
Descriptor
RaFAH: Host prediction fo
r viruses of Bacteria and
Archaea based on protein content
Highlights
d RaFAH was developed to predict the hosts of viruses of

Bacteria and Archaea

d RaFAH displayed comparable or superior performance to

other host-prediction tools

d RaFAH performed well across viromes from eight different

ecosystems

d RaFAH identified hundreds of genomic sequences as derived

from viruses of Archaea
Coutinho et al., 2021, Patterns 2, 100274
July 9, 2021 ª 2021 The Authors.
https://doi.org/10.1016/j.patter.2021.100274
Authors

Felipe Hernandes Coutinho,

Asier Zaragoza-Solas,
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expansion of the catalog of known

archaeal viruses and has potential to help

better characterize the global virosphere

by linking viruses to their hosts with high

precision and recall.
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THE BIGGER PICTURE Viruses that infect Bacteria and Archaea are ubiquitous and extremely abundant.
Recent advances have led to the discovery of many thousands of complete and partial genomes of these
biological entities. Understanding the biology of these viruses and how they influence their ecosystems de-
pends on knowing which hosts they infect. We developed a tool that uses data from complete or frag-
mented genomes to predict the hosts of viruses using a machine-learning approach. Our tool, RaFAH, dis-
played performance comparable with or superior to that of other host-prediction tools. In addition, it
identified hundreds of sequences as derived from the genomes of viruses of Archaea, which are one of
the least characterized fractions of the global virosphere.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Culture-independent approaches have recently shed light on the genomic diversity of viruses of prokaryotes.
One fundamental question when trying to understand their ecological roles is: which host do they infect? To
tackle this issue we developed a machine-learning approach named Random Forest Assignment of Hosts
(RaFAH), that uses scores to 43,644 protein clusters to assign hosts to complete or fragmented genomes
of viruses of Archaea and Bacteria. RaFAH displayed performance comparable with that of other methods
for virus-host prediction in three different benchmarks encompassing viruses from RefSeq, single amplified
genomes, and metagenomes. RaFAH was applied to assembled metagenomic datasets of uncultured vi-
ruses from eight different biomes of medical, biotechnological, and environmental relevance. Our analyses
led to the identification of 537 sequences of archaeal viruses representing unknown lineages, whose ge-
nomes encode novel auxiliary metabolic genes, shedding light on how these viruses interfere with the host
molecular machinery. RaFAH is available at https://sourceforge.net/projects/rafah/.
INTRODUCTION

Viruses that infect Bacteria and Archaea are the most abun-

dant and diverse biological entities on Earth. Because of their

sheer abundance, genomic diversity, and the fact that most

viruses are only found in specific ecological niches, they
This is an open access article und
remain elusive. Culture-independent techniques such as

metagenomics1 have been pivotal in the effort to describe

viral biodiversity. Computational approaches have been

developed to link these novel viruses to putative hosts2 by

identifying genomic signals that are indicative of a virus-host

association.
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First, alignment-free methods such as k-mer profiles use

nucleotide composition to predict the host of a viral genome.

Some viruses adapt their oligonucleotide composition to that

of the host they infect, a process that may be driven by the adap-

tation of the codon usage to the translational machinery and

tRNA pool available in the host cell, exchange of the genetic ma-

terial, co-evolution of regulatory sequences, and/or an evasion

of the host defense systems. Hence, by identifying the prokary-

ote genome with the highest significant similarity to a viral

genome, tools that exploit k-mer profiles assume that prokaryote

genome to be the host of the virus in question. Alignment-free

methods (e.g., WIsH) show very high recall (i.e., percentage of

viral genomes linked to a host) but usually have low precision

(i.e., percentage of correct virus-host associations among the

predicted virus-host associations), with reported host-prediction

accuracy for genus-level predictions between 33%and 64%de-

pending on the dataset.2–4 Similarities in k-mer profiles between

viruses can also be used for host prediction following the same

rationale (e.g., HostPhinder).5

Second, there are alignment-dependent approaches to

assess similarity between viral and prokaryote genomes. These

methods assume that genetic information exchange between

viral and prokaryote genomes is indicative of virus-host associ-

ations. Specific genetic fragments, although short, might be

informative for this purpose, such as CRISPR spacers and

tRNA genes, while longer matches such as whole genes or inte-

grated prophages can also provide an indication of virus-host

linkage.2 Both aforementioned approaches are limited by the

fact that they require the genome of the host to be present in

the reference database. That host should contain an active

CRISPR system whose array should contain a spacer targeting

(a close relative of) the phage, allowing identification of a proto-

spacer without toomanymismatches. Alignment-dependent ap-

proaches also require that detectable genetic exchange has

taken place between virus and host. Hybrid approaches

leverage on information from both alignment-free and align-

ment-dependent approaches for host prediction (e.g., VirHost-

Matcher-Net).6

Third, the gene content of viral sequences can be investigated

in search of specific marker genes that are indicative of the host,

such as photosynthesis genes for cyanophages.7 This low-

throughput approach may have high precision, but usually the

recall of such predictions is low and the procedure is extremely

time-consuming.

All of these approaches have been used extensively in viral

metagenomic studies to predict hosts to uncultured viruses.1,7–9

An ideal tool for virus-host prediction should combine the preci-

sion of alignment-dependent methods and the recall of align-

ment-free approaches. Furthermore, it should be independent

of host genomes so as not to be limited by database complete-

ness biases. Previous studies have shown that random forest al-

gorithms are suitable for classifying viruses according to their

hosts10 and that protein domains can be used to achieve accu-

rate host predictions.11,12 Based on these findings, we postu-

lated that random forest classifiers could be applied to protein

content to build a classifier based on identifying combinations

of genes that are indicative of virus-host associations. Through

this approach, we were able to design RaFAH (Random Forest

Assignment of Hosts), a classifier that combined the precision
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of manual curation, the recall of alignment-free approaches,

and the speed and flexibility of machine learning (Figure 1).

RESULTS AND DISCUSSION

We tested the performance of RaFAH and other host-prediction

approaches on an independent dataset of isolated viral genomes

that did not overlap with those used for training the models (Test

Set 1, composed of RefSeq viral genomes with less than 70%

average amino acid identity when compared with those in

Training Set 3, see experimental procedures). When using Ra-

FAH and the other tested methods without score or prediction

probability cutoff (i.e., considering as valid all host predictions

with no thresholds for their probability value or bit score), RaFAH

outperformed alignment-independent, hybrid, and alignment-

dependent approaches for host prediction at every taxonomic

level based on the F1 score (Figure 2A). This difference in perfor-

mance became gradually more evident from domain to genus

level. Next, we evaluated how the performance of these tools re-

sponded to thresholding (i.e., applying a cutoff on their probabil-

ity value or bit score) and only considering predictions that were

above the cutoffs. These analyses revealed that homology

matches, CRISPR, tRNA, and combined classical approaches

(i.e., homology matches, CRISPR, and tRNA, see experimental

procedures) displayed the lowest recall (Figure 2B) but the high-

est precision (Figure 2C). HostPhinder and CRISPR displayed

high precision only at the strictest score cutoffs. As a conse-

quence, these two methods displayed very low recall when the

highest cutoffs for predictions were established. RaFAH, WIsH,

and VirHostMatcher-Net displayed higher recall than the other

approaches, especially at the range of more permissive score

cutoffs (0). Yet this higher recall came at the expense of lower

precision for WIsH and VirHostMatcher-Net. Meanwhile the pre-

cision of RaFAH outperformed these tools even when no cutoffs

were applied. Together, precision, recall, and F1 score suggest

that RaFAH can predict more virus-host interactions than the

other tested approaches while maintaining high precision,

particularly for divergent viral genomes that escape detection

by the classical approaches (Figure S1).

We evaluated how the similarity among the genomes in Test

Set 1 with those used to train the model (Training Set 3) affected

the performance of RaFAH. For this purpose, we assessed how

the precision of RaFAH changed by setting a threshold on the

maximum allowed average amino acid identity (AAI) between the

genomes on Test Set 1 and those on Training Set 3. As expected,

a positive associationwasobservedbetween these variables (Fig-

ure S2), meaning that the more similar the testing genomes are to

the ones used for training, the more likely RaFAH is to correctly

predict their hosts at all taxonomic levels. Based on this analysis,

75% of the class-level host predictions will be correct (precision:

~0.75) for viruses that possess <60% AAI to the ones in the data-

base, when no cutoffs on prediction score are applied.

We applied importance analysis to determine which protein

clusters were most relevant for predicting viral hosts using Ra-

FAH. The most important predictor was annotated as an Rz-

like phage lysis protein (Table S1). Among the protein clusters

that ranked among the 50 most important were multiple lysins,

tail, and tail fiber proteins. These proteins are known to deter-

mine virus-host range, as they play fundamental roles in virus



Figure 1. Overview of the strategy used to

train, validate, and test random forest

models

The training and validation sets were composed of

viral RefSeq genome sequences published until

October 2019 and viral genomic sequences derived

from GLUVAB. GLUVAB sequences were clustered

into viral populations (VPs) and assigned putative

hosts through classical approaches (tRNA, homol-

ogy matches, and CRISPR) on a per-population

basis. Coding DNA sequences (CDS) were ex-

tracted from these sets and clustered into ortholo-

gous groups (OGs), aligned, and pressed into a

database of hidden Markov model (HMM) profiles.

Next, CDS were queried against this database to

compute the bit scores of each CDS against each

HMM, from which a matrix of Genomes 3 OG

scores was derived. This matrix was used to train

the random forest model. The performance of the

model was evaluated on the training and validation

sets according to precision and recall. The test sets

comprised viral RefSeq genomes published after

October 2019 (Test Set 1), viral genome fragments

retrieved from marine SAGs (Test Set 2), and met-

agenomes/viromes from eight distinct ecosystems

(Test Set 3). Similarly, CDS were extracted from

these sets and queried against the HMM database

derived from the training set to compute the bit

scores of each CDS against each HMM, fromwhich

the testing matrix of Genomes 3 OG scores was

derived and analyzed through RaFAH. From these

results, the precision, recall, and F1 score of RaFAH

were evaluated on the Test Sets.
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entry and exit and host recognition.13 The fact that these proteins

ranked among the most important for RaFAH predictions is evi-

dence that it learned to predict virus-host associations based on

proteins that are directly involved in virus-host molecular

interactions.

Host-prediction tools were further validated on a dataset of

viral genomic sequences derived from marine single amplified

genomes (SAGs), Test Set 2.14 These sequences represent an

ideal test dataset because they are uncultured viruses, not rep-

resented in the National Center for Biotechnology Information

(NCBI) database used for training, and can confidently be as-

signed hosts because these viruses were inside or attached to

the host cells during sample processing. Based on the F1 score,

HostPhinder displayed the best performance at the levels of

domain and class, followed by RaFAH slightly behind (Fig-

ure S3A). Yet at the level of phylumWIsH displayed the best per-

formance, again followed closely by RaFAH. At the levels of

order, family, and genus, WIsH displayed the highest F1 scores

followed by the combined classical approaches. The recall (Fig-

ure S3B) and precision (Figure S3C) of RaFAH on Test Set 2 was

lower than that obtained for Test Set 1. Nevertheless, a negative

association between precision and recall as a function of the

score cutoff was also observed for RaFAH and the other tested

tools on Test Set 2 (Figure S3D). Taken together, these results

are evidence that RaFAH also performed well when predicting

hosts of uncultured viruses from the marine ecosystem.

Some features of Test Set 2 must be considered when inter-

preting these results. First, most of the viruses identified in

Test Set 2 were derived from single-cell genomes classified as
either Pelagibacter, Puniceispirillum, Prochlorococcus, and Syn-

echococcus. This is expected considering these are the most

abundant organisms at the ecosystem from which this dataset

is derived. Nevertheless, this relatively low diversity of taxa has

implications for the assessment of host-prediction tools. For

instance, the genera Prochlorococcus and Synechococcus

have no determined taxonomy at the level of class. Therefore,

predictions at this level do not count toward precision for these

particular taxa. As a consequence, the precision of all host-pre-

diction tools displayed a steep decrease at this taxonomic level.

This was particularly noticeable for VHM-Net for which all correct

predictions were restricted to the two aforementioned taxa,

which led to 0% precision at the level of class. Second, the ma-

jority of bacteriophage genomes in Test Set 2 have very low

completeness (median 6.85%, estimated by CheckV,15 see

experimental procedures). The low diversity of hosts and the

very low genome completeness (as evaluated below) likely

impacted the performance of RaFAH on this dataset. Third,

because most viral genomes in Test Set 2 belong to four genera,

RaFAH is likely to have its performance hindered due to the num-

ber of phage genomes that infect these genera available in

Training Set 3. Meanwhile, approaches that rely on host ge-

nomes are likely to be hindered by the number of these genomes

available in the reference database.

To test the performance of RaFAH on samples from other hab-

itats, we applied it to predict hosts of a dataset of viral genomes

obtained from metagenomes of eight different ecosystems (Test

Set 3). For comparison, we also applied the other testedmethods

of host prediction (HostPhinder did not scale to the more than
Patterns 2, 100274, July 9, 2021 3
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60,000genomes in thisdataset, andanalysesdidnot completeaf-

ter running for several days). According to the F1 score, RaFAH

outperformed WIsH and VirHostMatcher-Net for this dataset as

well (FigureS4A), due to slightly higher recall (FigureS4B) andpre-

cision (Figure S4C). RaFAH was also superior when the strictest

cutoffs were applied, whereby both precision and recall were

markedly superior to VirHostMatcher-Net (Figure S4D). On this

dataset, RaFAH achieved 43.13% precision at the level of genus

when no score threshold was applied. Bootstrap analysis

revealed that this level of precision was consistent across 1,000

replicates (mean 43.02% ± 2.1%). This result indicates that the

precision of RaFAH on Test Set 3 was not biased by uneven viral

genome diversity among the samples that made up this dataset.

Whenusingclassical approaches for hostprediction, themajor-

ity of viruses remained unassigned regardless of ecosystem, and

thebest performanceof theseapproacheswasamong the human

gut dataset, in which only about 25% of sequences (lengthwise)

could beassigned toahost at the level of phylum (Figure 3).Mean-

while, when set to the 0.14 cutoff, which yielded92%phylum level

precision on Test Set 1 (Figure S1) and 90% on Test Set 3 (Fig-

ure S4D), RaFAH was capable of predicting putative hosts to the

majority of viral sequences across all ecosystems except for the

permafrost dataset, likely because viruses derived from this

ecosystem are poorly represented in reference databases.

Interestingly, the host predictions yielded by RaFAH were

markedly different across ecosystems. Viruses of Proteobacteria

were the dominant group in all ecosystems except the human

gut. As expected, the most abundant targeted hosts of the vi-

ruses from each ecosystem were the most abundant taxa that

reside in those habitats. Viruses of Cyanobacteria were the sec-

ond most abundant group among the marine dataset, a position

that was occupied by viruses of Actinobacteria and Bacteroi-

detes among the freshwater dataset. Viruses of Firmicutes and

Bacteroidetes were the dominant group among the dataset of

human gut viruses while viruses of Firmicutes, Bacteroidetes,

and Actinobacteria were among the most abundant among the

soil and permafrost datasets. Viruses of Euryarchaeota were

the second most abundant group among the hypersaline data-

set, a position that was occupied by viruses of Crenarcheaota

in the thermal springs dataset. These results are in accordance

with the known prokaryote diversity that dwells in each of these

ecosystems.8,16–22 Although this agreement between virus and

host community composition is to be expected, it is seldom

observed in studies of viral ecology based on metagenomics

because classical methods leave the majority of viruses without

host predictions. RaFAH circumvents these issues by providing

an accurate and complete description of viral communities

regarding their targeted hosts.
Figure 2. Performance of RaFAH compared with alignment-free and

classical host-prediction approaches on Test Set 1

(A) F1 score ofmethods when considering all predictions regardless of score at

multiple taxonomic levels.

(B) Association between score cutoff and recall of predictions for each

method.

(C) Association between score cutoff and precision of predictions for each

method. The score cutoffs for HostPhinder, Homology matches, VirHost-

Matcher-Net, and combined classical are shown on the log10 scale. Figure S8

depicts the association between precision and score cutoff of VirHost-

Matcher-Net for score values above the 75th percentile.
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Figure 3. Description of the viromes of eight ecosystems using combined classical host-prediction approaches and RaFaH

For each dataset we calculated the fraction of the assembly predicted to each putative host phylum by each method. Phyla that represent less than 0.5% of the

total assembly are not shown.
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We assessed how genome completeness affected the perfor-

mance of RaFAH. For this purpose, we used Test Set 3 as it dis-

played the necessary range of genome completeness values

necessary for this purpose, while Test Set 1 was mostly made

up of complete genomes and Test Set 2 was mostly made up

of low-completeness genomes. We assumed that the predic-

tions yielded by the combined classical approaches represented

the true hosts of Test Set 3, although this assumption is likely to

lead to an underestimation of the true precision of RaFAH. We

found weak positive associations (Pearson R2 > 0.6, p < 10�13

for all taxonomic levels) between the precision of RaFAH and

genome completeness at all taxonomic levels (Figure S5A).

These curves tended to reach a plateau around ~25%–50%

genome completeness and increased further for the lower taxo-

nomic ranks (genus, family, and order) for genomes that were

>85% complete. Coupled with the observations of the perfor-

mance of RaFAH on Test Set 2, we suggest that RaFAH is better

suited for viral genomes with 50% or more completeness. We

used Test Set 3 to analyze the relationship between genome

completeness, sequence length, and RaFAH prediction score

across the eight different ecosystems (Figure S5B). This revealed

a positive correlation between those variables (Pearson R2 =

0.65, p < 2.2e�16 for the combined set of all ecosystems). Like-

wise, significant albeit weaker positive correlations were also de-

tected between prediction score and sequence length (Pearson

R2 = 0.14, p <2.2e�16), and prediction score and genome

completeness (Pearson R2 = 0.11, p <2.2e�16). We found that

regardless of taxonomic level, precision did not consistently in-

crease through thresholding for genome length, providing further

evidence that shorter sequences do not necessarily yield worst

predictions (and vice versa) (Figure S5C). These results suggest

that the precision of RaFAH cannot be explained by genome

length/completeness alone, likely because RaFAH was trained

on a dataset with a majority of genome fragments.

We also performed analysis of the combined effects of the rele-

vant variables and how those, together, affected precision, recall,

and theF1scoreofRaFAHusingTestSet3. Taken together, these

results demonstrated that the performance of RaFAH on a given

genome is dependent on each of ecosystem source, genome
completeness, similarity of the genome to those in the training da-

taset, and the taxonomic level being considered (see Table S6 at

https://doi.org/10.6084/m9.figshare.14365562). For this reason,

there is not a single score threshold that is ideal for all use cases.

Nevertheless, we make the following recommendations. For

differentiating between viruses of Bacteria and Archaea, RaFAH

has nearly 100% precision even at the most permissive cutoff

(0), thus for this particular purpose it can be applied without

threshold. For a broad characterization of multiple viral genomes

from an ecosystem, permissive thresholds are acceptable. For

example, to compare viral host prevalences across different

metagenomes at the level of phylum, we recommend a threshold

of 0.14. This yields a precision of approximately 90% without

sacrificing recall (Figures S1 and S4D), regardless of ecosystem

source, genome length, completeness, or similarity to the training

dataset. At lower taxonomic levels, stricter cutoffs are necessary.

Users can select cutoffs according to the desired precision based

on the curves depicted in Figures S1 and S4D. As a rule, longer,

more complete genomes with higher maximum AAI values to ge-

nomes in the test set should allow more permissive cutoffs.

Based on the finding that RaFaH achieved nearly perfect pre-

cision for domain-level host predictions, and the fact that viruses

of Archaea are under-represented in databases, we subse-

quently focused on the description of these viruses. Few large-

scale studies have addressed the diversity of uncultured viruses

of Archaea, and they focused mostly on marine samples.23–26

Here, we describe viruses from seven other ecosystems: soil,

permafrost, freshwater, sludge, hypersaline lakes, thermal

springs, and the human gut. Applying RaFAH to only eight meta-

genomic datasets led to the prediction that 537 genomic se-

quences represent viruses of Archaea (prediction score

R0.14). To put this figure in context, there are only 96 genomes

of viruses of Archaea deposited in the NCBI RefSeq database.

We took several steps to ensure that these genomeswere truly

derived from viruses of Archaea and consistently found compel-

ling evidence to support our claim. First, these genomes could be

linked to archaeal genomes either through homology matches or

alignment-independent approaches, which provided further evi-

dence that 423 out of the 537 genomes (79%) were indeed
Patterns 2, 100274, July 9, 2021 5
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derived from archaeal viruses (Table S2). Second, much like the

RefSeq genomes of archaeal viruses, these sequences were en-

riched in Pfam domains annotated as exclusive of Archaea, eu-

karyotes, and their viruses (Figure S6). Third, these genomes

were enriched in ribosomal binding site motifs that are also en-

riched among RefSeq viruses of Archaea (Figure S7).

Next, we manually inspected the gene content of the viruses

predicted to infect Archaea in search of novel auxiliary metabolic

genes (AMGs) and new mechanisms of interaction with the host

molecular machinery. The small number of reference genomes

of Archaea and their viruses makes it difficult to describe the

gene content of the archaeal viruses that we discovered because

most of their genes have no taxonomic or functional annotation.

However, we found several sequences containing genes coding

for thermosomes, group II chaperonins involved in the correct

folding of proteins, homologous to their bacterial counterparts,

GroEL/GroES.27 Other AMGs found among archaeal viruses

were those involved in the synthesis of cobalamin cobS, recently

associated with Marine Group I (MGI) Thaumarchaeota virus

infection26 as well as genes that encoded 7-cyano-7-deazagua-

nine synthase QueC involved in archaeosine tRNA modifica-

tion.28 One of the AMGs most prevalent among archaeal viral

genomes encoded for a molybdopterin biosynthesis MoeB pro-

tein (ThiF family). This family of proteins is involved in the first of

the three steps that make up the ubiquitination process.29 This

system regulates several cellular processes through post-trans-

lational modification of proteins such as their function, location,

and degradation, making it an ideal target from the point of view

of viruses to facilitate their replication.30

In conclusion, we developed a new tool that uses a random

forest classifier based on protein content for virus-host predic-

tion with great potential for studies of viral biodiversity and ecol-

ogy. RaFAH frequently outperformed other methods that we

tested and displayed high accuracy and recall in a dataset of

cultured viruses, which extended to uncultured viruses from a

diverse set of ecosystems. By analyzing metagenomic datasets

from eight different ecosystems, RaFAH allowed for a significant

expansion of the archaeal virosphere and shed light on their yet

poorly understood content of AMGs. Future studies will describe

evenmore uncultured viral sequences, and RaFAHwill likely play

a role on describing their hosts and allowing us to decipher their

ecological roles. The addition of new viruses with predicted or

experimentally verified hosts will allow RaFAH to evolve to iden-

tify viruses for an even larger diversity of hosts, and possibly at

deeper taxonomic levels such as species. Likewise, these ad-

vancements will likely contribute to increasing the accuracy of

RaFAH at all taxonomic levels.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Felipe Hernandes Coutinho, fhernandes@icm.csic.es.

Materials availability

This study did not generate new unique materials or reagents.

Data and code availability

All thedata (viral andprokaryotegenomes) analyzed in this studyare freely avail-

able from public repositories. The data were also made available as part of the

supplemental information. RaFAH and the associated files necessary to run it

are freely available online at https://sourceforge.net/projects/rafah/. In addition,
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we created a Docker container with all the necessary dependencies, scripts,

and files available at https://hub.docker.com/r/fhcoutinho/rafah.

Viral genomes database for model training and validation

Two datasets of viral genomes were used for both training and validating the

random forest models. The first dataset contained the genomes of viruses of

Bacteria and Archaea from NCBI RefSeq available on October 2019, which

comprised 2,668 genomes along with their associated host data (Table S3).

To avoid overestimating precision due to identical and nearly identical ge-

nomes in the database, this dataset was made non-redundant using CD-

HIT31 at a clustering cutoff of 95% identity over 50% alignment of the shorter

sequence. The second dataset comprised the 195,698 GLUVAB genomes.32

GLUVAB is a database of uncultured viral genomes compiled from multiple

studies that covered several ecosystems. Only those sequences classified

as bona fide viruses of prokaryotes in the original publication were used in sub-

sequent analysis (Table S4).

Classical host prediction for GLUVAB genomes

To use GLUVAB genomes for training and validation of the random forest

models, we first had to assign them to putative hosts using classical ap-

proaches. To minimize errors during this step we opted for using only align-

ment-dependentmethods due to their higher precision.2 The RefSeq genomes

of Bacteria and Archaea were used as the reference database. We used three

lines of evidence for virus-host associations: CRISPR spacers, homology

matches, and shared tRNAs. CRISPR spacers were identified in the RefSeq

genomes as previously described.33 The obtained spacers were queried

against the sequences of bona fide viral sequences using BLASTn v2.6.0+

(task blastn-short). The cutoffs defined for these searcheswereminimum iden-

tity of 100%, minimum query coverage of 100%, with no mismatches and

maximum e-value of 1. Homology matches were performed by querying viral

sequences against the databases of prokaryote genomes using BLASTn.34

The cutoffs defined for these searches were minimum alignment length of

500 bp, minimum identity of 95%, and maximum e-value of 0.001. tRNAs

were identified in viral scaffolds using tRNAScan-SE v1.2 35 using the bacterial

models. The obtained viral tRNAs were queried against the RefSeq database

of prokaryote genomes using BLASTn. The cutoffs defined for these searches

were minimum alignment length of 60 bp, minimum identity of 97%, minimum

query coverage of 95%,maximumof 10mismatches, andmaximum e-value of

0.001. These steps for host assignment did not include the prophages in the

GLUVAB database, as we were already confident of their host assignments.

We developed a per-viral population scoring method. First, all GLUVAB ge-

nomes were clustered into viral populations (VPs) on the basis of 95% average

nucleotide identity and 80% shared genes.36 For each virus-taxon association

signal detected (i.e., homology, tRNA, or CRISPR), 3 points were added to the

taxon if it was a CRISPR match, 2 points if it was a homology match, and 1

point if it was a shared tRNA. The taxon that displayed the highest score

was defined as the host of the viral population. With this approach we ensured

that all the genomes in the same VP were assigned to the same host and that

no sequences had to be excluded due to ambiguous predictions.

Protein cluster inference and annotation

Protein sequences were identified in viral genomes using Prodigal37 in meta-

genomic mode. Hidden Markov models (HMMs) for the phage proteins were

built as follows. The 4,701,074 identified proteins were clustered by the cluster

workflow of the MMseqs2 software suite,38 with parameters: 35% sequence

identity and alignment coverage had to cover at least 70% of both proteins.

Protein clusters (PCs) were aligned into multiple sequence alignments

(MSAs) using QuickProbs39 with default parameters, then converted into

HMMs using the hmmake program from the HMMER suite,40 which resulted

in 144,613 HMMs. The HMM profiles were annotated by performing HMM-

to-HMM annotation against the pVOG database41 using the HH-suite3 soft-

ware suite.42 First, the MSAs provided on the pVOGs website and the ones

built in the previous step were converted into the hhsuite proprietary HMM

format using hhmake. The pVOGHHMswere built into an HH-suite3 database,

which was then used to find matches to the phage protein HMMs using

hhsearch. All HMMs could be annotated through this approach, but only

4,578 matches displayed target coverage R50% and e-value %1�10.

mailto:fhernandes@icm.csic.es
https://sourceforge.net/projects/rafah/
https://hub.docker.com/r/fhcoutinho/rafah
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Finally, individual viral proteins were mapped to the HMM profiles using the

hmmsearch program limiting hits to those with e-value %10�5, alignment

length R70% for both proteins, and minimum score of 50. These results

were parsed into a matrix of viral genomes 3 PCs in which the values of

each cell corresponded to the bit score of the best hit of each protein to a given

PC, or zero if the protein and the PC did not match or if the score of the match

was below the aforementioned 50 cutoff. Once the matrix of genomes 3 PC

was defined, we calculated Pearson correlation coefficients (r) between all

possible pairwise combinations of PCs. To remove redundancies, we grouped

PCs into superclusters if they presented r R 0.9, and only a single PC from

each supercluster was kept for subsequent analysis. This reduced table of ge-

nomes versus PC scores (25,879 genomes 3 43,644 PCs) was used as input

to train, validate, and test the random forest models.

Random forest training, validation, and testing

Our rationale was that the machine could learn the associations between

genes and hosts much more efficiently than a human while also using the in-

formation contained in the hypothetical proteins. Hence, random forest

models were built using the Ranger43 package in R.44 The response variable

was the genus-level host assignment of the viral sequences while the input pa-

rameters were the scores of viral genomes to each PC.Multi-class random for-

ests were built with 1,000 trees, 5,000 variables to possibly split at in each

node, and using probabilistic mode. This classification approach ensured

that a single model could be used for all virus genomes. The putative host of

a viral genome was selected as the taxon with the highest probability score

yielded by the random forest. The taxonomic classification of each genus up

to the domain level was obtained by parsing the NCBI Taxonomy database

with a custom script. Next, variable importance was estimated using the impu-

rity method. When training the models and reporting predictions, we assumed

that a virus can only infect a single genus. Due to the probabilistic nature of the

random forests, all genera are associated with a score (which ranges from 0 to

1). Users interested in multi-genera viruses can search for those genomes that

have close or equal scores as preliminary evidence that the viral genome in

question might infect across multiple genera.

Three models were built and validated on independent datasets. Model 1

was trained on Training Set 1, which comprised 80% randomly selected non-

redundant viral genomes from NCBI RefSeq. The performance of this model

was evaluated on Training Set 1 and Validation Set 1, which comprised the re-

maining 20% of non-redundant RefSeq genomes. This process was repeated

for a 10-fold cross-validation. Even without thresholding, these models ex-

hibited high precision for both the training (mean 99.96%±0.026%) and valida-

tion sets (mean 76.47% ± 1.523%) at the genus level. Model 2 was trained on

Training Set 2, which comprised 100% of the RefSeq genomes, and validated

on Validation Set 2, which was comprised of GLUVAB genomes that could be

assigned to a host at the level of genusby the pipeline described above. Finally,

Model 3 was built based on Training Set 3, which comprised all of the RefSeq

viral genomesand theGLUVABgenomes that couldbeassigned toahost at the

level of genus (i.e., a combination of Training Set 2 and Validation Set 2). In this

dataset each genus was represented by a median of three genomes, and for

187 out of 617 (30.3%) genera themodel was trainedwith a single genome (Ta-

ble S5). Models 1 and 2 were used as proof-of-principle models, and Model 3

was the definitivemodel used for testing andwhich is provided to the users and

used for all subsequent analyses.

Viral genome completeness is likely to influence the performance of the

models. A tool trained solely on complete or nearly complete genomes might

not be capable of producing accurate predictions for the genome fragments

that are often obtained with metagenomic datasets. Completeness of the

25,879 sequences used to train RaFAH was estimated with CheckV,15 which

indicated that this dataset encompassed both complete viral genomes as

well as partial viral contigs. Partial viral genomes were the majority of se-

quences used to train RaFAH. Altogether, the genomes used for training dis-

played an average completeness of 53.6% ± 32.3%. According to CheckV,

these sequences were classified as complete genomes (709 sequences),

high-quality genome fragments (5,823), medium-quality genome fragments

(5,493), low-quality genome fragments (13,707) and not determined (147).

We used three independent test sets to evaluate the performance of RaFAH

Model 3. Test Set 1 comprised viral genomes retrieved from NCBI Genomes

database in January 2021. We took several steps to make sure that Test Set 1
represented a challenging dataset for the random forest model so as to assess

its ability to extrapolate. First, we excluded from Test Set 1 any genomesmade

public before November 2019. Second, Test Set 1 wasmade non-redundant at

95% nucleotide identity and 50% alignment length of the shorter sequence.

Third, protein sequences derived from Test Set 1 were compared with the pro-

tein sequences of Training Set 3 using DIAMOND.45 Any genomes that shared

more than 70% of proteins or more than 70% average AAI with any genome

from Training Set 3 were removed from Test Set 1. These steps resulted in an

independent Test Set 1 consisting of 561 (out of the initial 3,427) genomes

with no overlap to the genomes used to train the models.

Test Set 2 comprised viral genomes identified in SAGs from marine sam-

ples.14 A total of 4,751 SAGs (with completeness R50% and contamination

%5% as estimated by CheckM)46 were classified at the level of genus using

BAT.47 This algorithm provides taxonomic affiliations to microbial genomes

based on consensus taxa of proteins matches to the NCBI-nr database.

Next, viral sequences were extracted from the SAGs using VIBRANT,48 which

identified 418 viral sequences. We assumed that the viral sequences in the

SAGs infected the organisms from which these SAGs were derived, either

because they were derived from integrated prophages or from viral particles

attached or inside host cells. Viral sequences for which the host taxon pre-

dicted by RaFAH was the same taxon of the SAG as determined by BAT

were considered as correct host predictions. Viruses from SAGs that could

not be classified were excluded from the precision and recall analyses.

Test Set 3 comprised a collection of 61,647 viral genomic sequences from

studies that spanned multiple samples from permafrost,8 marine,49 human

gut,50 freshwater,19 soil,51 hypersaline lakes,52 hydrothermal springs (Fredrick-

son et al., unpublished data obtained from IMG/VR),53 and sludge bioreactor18

habitats. These sequences were assigned to putative hosts through the clas-

sical host-prediction pipeline described above for the GLUVAB genomes and

also using RaFAH. Bootstrap analysis was applied to evaluate the precision of

RaFAH in thisdataset. For this,weassumed that thehostspredictedby theclas-

sical approacheswere the truehostsof theviral genomesonTestSet3.Random

subsamples representing 20% of the full data were generated in 1,000 repli-

cates. Precision was estimated for each replicate. Also, we estimated the

completeness of viral genomes on Test Set 3 with CheckV15 and analyzed the

association between genome completeness and the precision of RaFAH.

RaFAH was tested on an Intel Xeon Gold 6140 CPU @ 2.30-GHz machine.

Timing calculations were performed using randomly selected genomes of

Test Set 3 using 24 threads in both the training and prediction modes (Fig-

ure S9). These results showed that the time to perform computations varied

exponentially as a function of input genomes. Using 10,000 input genomes,

RaFAH took 184 min to fit models and 495 min to predict hosts.

Comparison with other methods for host prediction

To assess the performance of RaFAH compared with other host-prediction

tools, we assessed the performance of the alignment-free methods Host-

Phinder5 and WIsH,3 the alignment-dependent approaches based on homol-

ogy matches, shared tRNAs and CRISPR spacers (and the three combined

as described above for assigning hosts to GLUVAB genomes), and a hybrid

approach, VirHostMatcher-Net.6 We compared these tools on Test Sets 1,

2, and 3. HostPhinder, VirHostMatcher-Net, and WIsH were run with default

parameters. The classical host predictions (CRISPR, tRNA, and homology

matches) for Test Set 1 were performed using the same parameters described

above for the GLUVAB genomes and for Test Set 3. Three performance met-

rics were evaluated at different taxonomic levels (domain to genus): Recall is

the percentage of viral sequences for which a host was predicted by a given

tool. Each viral sequence that was associated to a host was counted toward

recall, regardless of the host association being correct or not. Recall was

calculated as the number of sequences associated with a host divided by

the total number of sequences in the dataset. For approaches that provided

multiple host predictions for the same viral sequence (i.e., homology matches,

tRNA, and CRISPR), each individual viral sequence counted toward recall only

once. Precision is the percentage of host predictions that were correct. Each

viral sequence that was associated with a host by a given tool was counted to-

ward precision if the host association matched the true host of the sequence.

Precision was calculated as the total of matching host predictions divided by

the total number of predictions. Approaches that provided multiple host pre-

dictions for the same viral sequence counted toward precision if at least one
Patterns 2, 100274, July 9, 2021 7
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of the predictions was correct, but each sequence was counted toward preci-

sion only once. Finally, the F1 score was calculated as the harmonic mean be-

tween precision and recall.

For the approaches that required reference host genomes (i.e., WIsH,

CRISPR, tRNA, and homology matches), the database of host genomes was

the NCBI RefSeq genomes of Bacteria and Archaea and the genomes of Un-

cultured Bacteria and Archaea from the Genome Taxonomy Database.54 To

minimize false positives due to homology between viruses and mobile genetic

elements, we removed all sequences that matched the keyword ‘‘plasmid’’ in

their description field from the database of reference host genomes.

Assessment of archaeal virus-host predictions

To confirm the prediction of 537 genomes predicted by RaFAH as archaeal vi-

ruses, we used Mash v.2.1.55 Mash calculates Jaccard distance between two

genomes based on the number of shared k-mers with a certain length. We

used k-mer sizes from 13 to 20 nucleotides. For each k-mer size we calculated

distances of every phage genomic sequence against all potential host ge-

nomes. This database included 17,134 bacterial genomes and 4,716 archaeal

genomes retrieved from RefSeq and GenBank. For each phage genome, we

selected the potential host with the smallest Mash distance. In addition to

Mash distance, we also calculated Manhattan distances and correlation

scores between phage and host k-mer frequencies using k = 6 as described

in Edwards et al.2 and Ahlgren et al.4 Finally, all 537 phages were used as

BLASTn queries against the whole NR database. For each phage we deter-

mined a potential host by selecting the top-scoring non-viral hit as described

in Edwards et al.2 In addition, we compared the prevalence of ribosomal bind-

ing site motifs (defined by Prodigal37 gene predictions) between viral

sequences predicted to infect Bacteria and Archaea, from both the eightmeta-

genomic datasets and RefSeq viruses. A similar analysis was performed to

compare the prevalence of Pfam domains among these groups. For this anal-

ysis, protein sequences were queried against the Pfam database using

hmmsearch with maximum e-value set to 10�3.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100274.
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