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THE CORONAVIRUS DISEASE 2019 PANDEMIC:
A ROLE FOR NOVEL ANTIBODY IMMUNOTHERAPY

The rapid emergence and spread of sudden acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), the causative agent of
coronavirus disease 2019 (COVID-19), has resulted in a stag-
gering pandemic. Infection with SARS-CoV-2 results in an array
of symptoms that range from minor and self-limiting (80% of
cases) to severe (15%-20%), with an unacceptably high fatality
rate (0.5%-4%)." Severe disease often leads to an overproduction
of proinflammatory mediators that exacerbate disease, impacting
progression and clinical outcome (reviewed in Cao?). In addition
to the urgent development of vaccines and antiviral drugs, alterna-
tive therapeutics that facilitate viral control and limit immunopa-
thology are of interest. mAbs are important biologics that bypass
the adaptive immune system and are being deployed for the treat-
ment of various infectious diseases, inflammation-driven autoim-
mune disorders, and cancers. Limited studies suggest that the
passive administration of convalescent SARS-CoV-2 sera may
be associated with alleviation of severe disease in some patients,
supporting the pursuit of antibody-based approaches for SARS-
CoV-2.

Efforts are currently focused on 2 major categories of mAb
products—antiviral and anti-inflammatory—to address the major
drivers of SARS-CoV-2-related disease (Fig 1). However,
achieving the rapid production, scalability, and distribution suffi-
cient to combat a pandemic such as COVID-19 using the tradi-
tional mAb platform represents a challenge, particularly if re-
administration or antibody cocktails are required for optimal effi-
cacy. We have observed how quickly nucleic acid products can be
advanced to the clinic with the development of novel vaccines for
COVID-19 (Broderick et al’; NCT04283461; NCT04336410).
Similarly, nucleic acid approaches represent a potential
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alternative method for mAb delivery as well as compelling tools
for the affordable and rapid in vivo evaluation of mAb-based ther-
apeutic due to their simplicity, ease of production, scalability,
conceptual safety, and established potency in preclinical models.

IN VIVO DELIVERY OF mAbs USING NUCLEIC ACID
PLATFORMS

Because of significant advancement over recent years, nucleic
acid-based technologies hold increased potential to provide rapid
and consistent antibody-mediated protection while avoiding the
technical challenges associated with recombinant mAb produc-
tion. Selected genetic sequences from antibodies in the form of
mRNA or DNA are engineered, formulated, and administered for
the in vivo production, assembly, and systemic secretion of en-
coded antibodies (Fig 2, A-C) (reviewed in Patel et al* and Gary
and Weiner) that can reach therapeutic levels in the serum within
days of administration based on preclinical models. Numerous re-
ports have described the unique delivery of DNA-encoded mAbs
(DMADs) using optimized expression plasmids that are nonlive,
nonreplicating, nonintegrating, and nonimmunogenic. These
DMADbs exhibit potent and durable expression kinetics, with func-
tionality and in vivo efficacy comparable to those of their recom-
binant counterparts. Such biologics have been generated against a
diverse set of infectious diseases including drug-resistant Pseudo-
monas, HIV, influenza virus, Dengue virus, Ebola virus, Chikun-
gunya virus (CHIKV), and Zika virus, among others (reviewed in
Patel et al* and Gary and Weiner’). Phase 1 clinical trials of the
anti-Zika DMAD, the first of its class to enter human studies,
were initiated (NCT03831503). mRNA-based mAb approaches
have been described for HIV, respiratory syncytial virus, and
CHIKV,® with positive outcomes; the CHIKV mRNA mAb has
entered phase 1 clinical trials (NCT03829384). The preclinical
data from these strategies support their further development
as rapid response tools against emerging outbreaks such as
COVID-19. Several partnerships have announced the intention
to develop such products for SARS-CoV-2 therapy, using both
DNA-Lipid Nanoparticles (Sorrento Therapeutics; San Diego,
Calif and SmartPharm Therapeutics; Cambridge, Mass) and aero-
solized mRNA nanoparticles (Neurimmune; Zurich, Switzerland
and Ethris; Planegg, Germany). Efforts using the well-defined
DMAD platform are in progress (Fig 2, D-G).

RAPID RESPONSE TOOLS: IN VIVO mAb
PRODUCTION AGAINST COVID-19 USING THE
DMAb PLATFORM
Anti-SARS-CoV-2 DMAbs

Antiviral antibodies typically target surface-exposed antigens
to inhibit viral infection and/or progression (Fig 1). Although
SARS-CoV-2 contains several potential surface targets, the focus
remains largely on the highly conserved coronavirus spike (S)
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Immune-modulating mAbs:
Target mediators of inflammation to
reduce immunopathology
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FIG 1. The use of dual-targeting mAb therapy to address both sources of SARS-CoV-2-induced disease. A,
Antiviral mAbs target surface-exposed antigens to facilitate pathogen neutralization and clearance. In the
case of SARS-CoV-2, efforts are focused on the S protein, which mediates host cell invasion. Depending
on the timing of administration, these can (B) prevent infection, (C) prevent viral replication, and/or (D) facil-
itate viral clearance and disease mitigation via alternate mechanisms. E, To reduce immunopathoglogy,
immune-modulating mAbs targeting various inflammatory mediators are under evaluation to (F) prevent
and/or (G) alleviate pathogenesis and disease severity. Image created with biorender.com.

protein, which mediates viral attachment and invasion via engage-
ment with the host angiotensin-converting enzyme 2 receptor
(ACE-2). Antibodies directed against the S protein of SARS-
CoV, a closely related coronavirus that previously caused a deadly
outbreak in humans, conferred protection in vivo. One such
neutralizing antibody, mAb CR3022, cross-reacts with a unique
epitope in the receptor-binding domain of the SARS-CoV-2 S
protein.”® As an exemplative use of this technology against
SARS-CoV-2, CR3022 sequences were modified and optimized
as previously described” to generate a novel DMAb encoding hu-
man CR3022, which was successfully expressed in mice (Fig 2,
D). Sera harvested 7 days post-administration exhibited potent
binding to the SARS-CoV-2 S1 protein (Fig 2, E). Studies of addi-
tional important SARS-CoV-2 antibodies using nucleic acid plat-
forms will be informative.

Immune-modulating DMAbs

In addition to antiviral tools, there is a need to develop
therapies to reduce SARS-CoV-2-mediated immunopathology.
Severe disease is associated with significant upregulation of
numerous proinflammatory cytokines and chemokines including
IL-6, IL-1B, TNF-a, IL-2, IL-8, IL-17, G-CSF, GM-CSF, IP10,

MCP1, and MIP1a (reviewed in Cao”). In addition, overactiva-
tion of the complement system is thought to contribute to this
pathology. Immunotherapy with mAbs that target such inflam-
matory markers is of interest. The potential benefit of mAbs tar-
geting the IL-6 pathway (anti-IL-6/IL-6R) as a therapy for
critically ill patients with COVID-19 is under investigation.
Similar to delivery of pathogen-targeting DMADs, studies
have demonstrated the ability to administer immune-
modulating antibodies with potent in vivo effects (reviewed in
Patel et al*). Accordingly, we optimized inserts encoding anti—
IL-6 and anti-IL-6R DMADbs and administered them in vivo.
As shown, anti-IL-6 (Fig 2, F) and anti-IL-6R (Fig 2, G)
DMAbs were successfully expressed, able to bind their respec-
tive targets, and inhibited IL-6 activation in vitro (data in
progress).

As rapid response tools, nucleic acid approaches can be used to
generate, screen, compare, down-select, and develop potent
biologics in vivo. Furthermore, the pursuit of mAbs-based prod-
ucts able to mitigate disease via unique and complementary
mechanisms to enhance treatment efficacy is of interest. Gene de-
livery approaches allow for these types of combination studies in
which antibody cocktails are rapidly evaluated and optimized for
increased potency over corresponding monoclonal formulations;
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FIG 2. Nucleic acid strategies for the in vivo production of mAbs against COVID-19. A-C, Gene-delivery ap-
proaches to antibody delivery. A, mAbs with suitable specificity and potency are identified. B, For DNA de-
livery, optimized sequences are directly subcloned into the preferred expression or viral vector for in vivo
delivery; for mRNA approaches, sequences are subcloned into DNA expression vectors, amplified, tran-
scribed in vitro, and purified to yield short mRNA transcripts for delivery. C, Various delivery approaches
—including electroporation (DNA) and lipid nanoparticle formulations (mRNA)—facilitate gene uptake,
leading to mAb production and secretion into systemic circulation. D-G, Expression of DMAbs against
COVID using the synthetic DNA platform. DNA sequences encoding the heavy and light chain of the indi-
cated antibodies were engineered for in vivo expression (human IgG,) and administered to mice via elec-
troporation (CELLECTRA-EP technology); D, Serum levels of the CR3022 DMAb were quantified via ELISA
using anti-human reagents; E, Binding of CR3022 to SARS-CoV-2 S protein was demonstrated via ELISA;
similarly, DMAbs targeting IL-6 (F) and IL6-R (G) were expressed in vivo and demonstrated strong binding
to their respective targets via ELISA (day 7 sera). Data in E and F courtesy of Elliott S., manuscript in prep-
aration (2020). Images in Fig 2, A-C, were created with Biorender.com.
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this has been validated for HIV-targeting antibody combinations
using the DMAD platform.'® This represents a tailored, rapid,
and possibly important approach to therapeutic development for
SARS-CoV-2 and future outbreaks.

CONCLUSIONS

The astonishing pace with which the COVID-19 pandemic has
spread across the globe emphasizes the need to have strategies in
place for the rapid development of novel biologics including
vaccines and immunotherapeutics. The speed at which nucleic
acid vaccines entered and continue to advance through the clinic
supports the use of these approaches in generating additional
therapeutics to combat global outbreaks. Advancing such strate-
gies to clinical trials will help define their feasibility to serve as
potential alternatives or supplements to traditional mAb therapy.
Importantly, these tools could improve the accessibility of such
impactful mAb-based biologics to larger global populations.
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