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In contrast to most cell types, lymphocytes do not readily adhere either to 
other cells or to surfaces in vitro. The physiological functions of lymphocytes 
appear to require their circulation among the various lymphoid organs in the 
animal. Adherence to cells or surfaces may be required for normal immune 
function in vivo and such adhesions may be mediated by specific receptors on the 
cell surface. Many of the natural foreign antigens recognized by lymphocytes 
are microorganisms and the binding of such antigens to lymphocytes appears to 
be necessary to elicit an immune response. Recently, many examples of cell-cell 
interaction required for various immune reactions have been described (re- 
viewed in 1, 2), and while some of these may be mediated by soluble factors (3), 
cell-cell adhesion may be required for others. For example, it has been shown 
that clusters of adhering cells are necessary for the in vitro generation of 
antibody-forming cells (4). The antigen-specific adhesion between lymphocytes 
and macrophages (5, 6) seems likely to be functionally important. In lympho- 
cyte-mediated cytolysis of foreign cells, a specific binding of the target cell by the 
killer cell appears to be a necessary first step in the lytic process (reviewed in 7). 

Because of their nature, these specific cell-cell surface interactions have been 
difficult to study. The morphologic changes induced by the binding of murine 
spleen cells to antigen immobilized on nylon fibers has been studied as a model 
system (8). The present investigation describes the morphologic consequences of 
the adhesion of human lymphocytes to immobilized antigen-antibody com- 
plexes. We have shown that this interaction is mediated by the lymphocyte Fc 
receptor and results in a strong binding of Fc-bearing cells to antibody-coated 
antigenic surfaces. 1 The interaction of lymphocytes with such surfaces can be 
considered a model for killer-target cell interaction in antibody-dependent lym- 
phocyte-mediated cytotoxicity. During these studies, it was observed that the 
shape and morphology of the adherent cells was markedly altered when com- 
pared to that of normal lymphocytes. These alterations and experiments to 
elucidate their mechanism(s) are described in this paper. 

Henkart, P., and E. Alexander. The adherence of human Fc-bearing lymphocytes to immobi- 
lized antigen-antibody complexes. I. 51Cr binding assay and lymphocyte preparative technique. 
Manuscript submitted for publication. 
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Materials and Methods 
Colchicine, vinblastine, and phenylmethane sulfonyl fluoride (PMSF) 2 were obtained from 

Sigma Chemical Co., St. Louis, Mo.; EDTA and ethylene bis(oxyethylenedinitrilo)tetraacetic acid 
(EGTA) from Fisher Scientific Co., Pittsburgh, Pa.; cytecholasin B from Gallard-Schlesinger 
Chemical Mfg. Corp., Carle Place, N. Y.; concanavalin A (Con A) from Miles Laboratories Inc., 
Miles Research Div., Elkhart,  Ind.; purified phytohemagglutinin (PHA) from The Wellcome 
Research Laboratories, Beckenham, England; and diisopropyl fluorophosphate (DFP) from Ald- 
rich Chemical Co., Inc., Milwaukee, Wis. Colcemid was the kind gift of Dr. J. R. Macintosh, 
University of Colorado, Boulder, Colo. Ricin was purified by the method of Nicolsen and Blaustein 
(9). Wheat germ aggiutinin (WGA) was purified according to LeVine et al. (10). 

Human peripheral blood lymphocytes were prepared as described previously. ~ Plastic surfaces 
were coated with antigen-antibody complexes using a 1/100 dilution of heat-inactivated rabbit 
anti-DNP or anti-TNP. 1 Plastic surfaces were also coated with lectins by incubating with solutions 
of 1 mg/ml for 20 rain at 22°C followed by thorough washing. 

Light Microscopy of Lymphocytes Adherent to Antigen-Antibody-Coated Plastic. Parafitm 
wells were made in the bottom of tissue culture Petri plates as outlined in detail elsewhere. 1 Cell 
suspensions containing 40,000-200,000 cells in 20 ~l of Eagle's minimum essential medium (MEM) 
containing 10% fetal calf serum (FCS) were allowed to settle for 20 rain onto wells with 7 mm 
diameters. When desired, nonadherent cells were removed by inverting the plates for 10 rain, 
gently aspirating the inverted drop, and washing away the remaining nonadherent cells with 50- 
/~1 aiiquots of MEM. The wells containing 20 ~l of medium were examined directly and photo- 
graphed in an inverted phase microscope at x 290 (correcting the optics for the lens effect of the 
curved surface of the medium). For higher power observation with noninverted microscopes using 
phase and Nomarski optics, a cover glass was placed on top of the wells. Most experiments were 
performed at room temperature. In studies of cell motility, the temperature was maintained at 
37°C using an air curtain incubator. When fixation was desired, the adherent cells were fixed at 
room temperature in 0.15 M sodium cacodylate, pH 7.4, containing 2.5% glutaraldehyde. 

Time-lapse Cinematography. Time-lapse cinematography was performed at 37°C using Ptus-X 
reversal film (Eastman Kodak Co., Rochester, N. Y.) with 2.25-s exposures every 5 s. The objective 
lens was focused on scratches placed on the plastic surface. Lymphocytes were then pipetted into 
the medium above this area of the Petri plate and observed as they settled onto the substrate. 

Analysis of Drug and Temperature Effects on Lymphocyte Morphology. The effects of various 
drugs and temperature (Table II) on the morphology of adherent cells were quantitated by careful 
examination of 150-200 adherent lymphocytes in photomicrographs (× 290) taken with an in- 
verted-phase microscope. Each was graded independently on a scale of 0-2, for both its degree of 
flattening and its extent of elongation, and an average value of flattening and elongation 
computed for each condition. Adherent cells that were neither flattened nor elongated were graded 
as 0; cells with an intermediate degree of flattening or elongation as 1; and cells which were 
markedly flattened or maximally elongated with classical uropods as 2. The criteria for these 
scales are shown in Table I. The inhibition of flattening and elongation was calculated by 
comparing these average values for the drug-treated cells with the average values for the same 
cells on the same day in MEM in the absence of drugs. Thus each of the values for inhibition in 
Table II are derived from scoring 1,500-2,000 cells graded according to their morphology. 

Scanning Electron Microscopy. Adherent lymphocytes were fixed for scanning electron micros- 
copy by adding an equal volume of 3.0% glutaraldehyde in 0.1 M phosphate buffer, pH 7.2, to the 
media contained within the antigen-antibody complex-coated wells. After 2 h the plates were 
thoroughly washed and stored in buffer at 0°C. The washed lymphocytes were either dehydrated 
through a graded series of ethanol and prepared by critical-point drying i l l )  or freeze dried 
directly from water (12). The specimens were vacuum coated gold palladium on a rotating tilting 
stage and examined with an Etec Autoscan microscope (Etec Corporation, Hayward, Calif.) at 20 

2 Abbreviations used in this paper: BSA, bovine serum albumin; Con A, concanavalin A; DFP 
diisopropyl fluorophosphate; EGTA, ethylene bis(oxyethylenedinitrilo)tetraacetic acid; FCS, fetal 
calf serum; PBS, phosphate-buffered saline; PHA, phytohemagglutinin; PMSF, phenylmethane 
sulfonyl fluoride; SEM, scanning electron microscopy; WGA, wheat germ agglutinin. 
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FIG. 1. Human lymphocytes settled onto modified substrates, x 290. (a) Purified lympho- 
cytes allowed to settle onto antigen-coated substrate. Virtually all of the cells remain 
spherical and phase bright. (b) Purified lymphocytes allowed to settle onto antigen-anti- 
body-coated substrate. A subpopulation of cells appear flattened (phase dark) and some are 
elongated. (c) Adherent lymphocytes on immobilized antigen-antibody complexes. Nonad- 
herent cells have been removed. The cell concentration of the starting population for this 
plate was higher than for (a) or (b) in order to provide a higher adherent cell density. 

kV and 45 ° tilt. The cells were photographed on Polaroid 55 film. (Polaroid Corp., Cambridge, 
Mass.). 

Results 
Alterations of Lymphocyte Morphology Induced by Binding to Immobilized 

Antigen-Antibody Complexes. When lymphocytes in MEM were allowed to 
settle onto plastic surfaces coated with antigen-antibody complexes, a striking 
change in the appearance of a subpopulation of cells was observed with the 
phase microscope (Fig. i b). Between 5 and 30% of the purified lymphocytes from 
normal individuals became phase dark (flattened) and increased their area of 
contact with substrate, indicating cell spreading. Frequently, these flattened 
cells also became elongated. In contrast, when lymphocytes were allowed to 
settle onto uncoated plastic surfaces or onto plastic surfaces coated with antigen 
alone (Fig. 1 a), only 0-2% of the cells underwent a similar morphological 
transformation. As previously demonstrated, the cells which adhere to these 
immobilized antigen-antibody complexes are Fc receptor-bearing lymphocytes. 1 
As shown in Fig. I c, most but not all of the adherent cells have become phase 
dark. Thus the morphologically altered subpopulation of lymphocytes bears the 
Fc receptor and most of these cells become flattened upon the brief contact with 
surfaces coated with antigen-antibody complexes. 

The presence of an Fc receptor appears to be required for the induction of these 
morphologic changes in lymphocytes. ~ In normal individuals, the percent of 
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phase-dark cells is generally slightly lower than the percent which bind aggre- 
gated IgG or soluble immune complexes. F(ab')s antibody did not induce these 
shape changes, nor did the goat, sheep, or mouse antibodies previously shown to 
be inactive in mediating adhesion to these surfaces. I 

Soluble antigen-antibody complexes were formed in antigen excess using 
TNPP1rbovine serum albumin (BSA) and the same antibody (rabbit anti-TNP) 
that was used to coat the TNP-plastic surfaces. These soluble complexes did not 
trigger the morphologic changes induced by the attachment of lymphocytes to 
immobilized complexes and the cells appeared similar to those in Fig. 1 a. 
However, some clumping of the Fc receptor-bearing cells did occur. 

The morphological alterations accompanying lymphocyte adhesion to lectin- 
coated plastic surfaces were also studied. Con A-, PHA-, WGA-, and ricin-coated 
polystyrene surfaces bound 5-50% of human lymphocytes. In the case of Con A, 
this binding was inhibited by alpha-methyl-mannose, a specific saccharide 
inhibitor of Con A binding. Of the lymphocytes adherent to such immobilized 
Con A, only 9% underwent a morphological alteration (similar to that of 
adherent lymphocytes on immobilized antigen-antibody complexes) while the 
majority remained spherical. Immobilized PHA induced similar morphological 
alterations in 16% of the adherent cells, while the nonmitogenic lectins, WGA 
and ricin, induced less than 1.0% of the adherent cells to alter their shape as 
viewed with the phase microscope. 

As previously documented, ~ the vast majority of cells adherent to antigen- 
antibody-coated plastic in our experiments are lymphocytes, not monocytes. In 
experiments using cell preparations obtained from Ficoll-Hypaque density gra- 
dients and not depleted of monocytes, the adherent population also contained a 
larger cell possessing a large irregularly shaped, convoluted nucleus and a 
characteristic broad phase-dark ruffled membrane around the cell periphery. 
The appearance of these cells was very similar to that previously reported for 
macrophages induced to spread by contact with immobilized antigen-antibody 
complexes (13, 14). Thus, it appeared that most of the occasional contaminating 
monocytes in our preparations could be recognized by phase morphology alone, 
and such cells have not been considered in the following discussion. 

Light Microscopy of L ymphocytes Adherent to Immobilized A ntigen-Antibody 
Complexes. Low power phase micrographs (Fig. 1 c) illustrate the diversity in 
the morphology of the lymphocytes attached to antigen-antibody-coated sub- 
strate. Further details of this variation were apparent at higher power using 
phase and Nomarski optics as shown below. At one extreme of the range of 
adherent cell morphology were the phase-bright spherical cells whose appear- 
ance resembled that of normal lymphocytes in suspension. Other cells were 
primarily phase bright, but possessed small phase-dark processes radiating 
peripherally and apparently in contact with the substrate. More common were 
cells which appeared to have flattened to a further degree, with phase-dark 
nuclei surrounded by cytoplasm bordered by more prominent phase-dark irregu- 
larities (Fig. 1 b and c). While many of these cells were spread symmetrically 
along the plane of the substrate, others showed a variable degree of elongation. 
The combined variables of flattening and elongation gave rise to the diversity of 
adherent cell shapes. Extremely elongated lymphocytes (Fig. 1 b and c) pos- 
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TABLE I 

Distribution of Adherent Lymphocyte Morphology 

333 

Percent of total adherent cells* 

Degree of flatten- None Intermediate  Marked 
ing$ 

Degree of elongation* None 8.3 -+ 1.2 13.8 ± 1.7 9.3 -+ 1.1 
Intermediate 0 24.9 -~ 2.1 22.8 -+ 2.0 
Uropod 0 20.9 -+ 2.1 

* Mean -+ standard error of the mean, for a total of 13 experiments with a minimum of 200 cells 
scored per experiment. 

* Adherent lymphocytes were graded both as to their degree of flattening and of elongation. The 
criteria used to score lymphocytes were as follows: Phase-bright cells, no flattening; phase-gray 
or black and white cells, intermediate flattening; and phase-dark cells, marked flattening. 
Likewise, cells with one axis at least twice as long as their width were classified as elongated to 
an intermediate degree; and cells with well-defined hand mirror shapes and tails as uropod 
bearing. 

sessed a long, thin ~tail," suggestive of the "uropod" (15) classically associated 
with motile lymphocytes (16, 17). Table I presents the distribution of adherent 
cell morphology when graded by degree of flattening and extent of elongation 
and relates these two parameters, respectively, to the phase appearance and 
shape of the adherent cells. There was considerable variation in the distribution 
of these forms from experiment to experiment, as indicated by the ranges. This 
was particularly true for different individuals, but  was also noted to a lesser 
extent in different experiments from the same donor. 

The distribution of morphological types of lymphocytes adherent to antigen- 
antibody-coated plastic was independent of the dose of antibody used to coat the 
TNP plastic. For example, even at suboptimal antibody concentrations (0.3 
/A/ml anti-TNP), those lymphocytes which did adhere had a distribution of 
shapes similar to those lymphocytes adhering to the TNP-plastic coated with 10 
/~g/ml anti-TNP. The orientation of the elongated lymphocytes appeared to be 
random; this was true using the standard antigen-antibody-coated plastic, and 
also in cases where a gradient of immobilized antibody was created on the 
substrate. 

Higher power phase and Nomarski optics revealed a number of remarkable 
features of these adherent lymphocytes. The small phase-dark irregular borders 
of many of these cells were suggestive of, but  smaller than, the ruffled mem- 
branes seen in fibroblasts in culture (18; Fig. 2 a and b). The nuclei of many 
elongated cells changed from their essentially spherical shape to irregular or 
elongated forms (Fig. 2 a-d) which in some cases extended well into the more 
constricted region associated with the uropod. The cytoplasmic organelles 
tended to redistribute and concentrate in the Golgi-centriolar region or within 
the uropod (Fig. 2 c and d). Apparent contact between cell membranes of 
adjacent lymphocytes was commonly observed (Fig. 2 a-d), and occasionally 
such cells appeared to crawl over or underneath one another (Fig. 2 b). 

Time-Lapse Cinematography. Time-lapse cinematography of cells settling 
onto antigen-antibody-coated substrate revealed that flattening and elongation 
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FIG. 2. Adherent Fc receptor-bearing lymphocytes. (a and b) Phase photomicrographs of 
adherent lymphocytes. The heterogeneity of cell shape is demonstrated by the flattened, 
elongated, and uroped-bearing lymphocytes. Phase-dark irregularities at the cell periphery 
appear to be ruffled membranes. (a), × 1,082; (b), x 1,710. (c and d) Nomarksi photomicro- 
graphs of adherent lymphocytes. Peripheral ruffled membranes and microextensions, as 
well as intracellular organelles concentrated in the peri-Golgi region can be visualized. (c), 
× 2,044; (d), × 2,085. 

occurred very rapidly after cell contact with substrate. With the microscope 
focused on the plastic substrate while the cells were settling from suspension, 
the time of contact with the substrate for each cell was established as it came 
into focus and ceased being transported by the convection currents of the 
medium. For those cells which eventually underwent a morphological altera- 
tion, an average interval of 80 s (43 cells measured; range 15-375 s) elapsed 
between contact with the substrate and the detection of the onset of clearly 
observable flattening. 

The process of flattening was even more rapid. The lymphocytes required an 
average time of 42 s to flatten, (43 cells measured; range 10-100 s). The first step 
in this process frequently appeared to involve the formation of small phase-dark 
ruffled skirt-like extensions at the peripheral cell-substrate interface. Elonga- 
tion and uropod formation were commonly completed within several minutes of 
cell contact with antigen-antibody-coated substrate. 
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Time-lapse cinematography, as well as sequential phase photomicrographs, 
showed that individual cells continued to undergo a wide range of morphological 
alterations after initial attachment and spreading. The degree to which individ- 
ual cells were flattened and elongated varied strikingly with time. In some 
cases, for example, flattened cells reverted to the spherical phase-bright form 
characteristic of cells in suspension. In other cases, transitions between symmet- 
rically flattened and elongated forms were observed. In general, the most phase- 
dark symmetrically flattened cells tended to undergo few or none of these 
changes with time. 

Translational movement was observed frequently among adherent lympho- 
cytes. Such movement was random (nondirectional) and temperature depend- 
ent. During given periods of observation between 30 to 50% of the adherent 
lymphocytes were actively motile. The remainder of the cells reversibly ex- 
tended and retracted processes while remaining essentially stationary. Individ- 
ual cells alternated between relatively stationary and motile phases. The rate of 
movement varied markedly, beth between different cells, and for the same cell 
observed at different times. Elongated and uropod-bearing forms commonly are 
observed undergoing locomotion. Individual motile lymphocytes photographed 
at l-rain intervals over a time period of 10 rain traversed an average of 4.7 
/~m/min (25 cells measured; range 1.8-9.3/~m/rnin). This rate of locomotion is 
three- to eightfold lower than that reported for cultured lymphocytes (16, 17) and 
suggests that the firm adhesion of some cells to substrate may actually impede 
translational movement. 

In this regard, markedly flattened lymphocytes with centrally placed, phase- 
dark nuclei surrounded by a concentric rim of cytoplasm were not generally 
observed to undergo translational movement. However, some flattened adher- 
ent cells showing little or no elongation were capable of considerable transla- 
tional motion. For example, one particularly active cell was followed for 28 rain 
at 37°C and its position was plotted at 50-s intervals. This analysis revealed that 
the lymphocyte moved randomly at a rage averaging 8 p.m/min. This movement 
was accompanied by the continual extension and retraction of small pseudopo- 
dia. Higher magnification Nomarski time-lapse cinematography also revealed 
that the long slender microextensions observed in nonelongated flattened cells 
and the microspikes of uropod-bearing cells were in rapid motion. Uropod 
formation generally followed flattening, but occasionally one could see an 
elongated lymphocyte in suspension which attached directly to substrate via its 
uropod. Such cells were considered to be among the small percent of normal 
human lymphocytes which spontaneously form small uropods (15). 
Scanning Electron Microscopy. The three dimensional structure of lympho- 

cytes adherent to immobilized antigen-antibody complexes was revealed by 
scanning electron microscopy (SEM), as shown in Figs. 3 and 4. The diversity of 
shapes of adherent cells seen with phase optics was even more striking when 
viewed with SEM. As shown in Fig. 3 a-f the nonelongated adherent lympho- 
cytes are flattened to a variable degree, and commonly resemble "fried eggs," 
with the central nucleus flattening less than the surrounding cytoplasm (Fig. 4 
a-c). Such cells often possessed slender microextensions of various lengths 
(Figs. 3 a-d and 4 a-b) and/or ruffled membranes (Figs. 3 b-e, and 4 b and d), 
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FIG. 3 a-f and 4 a-f. Scanning electron micrographs of normal Fc-bearing human lym- 
phocytes adherent to immobilized antigen-antibody complexes. Cells in various stages of 
flattening and elongation give rise to a diversity of shape and surface topography. Rela- 
tively symmetrically flattened cells resemble "fried eggs" in appearance. Uropod-bearing 
lymphocytes and other elongated cells are illustrated. See text for description. These 
adherent cells can round up and detach from substrate, returning to their former spherical 
shape covered once again with short microvilli. ~ Bar represents 5 ftm. 

which were similar in appearance to those seen in fibroblasts, where they have 
been implicated in motility (18). The most flattened adherent cells had diame- 
ters of up to 20 ftm (as opposed to an average 5-/~m diameter when fixed in 
suspension) and extremely thin cytoplasm. 
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FIo. 4 a - f  

The elongated adherent lymphocytes also assumed a wide range of morpho- 
logic appearances. Prominent pseudopodia bordered by ruffled membranes were 
seen (Fig. 4 d-e). The uropods were complex and of varying lengths and 
diameters, often terminating in long slender microextensions or microspikes 
(Fig. 4 a and d). Contacts between adjacent cells observed with light microscopy 
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were particularly well visualized by SEM (Fig. 4 a, b and f). SEM also 
revealed that  the surface structure of these cells altered as a consequence of 
their adhesion to immobilized complexes. The uniform covering of short micro- 
villi seen when lymphocytes are fixed in suspension (19) was largely replaced by 
a smoother surface topography, although some cells appeared to retain a varia- 
ble number of microvilli on their upper surfaces (Figs. 3 e and f, 4 a-f).  In 
general the less flattened cells had a greater number of microvilli on their 
surfaces (Fig. 3 a-d). This relationship suggests that  the microvilli provide 
much of the increased surface membrane area needed when the lymphocytes 
deviate from their spherical shape. As shown previously,1 these adherent lym- 
phecytes can be released from this substrate by treatment with EDTA and 
recovered. Such cells have been seen to be spherical and uniformly covered with 
microvilli when fixed in suspension. Occasional cells with short foot processes 
were seen, suggestive of uropods which had not been fully retracted. It thus 
appears that  these striking morphological alterations of lymphocyte shape and 
gross surface structure are largely reversible over a period of less than 30 min. 

Effect of Temperature on Morphologic Alterations. When lymphecytes were 
settled onto antigen-antibody-coated plastic at  0°C, adhesion of the Fc receptor- 
bearing cells measured by the 5~Cr-labeling technique 1 was similar to that 
observed when cells were settled at room temperature. When such adherent 
cells were fixed at 0°C and examined with the phase microscope, the shape 
changes characteristic of cells settled at 22 or 37°C were substantially inhibited 
(Fig. 5 b). Analysis of the morphological types of adherent cells fixed at 0°C in 
four experiments shows that  the degree of elongation was markedly inhibited 
when compared to the same donor's adherent cells fixed at 22°C (Table II). No 
uropod-bearing cells were observed at the cold temperature. The extent of 
flattening was also inhibited at 0°C but  this parameter showed more variability 
between different experiments. 

The inhibition of morphologic changes by cold was only partially reversible. 
When adherent cells which had settled at 0°C were warmed to 37°C, the shape 
changes characteristic of the higher temperature appeared gradually. After 90 
min of warming, such adherent populations still contained a higher percentage 
of spherical and nonelongated cells than those which had been settled and 
maintained at 37°C for the same period of time. No differences in morphology 
between cells settled at 22 and 37°C were observed. 

Inhibition of Shape Changes by Drugs. The effect of sodium azide on the 
morphology of lymphocytes adherent to immobilized antigen-antibody com- 
plexes was unique among the drugs tested. While this mitochondrial oxidase 
inhibitor caused a marked inhibition of the formation of elongated cells, essen- 
tially no inhibition of flattening was observed (Fig. 5 c; Table II). The effects of 

FIG. 5. Effect of temperature and drugs on lymphocyte morphological changes. Phase 
photomicrographs of adherent lymphocytes which were pretreated with drugs or preincu- 
bated in the cold before exposure to antigen-antibody-coated substrate. All micrographs 
were from the same experiment. The degree of inhibition of flattening and elongation by 
EDTA, cytochalasin B, and vinblastine illustrated herein was at the upper range of that 
observed. (c) Control, Eagle's MEM plus 10% FCS. (b) 0°C. (c) Sodium azide, 0.02%. (c) 
Colchicine, 10 -4 M. (e) Vinblastine, 10 ~m/mt. (f) Cytochalasin B, 10/~g/ml. (g) PBS, pH 7.2. 
(h) EDTA, 0.01 M. 
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TABLE II 
Inhibition of Shape Changes by Temperature and Drugs 

Conditions* No. exp. 

Mean % inhibition 
(range) 

Flattening Elongation 

0°C 4 39 (1-78) 88 (68-98) 
NaNs (0.02%) 3 0 (-19 to 10) 82 (75-87) 
Colchicine (10 -4 M) 4 10 (9-13) 26 (18-36) 
Vinblastine (10 -4 M) 4 51 (38-68) 95 (85-100) 
Cytochalasin B (10 #g/ml) 5 68 (14-99) 83 (61-100) 
DMSO (1%) 4 -7  ( -32 to 8) 17 ( -2  to 20) 
PBS 5 14 ( - 5  to 19) 0 ( -15 to 21) 
EDTA (0.01 M) 4.  64 (26-96) 80 (72-91) 
EGTA (0.01 M) 6 58 (31-91) 64 (40-100) 

* Lymphocytes were preincubated in suspension either at 0°C or with drugs for 20 rain at room 
temperature before their  being allowed to settle onto antigen-antibody-coated substrate. The 
extent of flattening and degree of elongation was scored as outlined in Table I. The inhibition of 
these parameters was calculated as outlined in the text. 

this drug, like cold temperature, were only partially reversible with time. DNP 
(10 -4 M) also strikingly inhibited elongation in these cells, but  appeared to 
inhibit the flattening process to a small degree. The effects of this uncoupler of 
oxidative phosphorylation were not studied quantitatively, since it could be 
argued that some of its effects were mediated by competitively inhibiting the 
antigen-antibody interaction. 

The effects of colchicine (10 -4 M) and vinblastine (10 -4 M) were also examined. 
The former demonstrated a minimal effect on the flattening process and a small 
but  consistent inhibition of elongation (Figure 5 d; Table II). This inhibition was 
not readily apparent upon casual inspection; many uropod-bearing cells re- 
mained. This colchicine was shown to be active by effectively inhibiting mitosis 
of cultured murine lymphoma cells at 10 -6 M. Colcemid (10 -4 M) like colchicine, 
showed only a small inhibition of these morphological alterations. In contrast, 
vinblastine showed a striking inhibition of cell elongation and a substantial 
inhibition of flattening (Fig. 5 e; Table II). 

Cytochalasin B (10 ~g/ml) markedly inhibited both the flattening and elonga- 
tion of these cells (Fig. 5 f; Table II). No uropod-bearing cells were detected and, 
in general, a substantial number of the cells remained spherical and phase 
bright, although still bound to the antigen-antibody-coated plastic. In the 
example illustrated (Fig. 5 f), marked inhibition of flattening occurred and all of 
the cells in the field are nonflattened. Dimethyl sulfoxide, the solvent for 
cytochalasin B, was present at 1% in these experiments, but  had a negligible 
effect by itself (Table II). Lower concentrations (1 p.g/ml) of cytochalasin B had a 
similar but  somewhat less pronounced effect. No synergistic effects were noted 
using a mixture of 1 p4g/ml cytochalasin B and 10 -4 M colchicine. The serine 
esterase inhibitors DFP and PMSF (at 10 -3 M) had no effect on the normal 
morphological alterations induced by immobilized antigen-antibody complexes. 

Role of Divalent Cations on Lymphocyte Adherence and Morphol- 
ogy. Lymphocytes suspended in phosphate-buffered saline (PBS) in the ab- 
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sence of divalent cations or serum adhered to antigen-antibody-coated plastic 
and underwent morphologic changes indistinguishable from those described in 
complete medium (Fig. 5 g; Table II). However, in the presence of 0.01M EDTA 
or EGTA in PBS these morphologic changes were substantially inhibited (Fig. 5 
h). Under these conditions, most of the adherent cells remained spherical (phase 
bright) or demonstrated only a slight degree of flattening as indicated by their 
light gray shading under phase optics. Cells which had attached to plastic in the 
presence of EDTA were readily dislodged from the plastic by shearing forces in 
the medium, in contrast to the firm adhesion of the adherent cells attached in 
medium alone. 

These chelating agents reversed the morphologic changes. Treatment of adher- 
ent cells settled in complete medium with a solution of 0.01M EDTA in PBS 
resulted in a rounding up and eventual detachment of the flattened cells from 
substrate over a period of 30 min, indicating that EDTA treatment reversed the 
flattening and elongation which had occurred previously. In contrast to chelat- 
ing agents, cations such as Mn +2 or La +3 (at 10 -4 M) did not affect the morphologi- 
cal alterations induced by antigen-antibody complexes. 

Discussion 
The present investigation demonstrates that normal human peripheral Fc- 

bearing lymphocytes can be rapidly triggered to undergo dramatic changes in 
shape and surface structure upon brief contact with immobilized antigen-anti- 
body complexes. Evidence to suggest that these morphological changes appear 
to be the result of an active response of the lymphocyte to contact with immobi- 
lized complexes, as opposed to a passive deformation of the cell, is as follows: (a) 
the inhibitory effects of drugs, chelating agents, and temperature on these 
morphologic changes (Table II); (b) the formation of pseudopodia and ruffled 
membranes; (c) the development of uropods in many cells; (d) the induction of 
translational movement; (e) the reversibility of the process with time; (f) the 
failure of the great majority of lymphocytes which attach to lectin-coated 
substrates to undergo similar morphologic changes and the inability of murine 
lymphocytes (whose Fc receptors are capable of binding this antibody) to re- 
spond morphologically to this stimulus. 1 

The functional consequences of this active response remain unclear at pres- 
ent. The cell flattening and spreading seen in these lymphocytes have not, to our 
knowledge, been observed previously in lymphocytes. The formation of uropods 
is induced by lymphocyte adhesion to macrophages (20), by mitogens after a 
period of culture (21), by anti-immunoglobulin (22), and by target cells recog- 
nized by killer cells (23). The ability of lymphocytes to respond so rapidly to the 
physiologic stimulus of antigen-antibody complexes with such profound struc- 
tural modifications reveals a previously unrecognized potential of normal rest- 
ing lymphocytes. Such morphologic and structural changes may be of functional 
immunologic significance in vivo. 

The molecular mechanisms involved in the observed shape changes appear to 
be complex. However, the speed with which these changes occur precludes 
processes which require protein synthesis from playing a role, and implies that 
the necessary components must be present in a readily mobilizable form. We 
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have dissected the morphological changes into two basic components: a flatten- 
ing process and an elongation event. The latter phenomenon may be dependent 
on the former since many of the drugs (Table II) inhibit elongation to a greater 
extent than the flattening. Mitochondrial inhibitors appear to have no effect on 
flattening, while drastically inhibiting elongation and this finding may be 
interpreted as an energy requirement for this component. A role for microfila- 
ments in this shape change is implied by the effects of cytochalasin B (24). Such 
microfilaments have been implicated in changes of cell shape in other systems 
(8, 22). The role of microtubules is less clear from the present drug experiments, 
since both colchicine and colcemid, generally considered to be the most specific 
inhibitors of microtubule polymerization (25, 26), have a minimal effect on these 
lymphocyte shape changes. On the other hand, vinblastine (27) and cold treat- 
ment (28), which cause microtubular disruption, both strikingly inhibit flatten- 
ing and essentially abolish elongation. However, transmission electron micros- 
copy indicates that adherent lymphocytes exposed to colchicine and colcemid 
retain the majority of their microtubules, while the vinblastine- and cold- 
treated cells are virtually devoid of such organelles (29). 

A relationship between the observed shape changes and the phenomenon of 
~capping" of lymphocyte surface receptors is suggested by a number of observa- 
tions: (a) The necessity for lattice formation in capping (30) and the parallel 
necessity for the antigen-antibody complexes to be immobilized for the induction 
of the observed shape changes; (b) the apparent capping of Fc receptors during 
the shape change; 1 and (c) the induction of both capping and shape changes by 
anti-immunoglobulin treatment of murine B lymphocytes. While capping and 
shape changes may share some common mechanisms, the sensitivity of the 
shape changes induced by binding to immobilized antigen-antibody complexes 
to chelating agents, vinblastine, and cytochalasin B has been variably observed 
with the capping phenomenon (22, 30). Likewise, whereas immune complex- and 
anti-immunoglobulin-induced shape changes and translational movement re- 
quire lymphocyte interaction with substrate, capping does not (22). 

Adhesion of other Cell Types to Substrate. The process of adhesion of Fc 
receptor-bearing lymphocytes to antigen-antibody-coated plastic morphologi- 
cally resembles the adhesion of other cell types to substrate. Murine macro- 
phages adhere naturally to glass or plastic, but the degree of their spreading can 
be enhanced by a number of agents including immobilized antigen-antibody 
complexes (13, 14) and various divalent cations (31). A similar phenomenon has 
been reported with polymorphonuclear leukocytes, where spreading and degran- 
ulation are induced by such substrates (32, 33). 

The process of fibroblast adhesion and spreading onto glass substrate in many 
respects parallels that which we have observed for some lymphocytes settling 
onto antigen-antibody-coated plastic. In particular, SEM (34) shows many mor- 
phological parallels between fibroblast adhesion and the lymphocyte morphologi- 
cal alteration we have observed. The lymphocyte flattening process, however, 
occurs far more rapidly than the corresponding changes in fibroblasts (34). 

The mechanism of morphological alteration triggered by lymphocyte adhesion 
to immobilized complexes may be in part similar to that of the spreading 
phenomena observed in these other cell types. In common with the lymphocyte 
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alteration, the spreading process by the above cells is dependent on divalent 
cations (14, 31) and is inhibited by cold temperature (14), metabolic inhibitors 
(35), cytochalasin B (14, 35), and vinblastine (35). 

Lymphocyte Substrate Interaction. Early investigators (16, 17) observed mo- 
tile "hand mirror" shaped lymphocytes with prominent tail-like organelles, 
uropods, migrating from lymph node explants in tissue culture. Uropod-bearing 
lymphocytes attached to substrate have been observed in unstimulated cultures 
(22, 36, 37, 38), and it appears that guinea pig lymphocytes from the peritoneal 
cavity show a higher percentage of uropod-bearing forms than those from blood 
and spleen (37). Lymphocyte cultures stimulated by allogeneic cells (36), PHA 
(39), and antigen (6) show an increased frequency of uropod-bearing lympho- 
cytes. It has been suggested that these cells represent a subset of T lymphocytes 
whose uropods may be organelles mediating specific functional interactions (40). 

B lymphocytes, however, also have been shown to be capable of uropod 
formation. Murine B lymphocytes treated with anti-immunoglobulin (22) show 
an increased frequency of uropod formation. These uropods, and to a lesser 
extent those formed by T cells (6, 40), appear less elongated and structurally less 
complex than those we have observed. Whether these differences are due to 
subpopulation, species, or method of induction is presently unresolved. 

Both lymphocyte adherence and spreading on immobilized antigen-antibody 
complexes and the induction of uropod-bearing murine lymphocytes by treat- 
ment with anti-immunoglobulin are temperature and metabolism dependent 
and are inhibited by cytochalasin B, but not colchicine (22). However, the serine 
esterase inhibitor DFP has no effect on the behavior of lymphocytes on immobi- 
lized complexes, but does inhibit the induction of uropod-bearing forms by anti- 
immunoglobulin (22). 

The interaction of lymphocytes with surfaces bearing ligands which bind to 
surface receptors has been reported in a number of cases (41, 42). The morpholog- 
ical appearance of DNP-sensitized murine B lymphocytes bound to nylon fibers 
derivatized by DNP-BSA was studied by Rutishauser et al. (8). These cells 
undergo a morphological alteration in response to this interaction, but the 
reported changes are distinctly different from those we have observed. No 
flattening or spreading along the surface of the derivatized nylon fibers occurs in 
this case. The elongation which occurs is oriented largely perpendicular to the 
surface. Continuous morphologic changes occur with time, but no translation 
along the surface is observed. The shape changes are maximal at 60 min. The 
drug sensitivities of these morphological alterations are similar to those we have 
observed in our system. Thus, while in many respects these two systems differ, 
interesting parallels are present and common mechanisms may exist in both 
processes. 

Lymphocyte-Cell Interaction. The actual mechanisms of lymphocyte interac- 
tion with other lymphocytes and macrophages during the immune response is 
presently the subject of much study and speculation. One glimpse into such an 
interaction has been provided by recent studies of the adhesion of guinea pig 
lymphocytes to macrophages (5, 6). It has been shown that in the antigen- 
dependent adhesion between syngeneic lymphocytes and macrophages, many of 
the lymphocytes have formed uropods (5, 6) and some subsequently are stimu- 
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lated to divide (6). The morphology of these T lymphocytes appears similar to 
that which we have observed in the interaction of Fc-bearing lymphocytes with 
immobilized complexes. 

Studies of the lymphocyte-mediated lysis of foreign cells provides the most 
detailed analysis of specific lymphocyte-cell adhesion. This interaction is most 
analogous to the lymphocyte-antigen-coated substrate adhesion since normal 
human lymphocytes efficiently lyse antibody-coated target cells. It is clear that  
cytolysis by immune T lymphocytes and by nonimmune lymphocytes of anti- 
body-coated target cells requires intimate contact between the killer and target 
cells (42). These interactions have been observed morphologically for both types 
of killing (44, 45), and the presence of nonspherical, uropod-bearing lymphocytes 
adherent to the target cells had consistently been noted. Flattened forms similar 
to those we have observed have not been reported, but this may be in part  due to 
the difference in geometry between cells and flat surfaces and also to the fluidity 
of the target cell membrane. Indeed, such flattened forms were not seen when 
lymphocytes were settled on antibody-coated lipid bilayers (38). 

Both the killing process as a whole and the killer cell-target cell adhesion are 
inhibited by the same conditions - -  cold, mitochondrial inhibitors, and cytochal- 
asin B (46, 47) - -  which we have demonstrated inhibit the morphological 
changes in lymphocytes adherent to antigen-antibody-coated surfaces. Recent 
experiments (46) demonstrate that  T-cell killing proceeds by a rapid EDTA and 
temperature-sensitive killer-target adhesion step followed by a second step 
requiring 6 min during which the lethal target cell injury occurs. Both of these 
two rapid steps occur at rates comparable to that of the morphological changes 
we have described. One interpretation of the similar ionic, temperature and 
metabolic requirements, drug susceptibilities, and kinetics of morphological 
alterations and of killing is that  such morphological alterations are required for 
the killing process. An alternative and equally plausible explanation is that 
both processes are in turn dependent on a common cellular process which in turn  
is sensitive to these conditions. 

The interaction of human Fc receptor-bearing lymphocytes with immobilized 
antigen-antibody complexes may provide a model system for studying an inter- 
esting physiological response of the lymphocyte to a signal originating at the cell 
surface. While this signal is not mitogenic, it has marked metabolic, a as well as, 
morphological consequences to the cell. The mechanisms by which this signal 
triggers this complex cellular response and the relationship of these changes to 
the ability of cells to lyse antibody-coated target cells will be the object of further 
study. 

S u m m a r y  
The adhesion of human Fc receptor-bearing lymphocytes to immobilized 

antigen-antibody complexes is accompanied by marked alterations in cell shape, 
resulting in flattening of greater than 90% of the adherent cells. In addition, 
about 65% of the adherent cells become elongated, with distinct uropods being 
present in about 1/3 of these cells. Scanning electron microscopy demonstrates 

a Henkart,  P., C. Neels, and J. Ryan. Manuscript in preparation. 
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that most of the surface microvilli are lost, while ruffled membranes and long 
microextensions are formed during the shape change. Time-lapse cinematogra- 
phy shows that the major shape changes occur within a few minutes after 
contact with the substrate, and that the adherent cells undergo translational 
motility. Both flattening and elongation of the adherent cells are inhibited by 
low temperature, chelating agents, cytochalasin B, and vinblastine, while 
sodium azide selectively inhibits elongation and uropod formation. It is argued 
that these morphological changes result from an active response of the cell to the 
immobilized complexes, and that such alterations may be related mechanisti- 
cally to the ability of the cells to kill antibody-coated target cells. 
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