has been shown to induce epigenetic changes in the
cccDNA resulting in transcriptional repression [10]. It is also
known to upregulate APOBEC3A, a member of the
APOBEC3 family of DNA editing enzymes that deaminate
foreign double-stranded DNA cytidines to uridines and target
the foreign DNA for degradation [10, 11]. This combination
of direct intracellular antiviral activity and stimulation of an-
tiviral immune cells is likely responsible for the higher rate of
functional cure in HBV patients treated with IFN. In fact,
PEG-IFN-« is the only finite therapy for HBV, but it requires
parenteral delivery and is associated with significant adverse
effects in many patients, rendering it impractical to administer
to all HBV patients. In addition, long-term exposure to sys-
temic IFN has recently been shown to impair the antiviral
efficacy of the immune system [12]. However, the higher rate
of functional cure obtained with PEG-IFN compared to NAs
suggests that to achieve HBV functional cure, future therapies
that seek to restore optimal host immune responses to HBV
may have the best chance of success.

It has recently been suggested that nucleos(t)ide analogues
can also have weak direct immunomodulatory effects, each
with a different profile. For example, tenofovir can increase
the production of multiple cytokines, including increasing
TNF-« and IL-6 in monocytes, and enhancing IL-12 produc-
tion while decreasing IL-10 expression in human PBMC [13,
14]. In the woodchuck model of HBYV, it was shown that
entecavir, but not lamivudine, can enhance the effects of ther-
apeutic vaccination [15, 16]. Since newer therapeutic strate-
gies are likely to be used in combination with existing NAs, it
is also important to understand the immunological profile
exerted by these NAs.

Thymosin alpha 1 (Tecl) is a 28-amino acid peptide that is
known to enhance T cell, dendritic cell, and antibody re-
sponses and to modulate cytokine and chemokine production
[17, 18]. Currently in late stage clinical development in the
USA and Europe, it is already approved in 35 countries for
treatment of chronic hepatitis B and/or chronic hepatitis C.
Because it enhances responses to antigens and T cell matura-
tion, it has been thought that it might help mount a defense
against chronic HBV infection [19]. It has been studied both
as a sole therapy in chronic HBV patients and in combination
with PEG-IFN or NAs. Although early small studies sug-
gested that it might be an effective treatment when used alone,
a larger multicenter trial did not confirm its efficacy as a sole



Curr Hepatology Rep (2016) 15:237-244

239

treatment [20]. A meta-analysis of 8 trials (583 patients) that
compared the effect of lamivudine monotherapy with that of
combined lamivudine and Tl found that the combination
treatment resulted in significantly better ALT normalization
rate (80.2 vs 68.8 %, P=0.01), virological response rate
(84.7 vs 74.9 %, P=0.002), and HBeAg seroconversion rate
(45.1vs 15.2 %, P <0.00001). A meta-analysis of 7 trials (535
patients) comparing IFN monotherapy to the combination of
IFN with Tl found that the combination resulted in signifi-
cantly better results, both at the end of the treatment and the
follow-up, in HBV DNA negative rate (54.9 vs 36.3 % at end
of treatment, P < 0.01; 58.6 vs 30.7 % at follow-up, P < 0.01),
ALT normalization rate (74.5 vs 60.9 %, P<0.01; and 74.0 vs
55.6 %, P<0.01), HBeAg loss rate (56.9 vs 36.7 %, P < 0.01;
and 62.2 vs 33.2 %, P<0.01), and HBeAg seroconversion
rate (40.1 vs 29.0 %, P<0.05; and 47.0 vs 29.5 %,
P<0.01), as well as in HBsAg loss only at the end of the
follow-up (9.8 vs 3.7 %, P<0.05) [21]. There are ongoing
trials looking at various combinations of Tacl with other ther-
apies, including the combination of PEG-IFN with Tx1 and of
adefovir with PEG-T«1.

The subject of nucleos(t)ide analogues and other direct
acting antivirals (DAAs), IFN, and thymosin alpha-1 in
HBYV has been discussed in other reviews [22-24]. In this
review, we will focus on recently developed immunomodula-
tory agents that are being tested for treatment of patients with
chronic HBV (Table 1).

Toll-Like Receptor Agonists

Toll-like receptors (TLRs) belong to a class of receptors
known as pattern recognition receptors (PRRs), an important
component of innate immune defenses. These receptors sense
the presence of foreign pathogens and trigger the release of
inflammatory cytokines to induce an antimicrobial state and
facilitate subsequent adaptive immune responses. Agonists of
TLRs, including of TLRs 3, 8, 7, and 9, have been shown to
have anti-HBV effects in animal models [25]. Of these, GS-
9620, an orally available TLR7 agonist, is the most advanced
in development. TLR7 is a PRR that is mainly expressed in
plasmacytoid dendritic cells (pDCs) and B cells. Upon stimu-
lation of TLR7, pDCs produce high levels of IFN and other
cytokines, resulting in activation of natural killer cells and
cytotoxic T lymphocytes [26].

In chimpanzees, after 8 weeks of GS-9620 treatment, HBV
viral load was reduced by more than 2 logs with a greater than
50 % reduction in serum HBsAg and HBeAg [27]. In wood-
chucks, GS-9620 treatment for 4-8 weeks resulted in a greater
than 6 log viral load reduction, loss of HBsAg and serocon-
version in a subset, and a reduction of hepatocellular carcino-
ma (HCC) incidence from 71 % in the placebo group to 8 % in
the treated group [28]. In 2 phase 1b trials in which GS-9620

was given as a single dose or as two doses 7 days apart, GS-
9620 induced peripheral interferon-stimulated gene 15
(ISG15) expression but had no effect on HBsAg levels or
HBV DNA [29+]. Ongoing phase 2 trials of longer duration
are assessing GS-9620 in combination with tenofovir. GS-
9620’s advantages include oral availability compared to par-
enteral delivery for PEG-IFN-o and its ability to induce IFN
intrahepatically without systemic induction of IFN. By locally
inducing the IFN response at the infected site, it is possible
that GS-9620 might leverage the beneficial effect of IFN,
while avoiding the adverse effects and thus increase patient
adherence. However, based on the research to date, it appears
that there is a low probability of the successful use of TLR
agonists with CHB as monotherapy. If they are to be used, it
will almost certainly have to be in combination with antivirals.

In addition to TLR agonists, many other small molecule
modulators of innate immunity are being tested for their abil-
ity to clear HBV: SB-9200, which activates the RIG-I/NOD2
pathway, and birinapant (TL32711), which is a second
mitochondrial-derived activator of caspases (SMAC) mimetic
that antagonizes cellular inhibitor of apoptosis proteins
(cIAPs) to improve TNF-mediated killing of HBV-infected
cells [30].

Immune Checkpoint Inhibitors

The phenomenon of immune exhaustion was first identified in
chronic lymphocytic choriomeningitis virus (LMCV) in mice
and was later found to occur in other human chronic viral
infections such as HIV, HCV, and HBV, as well as in various
cancers. A hallmark of T cell exhaustion in both such viral
infections and cancer is the increased expression of various
inhibitory receptors such as programmed death-1 (PD-1), cy-
totoxic T-lymphocyte antigen-4 (CTLA-4), cluster of differ-
entiation 244 (CD244), cluster of differentiation 160
(CD160), and others [31]. In cancer immunotherapy, the use
of checkpoint inhibitors such as those that block the PD-1:PD-
L1 pathway has resulted in significant clinical benefits with a
wide range of cancer types including melanoma, non-small
cell lung cancer (NSCLC), and renal cell carcinoma (RCC)
[32]. The fact that T cell exhaustion is a major factor in
allowing both the progression of these cancers and the persis-
tence of chronic viral infections like HBV suggests that check-
point inhibitors may potentially achieve clinical benefits when
used as treatments for chronic HBV. In a study that used liver
biopsies from 42 patients with chronic HBV infection, it was
shown that when T cells were incubated with HBV peptides in
the presence of anti-PD-L1, blocking the PD-1:PD-L1 inter-
action led to increased intrahepatic CD8 T cell proliferation
and production of IFN-gamma and IL-2 [33].

In a proof-of-concept evaluation of nivolumab, an anti-PD-
1 monoclonal antibody, in chronic HCV patients, 15 % of

@ Springer



240

Curr Hepatology Rep (2016) 15:237-244

Table 1 Immunomodulatory

agents in studies for treatment of ABX203 Therapeutic vaccine ~ Recombinant HBsAg/ Phases 2 and 3 [45] Abivax S.A.
chronic HBV agent type HBcAg
modality/stage sponsor com-
pound type and results to date Birinapant  SMAC Cellular inhibitor of Pre-clinical [30] TetraLogic
mimetic/IAP an- apoptosis proteins Pharmaceuticals
tagonist
CYT107 Cytokine Interleukin-17 Phases | and 2 [52] Cytheris S.A.
GS-4774 Therapeutic vaccine  Recombinant inactivated ~ Phase 2 [4344¢] Gilead Sciences
yeast cells expressing
HBsAg, HBcAg, HBx
GS-9620 Pattern recognition Small molecule TLR7 Phase 2 [27, 2829¢] Gilead Sciences
receptor agonist
INO-1800  Therapeutic vaccine ~ Multi-antigen DNA Phase 1 [11] Inovio
immunotherapy Pharmaceuticals
targeting HBsAg and with
HBcAg Hoffman-La
Roche
SB-9200 Viral sensor Small molecule nucleic Pre-clinical [30] Spring Bank
activator and acid hybrid that Pharmaceuticals
cytokine inducer activates RIG-I and
NOD?2 and induces in-
terferon signaling
pathways
TG1050 Immuno-therapeutic ~ Non-replicative Phase 1 [46] Transgene
adenovirus encoding
fusion protein
(truncated HBV core,
modified HBV
polymerase, 2 HBV
envelope domains)
Thymosin ~ Biological response ~ 28-Amino acid fragment ~ Approved in 35 Multiple
alpha-1 modifier that promotes countries; late companies

differentiation of T
cells to a mature stage

stage clinical
development in
the USA and
Europe [17-21]

Abbreviations: HBcAg hepatitis B core antigen, HBsAg hepatitis B surface antigen, HBx hepatitis B X protein, /AP
inhibitor of apoptosis protein, NOD2 nucleotide-binding oligomerization domain-containing protein 2, R/G-I retinoic
acid-inducible gene I, SMAC second mitochondrial-derived activator of caspases, 7LR7 toll-like receptor 7

patients had a significant reduction in HCV RNA following a
single dose [34], suggesting that checkpoint inhibitors may
have antiviral efficacy that might also be effective with chron-
ic HBV. With many more agents targeting the PD1:PD-L1
pathway now in advanced clinical development and some
already approved for treatment of several cancers, further test-
ing of these agents’ antiviral efficacy will reveal their potential
for treatment of chronic HBV. Based on the research done to
date, it appears that there is a moderate to high probability that
checkpoint inhibitors could be at least a component of effec-
tive therapy for chronic HBV.

However, the risk profile with this therapeutic class
is substantial, and caution will have to be taken when
considering the use of these agents. There is a consid-
erable risk of adverse effects with any agent in this
class, including an increased risk of viral infections,
autoimmune reactions or exacerbation of autoimmune
disease and, in the immune compromised, opportunistic
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infections. A recent assessment of T cell transcriptomes
confirmed that an exhausted profile is seen in patients
with poor outcome in chronic infection, while it corre-
lates with favorable prognosis in autoimmune disease
[35]. Therefore, the use of checkpoint inhibitors in
chronic HBV infection will have to balance the possible
clinical benefits and the risks related to the use of these
therapies and will require close and careful monitoring.
Given that most of the safety and efficacy profiles of
these agents were established in oncology patients, the
extent to which those parameters are appropriate for
HBV patients without concomitant cancer remains to
be determined. Recent phase 1/2 evaluations of
nivolumab in HCC patients, 25 % of whom were chron-
ic HBV patients, showed a 19 % objective response rate
[36], suggesting that in the field of HBV, therapeutic
blockade of PDI1:PD-L1 will likely be employed first
in those with HCC.
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Therapeutic Vaccines

Therapeutic vaccines are being intensively researched as pos-
sible immunotherapies for both chronic viral infections and
cancer. In the case of chronic HBV, the goal of therapeutic
vaccination is to restore the diminished T cell response to
HBYV antigen in a robust and specific manner in order to
achieve long-term viral control and minimize host cell dam-
age. Strategies for therapeutic vaccines include the HBsAg-
based vaccine [37], those that are based on the HLA-A2 re-
stricted HBV peptide to induce specific CD8+ T cell responses
[38] and those that are based on a DNA vector encoding var-
ious HBV genes [39, 40]. Although these strategies all dem-
onstrated good safety and tolerability profiles and resulted in
induced immunogenicity, clinical trials have yet to demon-
strate clinical benefits. One likely explanation for these
agents’ lack of efficacy in HBV patients, despite inducing
robust immune responses in healthy people, is that for them
to have benefit, the exhaustion of both CD4+ and CD8+ T
cells in HBV patients that is thought to be caused by
prolonged exposure to high levels of soluble HBV antigens
(particularly, HBsAg) [41] needs to be reversed, at least
partially.

Because high viral antigen levels are known to decrease the
effectiveness of therapeutic vaccines [42], reducing the level
of viral antigens with the use of nucleos(t)ide analogues or
newer therapies might increase the efficacy of therapeutic
vaccines. In HCV patients, induction of T-cell immune re-
sponses is markedly attenuated when therapeutic vaccines
were administered to people with a high level of viremia
[42]. In the case of chronic HBV, even with optimal suppres-
sion of viremia, the abnormally high level of HBsAg and
HBeAg in patients with wild-type infection may further com-
plicate and modulate the efficacy of therapeutic vaccines.

Further optimization of the design of studies of these ther-
apeutic vaccines is ongoing, with many in pre-clinical and
clinical development. For example, GS-4774 is derived from
a recombinant, heat-killed yeast that encodes a fusion protein
of HBsAg, HBcAg, and hepatitis B X protein (HBx).
Although GS-4774 was shown to be safe and well tolerated
[43], its combination with HBV oral antivirals in 178 non-
cirrhotic chronic HBV patients did not result in a significant
difference in mean HBsAg levels at either 24 or 48 weeks; 3
patients in the highest dose group had a >0.5 log drop of
HBsAg; more patients in the GS-4774 groups had >30 %
reductions in HBsAg at week 48; 16 % (5/32) experienced
HBeAg loss; and 4 patients had HBeAg seroconversion which
did not occur in any patient in the oral antiviral sole treatment
group, suggesting that there may be real biological activity
[44-]. It is possible that lengthier treatment with immunomod-
ulatory agents may be required to achieve meaningful clinical
benefits, as was seen in the use of IFN in the study already
discussed in which loss of HBsAg increased from 40 % at

48 weeks to 60 % at 96 weeks. GS-4774 was well tolerated
in all patients, suggesting that extending the duration of ad-
ministration may be a practical strategy that is worth further
exploration. Other therapeutic vaccines in development in-
clude ABX-203 [45], INO-1800 [11], and TG-1050 [46].
Based on the research to date, it would appear that there is a
low to moderate probability of successful use of these agents
for treatment of chronic HBV. If they are to be used success-
fully, it will almost certainly be as part of double or triple
combination therapy or sequential treatment.

Engineered T cells

Another approach to immunotherapy is to engineer patients’
immune cells, such as T cells, to eliminate HBV-infected he-
patocytes. This technique, called adoptive cell transfer (ACT),
has been employed with early promising results in human
cancer therapy [47] including those with HBV-associated
HCC [48]. With this approach, T cells are removed from a
patient, modified to express receptors specific to the particular
type of cancer so that the cells are able to recognize the cancer
cells, and then reintroduced into the patient. Holding the most
promise for chronic HBV treatment is adoptive transfer of T
cells expressing chimeric antigen receptors (CARs) which al-
low the engineered T cells to recognize specific antigens on
target cells [49]. This approach was recently shown to have
potential promise in mouse models of HBV [50]. However,
there is no human data to show whether this approach can be
both successfully and safely used in chronic HBV patients.
One of the challenges of this approach is the diversity of
antigenic presentation of HBV-infected cells since unlike tu-
mor, which often involves clonal expansion, HBV-infected
hepatocytes are likely polyclonal. In addition, this is a highly
individualized therapy that is very costly, making it a therapy
that is unlikely to be successfully used in the developing
world. For now, despite the fact that this approach is consid-
ered innovative and exciting, it would seem that there is a low
probability that this will become a widely used successful
therapy for chronic HBV.

Other Immune Modulators

Many other modulators of immunity are being tested for their
ability to clear HBV. SB-9200, now in pre-clinical testing, is a
small molecule nucleic acid hybrid that activates RIG-I and
NOD?2 and induces interferon signaling pathways [30].
Birinapant (TL32711), also in pre-clinical testing, is a second
mitochondrial-derived activator of caspases (SMAC) mimetic
that antagonizes cellular inhibitor of apoptosis proteins
(cIAPs) to improve TNF-mediated killing of HBV-infected
cells [30]. In addition, therapeutic cytokines are being studied

@ Springer



242

Curr Hepatology Rep (2016) 15:237-244

as a way to restore T cell homeostasis which is disrupted in
chronic HBV infection. Interleukin-7 (IL-7) is needed for the
proper development of T cells, B cells, and some dendritic cell
subsets. It has been shown that in dendritic cells, IL-7-
mediated signaling regulates peripheral CD4+ T cell homeo-
stasis [51]. With pre-clinical data derived from several differ-
ent models showing that IL-7 has significant immune restora-
tion effects and vaccine adjuvant effects, CYT107 is a second-
generation recombinant human IL-7 now being tested in CHB
patients in combination with antiviral therapy and vaccine in
phase 1 and 2 trials [52, 53].

Lowering Viral Antigen to Improve Immune
Modulator Efficacy

There are currently several cutting edge strategies being stud-
ied that may lower viral antigen levels sufficiently to substan-
tially increase the efficacy of some of the immune modulator
therapies discussed here, including therapeutic vaccines, IFN,
and checkpoint inhibitors, the efficacy of which has been
shown to be compromised by high antigen levels [42, 54,
55]. Thus, these strategies might become an important com-
ponent of a combined approach.

Given that one of the major challenges in achieving func-
tional cure in HBV is the persistence of the mini-chromosomal
cccDNA that serves as a template for de novo viral antigen
synthesis, a therapeutic strategy that has generated interest is
the CRISPR/Cas9 genome-editing tool. CRISPR (clustered,
regularly interspaced, short palindromic repeat) is a series of
short repeated DNA sequences in the bacterial genome that
are flanked by sequences of bacteriophages—viruses that in-
fect bacteria—DNA. It has been shown that the CRISPR/Cas9
system is a way that bacteria develop adaptive immunity
against bacteriophages. The CRISPR locus is adjacent to the
Cas gene which is a type of nuclease that can degrade DNA.
Following the first demonstration that the CRISPR/Cas9 sys-
tem can be engineered to precisely cut genomic DNA at var-
ious sites [56], additional research has shown that this system
is an extremely efficient genome-editing tool in a broad range
of animals [57]. Unlike previous genome-editing techniques,
the CRISPR/Cas9 system is easy to use, less expensive, highly
adaptable, and able to offer precise control over genome
editing. However, delivery system optimization and clarifica-
tion will be required for efficient delivery and minimizing of
off-target effects. The use of this system to combat chronic
human viral infection, although still limited to the laboratory,
is predicted to hold significant clinical potential given the pace
of discovery and development [57]. Encouragingly, multiple
studies have demonstrated the potential of this approach to
remove HBV cccDNA, first in cell cultures [58, 59] and more
recently in HBV-infected mice [60—62]. Thus, the use of
CRISPR/cas9 could be a strategy that would directly remove
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cccDNA which in turn could lower HBsAg levels. Current
efforts are under way to develop a method for safe and effi-
cient delivery of the CRISPR/Cas9. Although this approach is
perhaps one of the most scientifically exciting, both theoreti-
cal and practical considerations combine to push the reality of
such anti-HBV therapies into the future.

RNA interference (RNAi) could also improve the efficacy
of some of the immune modulators by lowering HBsAg via
elimination of HBV RNA transcripts [63]. In a study that
assessed the depth and duration of HBsAg reduction in re-
sponse to the combination of entecavir and ARC-520, the
RNAI therapy that is currently the farthest along in develop-
ment, it was shown that a substantial and prolonged reduction
in viral antigens including HBsAg can be achieved in chronic
HBYV patients through an RNAi mechanism. This type of sub-
stantial reduction could be expected to improve the response
to a number of the immune modulators. Because of its design,
it is thought that ARC-520 will only require administration
once monthly or less, potentially making it a practical compo-
nent of a combination approach. Safety considerations asso-
ciated with delivery formulations, and the need to transfect
every cell in the liver are practical considerations that will
need to be addressed with RNAi therapies.

Conclusions

The past two decades have witnessed substantial progress in
the treatment of chronic HBV, including the introduction of
nucleos(t)ide analogues which revolutionized hepatitis B
management, allowing for potent suppression of HBV vire-
mia. However, these agents have many limitations, including
the need for likely lifelong treatment and the lack of functional
cure which is an important goal in order to reduce the burden
of HBV-associated cirrhosis and HCC. Recent advances in
immunotherapy and its remarkable success in the field of on-
cology offer new hope that such strategies may hold promise
for achieving a functional cure of HBV. Some of these agents
are now in advanced clinical development. The use of new
strategies like CRISPR/Cas9 and RNAi may increase our abil-
ity to lower HBsAg levels and improve the efficacy of several
immune modulation therapies. In the foreseeable future, effec-
tive approaches to chronic HBV infection may require some
combination of ongoing suppression of viral replication, im-
mune checkpoint inhibitors, and immune modulation via ther-
apeutic vaccines or TLR agonists or other approaches
discussed here. The challenge will be to define the correct
combination and the correct duration of therapy. Given the
advances in our scientific understanding of HBV virology
and in technologies to translate this knowledge into practical
treatments, there is renewed hope that the elusive goal of a
cure for chronic HBV may be closer than ever.
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