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The coronavirus disease 2019 (COVID-19) pandemic has caused large-scale economic and social losses and worldwide deaths.
Although most COVID-19 patients have initially complained of respiratory insufficiency, the presence of neuropsychiatric
manifestations is also reported frequently, ranging from headache, hyposmia/anosmia, and neuromuscular dysfunction to stroke,
seizure, encephalopathy, altered mental status, and psychiatric disorders, both in the acute phase and in the long term. These
neuropsychiatric complications have emerged as a potential indicator of worsened clinical outcomes and poor prognosis, thus
contributing to mortality in COVID-19 patients. Their etiology remains largely unclear and probably involves multiple neuroinvasive
pathways. Here, we summarize recent animal and human studies for neurotrophic properties of severe acute respiratory syndrome
coronavirus (SARS-CoV-2) and elucidate potential neuropathogenic mechanisms involved in the viral invasion of the central
nervous system as a cause for brain damage and neurological impairments. We then discuss the potential therapeutic strategy for
intervening and preventing neuropsychiatric complications associated with SARS-CoV-2 infection. Time-series monitoring of
clinical-neurochemical-radiological progress of neuropsychiatric and neuroimmune complications need implementation in
individuals exposed to SARS-CoV-2. The development of a screening, intervention, and therapeutic framework to prevent and
reduce neuropsychiatric sequela is urgently needed and crucial for the short- and long-term recovery of COVID-19 patients.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus (SARS-CoV-2)
infection causes coronavirus disease 2019 (COVID-19). SARS-CoV-
2 is a single-stranded positive-sense RNA virus, belongs to the
beta coronavirus genus, and is genetically and structurally like
SARS-CoV. Phylogenetic analysis of the complete viral genome
revealed that SARS-CoV-2 was a close relative to SARS-CoV, with
89.1% nucleotide similarity and 79% genetic similarity [1, 2]. This
virus has spread rapidly worldwide, having devastating con-
sequences on healthcare systems, society, and economies.

Up to date, this virus has infected millions and affected billions
of lives in more than 200 countries. The mortality rate varies
dramatically from country to country, but deaths are age-
dependent. Deaths of individuals 60 years of age and older
account for more than 80% of all deaths in the United States and
the United Kingdom [3, 4]. The elderly are more susceptible to
COVID-19 and have a higher risk of morbidity and mortality than
the general population. Many factors, including frailty, comorbid-
ities (e.g., hypertension, diabetes, cardiovascular disease, and
chronic respiratory disease), and compromised immune function
may contribute to worse health outcomes and a high mortality
rate. Cardiovascular disease, diabetes, hypertension, or other

comorbidities, preexisting microvascular pathology may further
facilitate the neuroinvasion of the coronavirus and contribute to
the development of neuropsychiatric symptoms and neuropathol-
ogy associated with the viral infection [5]. The presence of chronic
neurological comorbidity is an independent predictor of all-cause
mortality in hospitalized COVID-19 patients [6]. A cohort study of
multiple sclerosis patients with COVID-19 identified age, neurolo-
gical disability, and obesity as the independent risk factors
associated with COVID-19 severity [7].

While commonly manifested as fever and cough, atypical
neuropsychiatric symptoms are also frequently reported in COVID-
19 patients and include delirium, confusion, and neurocognitive
disorders. These neuropsychiatric symptoms further hinder and
delay diagnosis and treatment and have short- and long-term
impacts on population health [8]. Several studies report risk or
prognostic factors that are associated with a fatal outcome in
patients hospitalized with COVID-19 and include medical comor-
bidities, dyspnea, time from disease onset to hospitalization, high
procalcitonin levels, and lymphocytopenia [9, 10]. Mechanistically,
coronavirus can invade the central nervous system (CNS) through
blood vessels and neuronal retrograde pathways, thereby causing
brain injury and dysfunction of the cardiorespiratory center in the
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brainstem, manifested as neurological symptoms and respiratory
failure in infected animals and patients [11-13]. Conditional
bursting pacemaker neurons in the brainstem region are crucial
for the generation of respiratory rhythm [14], and SARS-CoV-2 may
affect these respiratory control mechanisms, leading to indirect
respiratory dysfunction in addition to primary pulmonary injury
[15].

Historically, two similar human coronaviruses, SARS-CoV and the
Middle East respiratory syndrome (MERS)-CoV, have caused severe
acute respiratory syndrome outbreaks in 2003 and 2012. During
these two pandemics, neuropsychiatric complications included
narcolepsy, seizures, encephalitis, encephalopathy, Guillain-Barré
syndrome (GBS), and neuromuscular and psychiatric disorders
[16-19]. These neuropsychiatric sequelae were closely associated
with morbidity and risk of mortality. Emerging evidence suggests
that SARS-CoV-2 presents an analogous neurotropic property and
its infection can result in acute and long-term neuropsychiatric
consequences. Neurotropic RNA coronaviruses could disrupt the
blood-brain barrier (BBB), invade the CNS, and affect neuroim-
mune interactions through macrophages, microglia, or astrocytes
[20, 21]. Clinical trials reported that patients with COVID-19-related
pneumonia exhibited neurological disorders (e.g., stroke, ence-
phalopathy, encephalitis, delirium, and GBS) and psychiatric
disorders (e.g., depression, anxiety, insomnia, and post-traumatic
stress disorder) [22-25]. Moreover, in some cases, neurological or
psychiatric complications may precede or present without typical
respiratory manifestations [26]. A recent meta-analysis reported
that psychiatric and neurological disorders increased the suscept-
ibility to COVID-19, illness severity, and mortality [27].

Here, we provide a comprehensive overview of the prevalence
and presentation of neuropsychiatric manifestations of COVID-19
in patients based on epidemiological studies, clinical reports, and
neuroimaging findings and discuss potential neuroinvasive
mechanisms and pathways that contribute to these neuropatho-
logical changes and CNS dysfunction after SARS-CoV-2 infection.
We also discuss possible and promising interventions that prevent
and reduce these neuropsychiatric complications.

THE PRESENCE AND PREVALENCE OF NEUROPSYCHIATRIC
MANIFESTATIONS IN COVID-19 PATIENTS
Neurological and psychiatric complications of COVID-19 are
increasingly reported, but most are individual cases or case series.
Headache, anosmia, and myalgia are most commonly reported in
patients infected with SARS-CoV-2. SARS-CoV-2 infection can
attack the CNS and induce spine demyelinating lesions [28], which
could further lead to neuropsychiatric symptoms affecting
cognitive, affective, behavioral, and perceptual domains. These
neuropsychiatric symptoms, including cerebrovascular, psychia-
tric, and neuromuscular disorders, frequently occur in elderly
patients and individuals with multiple comorbidities or severe
infection. Both SARS and MERS are associated with delirium,
depression, anxiety, memory impairment, and insomnia during
the acute phase. Depression, insomnia, anxiety, memory impair-
ment, and sleep disorders are frequently reported during the post-
iliness phase [23]. A significant proportion of patients with COVID-
19 develop delirium, agitation, altered consciousness, and other
neuropsychiatric symptoms, including encephalopathy, encepha-
litis, depression, anxiety, and post-traumatic stress disorder [23].
A UK-wide surveillance study of acute neurological and
psychiatric complications in 153 COVID-19 patients demonstrated
that cerebrovascular events (62%) and altered mental status (31%,
including encephalopathy, encephalitis, and psychiatric disorders,
were reported, often occurring in younger patients [29]. An
observational series of 58 COVID-19 patients in Strasbourg, France
reported encephalopathy, prominent agitation and confusion,
corticospinal tract signs, and acute ischemic strokes [30]. A
tertiary-care hospital at Karachi, Pakistan reported on 350 patients
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with COVID-19 describing headache (6%), vertigo (3.4%), numb-
ness/paresthesia (3.1%), impaired consciousness (2%), hyposmia/
anosmia (1.4%), and encephalitis (0.9%) [31]. A retrospective,
observational case series of 214 patients in Wuhan, China found
that 78 patients (36.4%) had neurologic manifestations, including
acute cerebrovascular diseases, impaired consciousness, and
skeletal muscle injury [32]. Analysis of data from 86 critically ill
COVID-19 patients at the intensive care unit (ICU) of Tong;ji
Hospital, Wuhan, China showed that 26 patients (30.2%) presented
with neurological symptoms including delirium, stroke, cerebro-
vascular, and neuromuscular diseases [33]. A retrospective multi-
center cohort study of 917 patients in three regions in China
demonstrated that new-onset critical neurologic events, mainly
impaired consciousness and stroke, occurred in 3.5% of the total
population and in 9.4% of severe or critical patients [34]. A
prospective multicenter observational study in New York City
showed that 13.5% (606/4491) hospitalized COVID-19 patients
developed a new neurological disorder including encephalopathy
(309/606, 51%), strokes (84/606, 14%), seizures (74/606, 12%), and
hypoxic/ischemic brain injury (65/606, 11%), and these disorders
led to higher rates of in-hospital mortality and lower rates of
discharge home [35]. A survey of physician-reported neurological
symptoms in COVID-19 patients from Italy showed that 87.3% of
practitioners reported neurological symptoms, mainly mild and
nonspecific manifestations such as headache, myalgia, and loss of
smell [36].

GBS and myelitis are also reported in COVID-19 patients,
indicating a post-infective autoimmune reaction in peripheral
nerves [37]. COVID-19 patients frequently presented with stroke
and subsequent mortality when complicated by older age,
comorbidities, and severe respiratory symptoms [38]. A meta-
analysis of 58,104 COVID-19 patients revealed a 0.46% hemor-
rhagic stroke rate and a 1.11% ischemic stroke rate, with mortality
rates of 44.7% for hemorrhagic and 36.2% for ischemic stroke [39].
Evidence from tissue histology, neuroimaging, and clinic symp-
toms revealed that 1.4% of COVID-19 patients (23/1683) devel-
oped cerebral ischemia, intracerebral hemorrhage, or
encephalopathy [40]. A possible pathophysiology for this cere-
brovascular damage may be BBB dysfunction and subsequent
cytokine release induced by SARS-CoV-2 infection of the brain
itself [41].

During the COVID-19 pandemic, psychiatric disorders such as
depression, anxiety, post-traumatic stress disorder, and insomnia
have also been frequently reported in COVID-19 patients,
vulnerable populations, healthcare workers, and even the general
population [23, 42-48]. Poor sleep is associated with worsened
clinical outcomes in hospitalized patients with COVID-19, and
long-term sustainable improvements in sleep quality are needed
for this subpopulation [49, 50]. The prevalence and severity of
these psychiatric symptoms, attention deficits, and hyperactivity
symptoms increased the risk for problematic internet use during
the COVID-19 pandemic [51]. Moreover, a case series reported that
critically ill COVID-19 patients with multiple acute bilateral
ischemic lesions exhibited alterations of mental status but no
neurological deficits [52]. A group of experts convened by the UK
Academy of Medical Sciences and the mental health research
charity also advocate monitoring and evaluating brain function,
and mental health issues such as anxiety, depression, insomnia,
self-harm, and suicide in COVID-19 patients and related vulnerable
populations [53]. A Nationwide Cohort Study also revealed that
hospitalization with infection increased the risk of death by
suicides in prospective and dose-response relationships [54].
Another cohort study demonstrated that a history of schizo-
phrenia spectrum disorder was significantly associated with an
increased risk for mortality among COVID-19 patients [55].
However, it is difficult to distinguish whether this high prevalence
is due to direct SARS-CoV-2 infection or the adverse psychological
effects of other social and environmental factors such as social
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distancing and quarantine, self-isolation, changes in sleep and
lifestyle behaviors, fear of death, and economic burden [56].
Overall, neurologic and neuropsychiatric manifestations, such as
alterations of mental status and stroke, are common among
hospitalized COVID-19 patients and could be predictors of disease
severity and mortality [57, 58]. A retrospective cohort study of
236,379 COVID-19 survivors revealed that the incidence of
neurological or psychiatric morbidity (e.g. intracranial hemor-
rhage, ischemic stroke, dementia, and anxiety disorder) was 33.6%
in the 6 months follow-up, indicating the neuropsychiatric sequela
was long-lasting [59]. An international cohort study found that
neurological symptoms did not recover in COVID-19 patients at
7-month follow-up [60]. Clinicians should seriously consider these
neurological and neuropsychiatric symptoms to avoid delayed
diagnosis or misdiagnosis and to reduce the risk of death.

NEUROIMAGING AND NEUROCHEMICAL FINDINGS OF BRAIN
DYSFUNCTION IN COVID-19 PATIENTS

Early brain imaging and neurochemical examinations in COVID-19
patients with neuropsychiatric symptoms are critical and impor-
tant for timely interventions that can improve clinical outcomes.
Moreover, advanced neuroimaging and evaluation of biomarkers
are critical means in the clinical evaluation and diagnosis of brain
injury and neurological disorders. We summarize recent findings
on neuroimaging, electroencephalography (EEG), and neuro-
chemical biomarkers that reflect CNS dysfunction in COVID-19
patients, especially those with neuropsychiatric manifestations
(Table 1).

Diagnostic MRI/PET/CT findings

Many severe COVID-19 patients who are admitted to an ICU risk
infection spread when transported to imaging suites. In response
to this risk, clinicians should consider a recently developed novel
portable, low-field magnetic resonance imaging (MRI) device to
evaluate neurological injury such as stroke and hemorrhage at the
bedside of critically ill ICU patients [61]. Brain MRI examinations
revealed uncommon but important findings of disseminated
leukoencephalopathy in COVID-19 patients with neurologic
symptoms [62]. Brain computed tomography (CT) scan in a
patient with SARS-CoV-2 infection revealed a massive intracerebral
hemorrhage in the right hemisphere, accompanied by intraven-
tricular and subarachnoid hemorrhage [63]. Brain ['°FIfluoro-2-
deoxy-p-glucose-positron emission tomography/CT imaging in
four cases of COVID-19-related encephalopathy showed consis-
tent frontal hypometabolism and cerebellar hypermetabolism
[64]. An MRI-based 3-month follow-up study showed that 55% of
COVID-19 patients who presented with neurological symptoms
had microstructural and functional brain integrity disruption
during this recovery stage [65]. Besides ischemic infarction, signal
abnormalities in the medial temporal lobe, non-confluent multi-
focal white matter hyperintense lesions, and extensive and
isolated white matter microhemorrhages are frequently found in
severe COVID-19 patients with neurological symptoms [66]. A
COVID-19 patient presenting with altered mental status showed
acute necrotizing encephalopathy on CT and MRI [67].

Early postmortem brain MRI in COVID-19 non-survivors have
demonstrated white matter changes, brain hemorrhages, and
encephalopathy without brainstem changes, which all may result
from BBB impairment [68]. Neuropathology in 18 COVID-19 non-
survivors uncovered acute hypoxic injury in the cerebrum and
cerebellum, with neuronal loss in the cerebral cortex, hippocam-
pus, and cerebellar Purkinje cell layer, but no encephalitis [69].
Coronial autopsies of two fatal COVID-19 patients showed cerebral
cortical infarction and brainstem encephalitis, but found no SARS-
CoV-2 RNA in these postmortem brain tissues using RNAscope
in situ hybridization and reverse transcription-polymerase chain
reaction (RT-PCR) [70]. These neuropathological findings may be
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related to hyperinflammatory and hypercoagulable status induced
by SARS-CoV-2 infection.

Diagnostic EEG findings

EEG has shown no reliable findings related to COVID-19 [71]. EEG
examinations in five severe COVID-19 patients showed high-
amplitude frontal monomorphic delta waves without epileptic
activity, indicating potential CNS injury [72]. Two case series
reported generalized symmetrical slowing as predominant EEG
features of encephalopathy in patients with severe COVID-19, and
EEG monitoring is very important in this population to identify
status epilepticus and thus guide timely anti-seizure interventions
[73, 74]. Continuous EEG was also recommended to discover
asymptomatic seizures or to identify status epilepticus in COVID-
19 patients [75]. EEG-MRI examinations have revealed cerebral
microbleeds and focal dysfunction in critical illness COVID-19
patients with acute neurological complications after ruling out
nonconvulsive status epilepticus [76].

Diagnostic neurochemical findings

Two plasma biomarkers of CNS injury, neurofilament light-chain
protein (NfL, a marker of neuroaxonal injury) and glial fibrillary
acidic protein (GFAP, a marker of astrocytic activation/injury), were
increased in severe COVID-19 patients [77]. Another study in
healthcare workers demonstrated that mild-to-moderate COVID-
19 was associated with increased serum NfL levels, indicating the
potential neurodestructive capability of SARS-CoV-2 [78]. Higher
serum NfL concentrations were associated with worse clinical
outcomes, such as mechanical ventilation and ICU admission, in
hospitalized COVID-19 patients [79]. A longitudinal study showed
that elevated NfL and GFAP concentrations normalized at
6-month follow-up, regardless of prior disease severity or
persisting neurological symptoms, in all COVID-19 patients [80].
A longitudinal cohort study with time-series design to estimate
the spectrum of biochemical dataset suggests two other
biochemical markers, C-reactive protein (CRP) and urea nitrogen,
are associated with the risk of COVID-19-related acute respiratory
failure and death [81]. A case series showed that levels of
biomarkers of inflammation in cerebrospinal fluid (CSF), including
neopterin and P2-microglobulin, increased in six COVID-19
patients with neurological symptoms, including encephalopathies,
suspected meningitis, and dysgeusia [82]. A large prospective
biomarker study showed that serum NfL levels increased across
hospitalized COVID-19 patients despite neurological manifesta-
tions, whereas CSF NfL levels increased specifically in patients with
CNS inflammation, including encephalitis and acute disseminated
encephalomyelitis, but not in patients with encephalopathy or
GBS [83]. Moreover, a previous study evaluated nine antipho-
spholipid antibodies and found that anti-phosphatidylserine/
prothrombin IgG was associated with COVID-associated neurolo-
gical manifestations, specifically acute disseminated encephalo-
myelitis [84]. This neurochemical evidence supports the presence
of neuroinflammation and microvascular and CNS injury in the
acute phase of the disease.

Enzyme-linked immunosorbent assay (ELISA) revealed that
high-titer anti-SARS-CoV-2 antibodies are detectable in both
serum and CSF of patients with encephalopathy and comatose.
These patients showed a breakdown of BBB integrity and
neurodegeneration as indicated by finding albumin and 14-3-3-
protein in the CSF [85]. In addition, SARS-CoV-2 RNA detection in
the CSF could provide direct evidence to support the neurotrop-
ism theory. Recently, the first case of positive SARS-CoV-2 RT-PCR
results in the CSF of COVID-19 patients with meningitis/
encephalitis was reported [86], supporting neuroinvasion of the
CNS after SARS-CoV-2 infection. SARS-COV-2 RNA was also
detected in the CSF sampling of a patient with neurological
manifestations of demyelinating disease, although the respiratory
symptoms were mild [87]. Other studies using RT-PCR assays of
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CSF samples from COVID-19 patients with neurological damage
have been negative for SARS-CoV-2 [28, 30, 76, 88], which may be
due to low sensitivity or diagnostic complications of the method
(i.e., false-negative results), CSF clearance, low CSF virus titer, and
delayed sampling [89, 90].

Overall, the neuroimaging (MRI/CT/PET) and neurochemical (RT-
PCR assays/ELISA) methods could help to identify candidate
biomarkers to access the effects of SARS-CoV-2 infection on the
CNS function and brain inflammation status [53]. Combined with
clinical symptoms, self-reporting, and behavioral testing of
emotional and cognitive domains, comprehensive diagnosis of
disease and implicating proper interventions could be achieved.

THE POTENTIAL MECHANISMS UNDERLYING THE INVASION
OF SARS-COV-2 INTO THE NERVOUS SYSTEM

Growing and convincing evidence supports the neurotropism of
SARS-CoV-2 (Table 2), similar to other coronaviruses. Quantitative
data for tropism, replication kinetics, and cell damage revealed
that SARS-CoV-2 modestly replicated in neuronal cells, high-
lighting the potential that this virus can cause neuropsychiatric
manifestations in COVID-19 patients [91]. This virus could affect
the CNS and cause brain damage and neuropsychiatric alterations
through several pathways (Fig. 1).

Neurotropism of SARS-CoV-2 using human pluripotent stem
cell technology and brain organoids

Human pluripotent stem cell (hPSC) technology has been
successfully used to study viral infections of the CNS such as the
Zika virus, and have immensely implicated to identify the
specificity of infected cell types and brain organoids, model
neurodevelopmental or neurodegenerative disorders, elucidate
disease progress and mechanisms, and develop potential
therapeutic agents [92-94]. Using these models including human
neural progenitor cells, neurospheres, monolayer brain cells, and
three-dimensional (3D) region-specific brain organoids, the emer-
ging experimental evidence has demonstrated that SARS-CoV-2
can invade the human CNS and infect various cell types (Table 2)
[95-98].

SARS-CoV-2 was found to sparsely infect human neurons, but
robustly infect choroid plexus epithelial cells and increase cell
death, indicating that SARS-CoV-2 may invade the CNS by acting
on the blood-CSF barrier in the choroid plexus [99, 100]. SARS-
CoV-2 spike pseudovirus and live virus specifically infected
choroid plexus epithelial cells, but not neurons or glia, and
disrupted the blood-CSF barrier function in human iPSC-derived
brain organoids [101]. By integrating pericyte-like cells into hPSC-
derived cortical organoids, Wang et al. found that pericyte-like
cells were extensively infected by SARS-CoV-2 and facilitated viral
spread to astrocytes [102]. Several studies showed that SARS-CoV-
2 does not replicate in hiPSC-derived neural cultures, arguing that
most brain damage that is caused by SARS-CoV-2 infection is
attributable to local immune responses rather than robust viral
replication in the CNS [103, 104]. However, other studies using
human brain organoids found the replication of SARS-CoV-2 in the
neuronal cell body and neurite structures, accompanying meta-
bolic changes [105-107]. Furthermore, SARS-CoV-2 preferably
targets cortical neurons of 3D human brain organoids, where it
has altered Tau distribution, and phosphorylation, which increased
expression of neurodegeneration genes and induced neuronal
death, providing further insights into the neuropathogenesis of
SARS-CoV-2 infection [108, 109]. Yang et al. found that the SARS-
CoV-2 pseudo-entry virus and SARS-CoV-2 virus infects dopami-
nergic neurons, but not cortical neurons or microglia [110].
Andrews et al. found that SARS-CoV-2 infects astrocytes in both
primary human cortical tissue and human stem cell-derived
cortical organoids [111]. Although 2D or 3D in vitro experimental
models could not perfectly recapitulate the complex clinical
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symptoms and multifactorial cellular effects in COVID-19 patients,
the development of mature and complex brain organoids
comprising neurons, astrocytes, microglia, vasculature, and
choroid plexus provides promising means to explore the
neuropathogenesis of SARS-CoV-2 infection.

SARS-CoV-2 receptor ACE2

An analysis based on decades-long structural studies of SARS
coronavirus revealed that SARS-CoV-2 may utilize angiotensin-
converting enzyme-2 (ACE2) as its host receptor, consistent with
its capacity for human cell infection and human-to-human
transmission [112]. ACE2 is the SARS-CoV-2 docking receptor,
and transmembrane protease serine-2 (TMPRSS2) is the main
enzyme for proteolysis of the viral spike protein [113]. Both the
receptor and enzyme are abundantly expressed in multiple cell
types within various organs such as oral and nasal mucosa,
olfactory region, lung, heart, esophagus, kidney, bladder, ileum,
vasculature, and brain, which is consistent with the multiorgan
impairments and tissue damage in COVID-19 patients [22, 114-
117]. Meta-analysis of single-cell RNA-seq datasets for putative
SARS-CoV-2 targets revealed that ACE2 acts in concert with
TMPRSS2 or cathepsin L to promote its cellular entry in specific cell
subsets across tissues [118, 119]. They also identified ACE2 as a
human species-specific interferon (IFN)-stimulated gene. A recent
study resolved the crystal structure of SARS-CoV-2 and demon-
strated that this virus interacts with human ACE2 via the
C-terminal domain of the spike protein and it displays a stronger
affinity for receptor binding than SARS-CoV does [120].

It has been reported that glial cells and neurons express ACE2
receptors, and SARS-CoV can invade the brain primarily via the
olfactory bulb and cause neuronal death in mice [121-123].
Autopsy examinations of the patients with acute SARS-CoV illness
have also demonstrated the presence of the virus in the brain or
CSF, as indicated by electron microscopy, immunohistochemistry,
and real-time RT-PCR testing [121, 124]. In addition, immunohis-
tochemistry showed heterogeneous expression of the SARS-CoV-2
receptor ACE2 in the human upper and lower respiratory tract,
which may be related to the susceptibility and/or severe disease
development to COVID-19 [125]. Besides in the lung, ACE2 and
TMPRSS2 are also highly expressed in the human peripheral and
CNS including enteric neurons of the small and large intestine,
choroid plexus epithelial cells, excitatory and inhibitory neurons,
astrocytes, and oligodendrocytes [101, 126, 127].

Cellular transportation via olfactory mucosa and its nervous
projections

SARS-CoV-2 could infect the CNS via retrograde or anterograde
axonal transport, neuron-to-neuron or neuron-to-nonneuronal
propagation, or through actions on the olfactory, vagus, and
trigeminal nerves. Bulk and single-cell RNA sequencing in both
humans and mouse revealed that ACE2 and coronavirus cell entry-
related genes are expressed in respiratory epithelium and
olfactory epithelium, but not in olfactory sensory neurons or
olfactory bulb neurons, indicating that SARS-CoV-2 may infect
nonneuronal cell types in the olfactory bulb and thus lead to
anosmia in COVID-19 patients [128].

Similar to other coronaviruses, SARS-CoV-2 can attack the
olfactory bulb or peripheral nerves such as the trigeminal nerve,
which connect the brainstem with different organs of the
respiratory tract and then affect the CNS during or after infection
[129]. Previous studies in mice showed that the neurotropic
influenza virus could invade the CNS from the respiratory mucosa
and the vagus nerve directly [130]. SARS-CoV-2 was directly
injected into deer mice, and immunohistochemistry examinations
showed the presence of SARS-CoV-2 in trigeminal ganglionic
neurons, neurons, and microglia of the afferent nerves, and the
glomerular layer of the olfactory bulb, indicating that this virus
may enter into the brain via the gustatory-olfactory-trigeminal
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pathway [131]. SARS-CoV-2 was also shown to invade the CNS in
rhesus monkeys primarily via the olfactory bulb, subsequently
spreading to multiple brain regions, including the hippocampus,
thalamus, and medulla oblongata, and causing neuroinflamma-
tion and local pathological changes [132]. Autopsies from COVID-
19 patients detected the presence of SARS-CoV-2 RNA and protein
in olfactory mucosal, cerebellum, and cortical neurons [106, 133].
Moreover, analysis of autopsy material from 33 deceased COVID-
19 patients revealed colocalization of SARS-CoV spike protein with
various neuronal markers in olfactory mucosa, indicating that
SARS-CoV-2 can invade the CNS via crossing the olfactory
mucosal-neural interface [133]. A postmortem case series also
revealed the presence of SARS-CoV-2 viral proteins in cranial
nerves originating from the lower brainstem and in isolated cells
of the medulla oblongata [134]. In addition, the enteric nervous
system and its vagal afferents to the CNS could be alternative
targets for SARS-CoV-2 neuroinvasion, considering the large
amount of ACE2 receptor expression and the prominent gastro-
intestinal symptoms in COVID-19 patients [135].

Hematogenous dissemination via blood-brain and blood-CSF
barriers

The coronavirus could diffuse into the CNS through the
dissemination of peripherally infected immune cells including
monocytes, neutrophils, and T cells, or via binding to the ACE2
receptors in endothelial cells of the BBB or the blood-CSF barrier
in the choroid plexus. Single-nucleus transcriptomes from
postmortem choroid plexus samples from COVID-19 patients
revealed the dysfunction of choroid plexus barrier cells and
peripheral T cell infiltration [136]. Emerging evidence indicates
that SARS-CoV-2 could infect CNS cells, especially the brain
microvascular endothelial cells, thus damaging the BBB and
blood-CSF integrity and causing widespread neuroinflammation,
which ultimately contributes to the neuropsychiatric complica-
tions in COVID-19 patients [101, 137]. In addition, ACE2 is a
vasoconstrictor and exerts pro-inflammatory function [138], and
SARS-CoV-2 may act on ACE2 in the brain, leading to arterial wall
rupture and intracranial bleeding in COVID-19 patients [63]. The
systemic inflammation induced by SARS-CoV-2 infection is also
likely to increase the barrier permeability, thus promoting
peripheral infected granulocytes, systemically released inflamma-
tory cytokines, and possibly the coronavirus itself invade into
the CNS.

Hypoxia, hyperinflammation, and neuroimmune deficits

Growing evidence indicates that SARS-CoV-2 can induce hypoxic
conditions caused by lung injury and modulate innate and
adaptive immune responses in the host, thus further promoting
SARS-CoV-2 neuroinvasion from the periphery to the brain [139]. A
case series of radiographic and clinical neurologic presentations
showed that hypoxemia secondary to COVID-19-related acute
respiratory distress syndrome plays a critical role in hypoxia
neuronal injury and neurocognitive impairment [140]. Dysregula-
tion of the brain-lung-heart interactions could also cause
hypoxic—ischemic brain damage, hyperinflammation, and procoa-
gulative states, which would further contribute to the neurological
manifestations of SARS-CoV-2 infection [141]. In addition to
fighting against the coronavirus infection, the immune system is
activated and CD4" T cells produce granulocyte-macrophage
colony-stimulating factor, which further promotes the over-
production and release of leukocytes and pro-inflammatory
cytokines, especially interleukin-6 (IL-6), causing overactivation of
the complement system and coagulation cascades, and ultimately
contributing to a vicious cycle of the cytokine storm and adverse
clinical outcomes [142-144]. Astrocytes and microglia, the resident
immune cells in the brain, also play a critical role in SARS-CoV-2
infection, neuroinflammation, and CNS injury [145]. After a
neurotropic coronavirus infection, microglia is required for debris
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clearance and the initiation of remyelination [146], which may be
correlated with spinal demyelinating lesions in COVID-19 patients.

COVID-19-related neuropsychiatric symptoms such as encepha-
lopathy, stroke, depression, and post-traumatic stress disorder are
associated with cytokine release syndrome, BBB dysfunction (as
indicated by hyper-albumin-orrachia and increased astroglial
protein ST00B levels), neuroinflammatory, neurochemical changes,
and immune-mediated mechanisms [147, 148]. Immune analysis
on a cohort of 50 COVID-19 patients with various disease severities
revealed impaired type | IFN activity, characterized by no IFN-f
and low IFN-a production. These low IFN levels were associated
with a persistent viral load in the blood and an exacerbated
inflammatory response (overproduction and release of tumor
necrosis factor-a [TNF-a] and IL-6), which may be a hallmark of
severe COVID-19 [149]. Moreover, IL-6 and TNF-a levels have been
shown to predict disease severity, clinical progression, and death
in hospitalized COVID-19 patients [150, 151]. A case report
demonstrated a marked increase of several inflammatory cyto-
kines and chemokines in the CSF of a COVID-19 patient [152].
Single-cell sequencing analysis of CSF immune cells from COVID-
19 patients with neurological manifestations revealed expansion
of dedifferentiated monocytes, exhausted CD4' T cells, and
reduced IFN response [153]. Autopsies of COVID-19 patients
revealed astrocytosis, axonal damage, BBB leakage, and alterations
of CD8™ T cell-microglia crosstalk in the CNS [154]. These findings
indicate that CNS inflammation and immune-mediated
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Neuropsychiatric manifestations, possible mechanisms of neurological impairments after SARS-CoV-2 infection, and potential

mechanisms may contribute to COVID-19-related long-lasting
neurological sequelae.

Hyperinflammatory syndrome in COVID-19 manifested as fever,
macrophage activation, hematological dysfunction, hepatic injury,
coagulopathy, and cytokinemia, is closely associated with worse
respiratory symptoms and in-hospital mortality [155]. Severe
COVID-19 patients also mostly exerted viral infection-induced
hyperinflammatory state, mainly characterized by sustained
increases in TNF-q, IL-6, and IL-1 levels, and disrupted monocyte
and dendritic cell phenotypes, which could ultimately contribute
to poor prognosis and mortality [151, 156]. A meta-analysis
revealed that increased neutrophil-to-lymphocyte ratios and
decreased lymphocyte-to-CRP ratios, which are two markers of
systemic inflammation, were found in severe COVID-19 patients
and may indicate a poor prognosis [157]. Synergism of TNF-a and
IFN-y triggered lethal cytokine shock syndromes and treatment
with their neutralizing antibodies prevented SARS-CoV-2 infection-
induced mortality in mice [158]. Cross-reactive antibodies to SARS-
CoV-2 may also contribute to COVID-19-related disease pathology
and the persistence of neurological symptoms even in recovered
patients [159]. Sex differences in immune responses also appear to
make males more susceptible to SARS-CoV-2 infection, and worse
clinical outcomes that are associated with poor T cell-mediated
immunity in male COVID-19 patients [160, 161].

Central and peripheral immunological responses to SARS-CoV-2
infection are distinct. Inmune analysis of mononuclear cells from
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COVID-19 patients with neurological symptoms revealed unique B
cell responses that markedly differed between the CSF and
peripheral blood [162]. Furthermore, a mouse model of SARS-CoV-
2 infection found that antibody responses can occur separately in
the brain without being evident in the systemic circulation.
Specifically, a case report showed COVID-19-related meningitis
without respiratory manifestations and negative oropharyngeal/
nasopharyngeal RT-PCRs, but the CSF RT-PCR assay was positive
[163]. A case report also showed a patient with serious
neurological damage and mental abnormalities without respira-
tory symptoms, but with strong IgM and IgG antibodies against
SARS-CoV-2 in the CSF. This patient also had negative RT-PCR
results in both nasopharyngeal swabs and CSF [164].

COVID-19 appears to affect children more mildly than adults,
which may be due to the reduced ACE2 level in children’s
respiratory tract, their protective T cell and T-helper 2 (Th2)
immunity, and their decreased inflammatory responses [165].
However, a multisystem inflammatory syndrome in children (MIS-
Q) is fatal and worrisome and has been increasingly reported and
noticed [166]. A case report of a 4-year-old COVID-19 child
presenting with MIS-C and prominent neurologic symptoms, and
described how a cytokine storm and decreased BDNF level may
contribute to his neurocognitive dysfunction [167]. The increased
concentrations of CRP and IL-6 are strongly associated with severe
outcomes in COVID patients with MIS-C [168]. A population-based
longitudinal study revealed that higher levels of the systemic
inflammatory marker IL-6 at age 9 years were more likely to
develop depression and psychosis at age 18 years [169].
Mechanically, maternal inflammation affects multiple steps of
cortical GABAergic interneuron development, thus contributing to
the cognitive impairment of the affected offspring [170].
Furthermore, early-life mental health has been associated with
decreased levels of fibrinogen and CRP, two indicators of
inflammation and cardiovascular disease, and increased risk for
all-cause mortality in later life [171].

Overall, the SARS-CoV-2 may directly invade the CNS via cellular
transportation and hematogenous dissemination by acting on
ACE2 receptors in endothelial cells of BBB or the blood-CSF
barrier, and indirectly damage the brain via hypoxia, hyperin-
flammation, and neuroimmune system. This leads to the recruit-
ment and activation of immune cells including resident microglia
and astrocytes, and peripheral leukocytes and macrophages,
which increases the production and release of inflammatory
cytokines and chemokines, further induces the breakdown of BBB
and blood-CSF barriers, and causes neuroinflammation, demye-
lination, neuronal excitotoxicity, and synaptic plasticity deficits in
the brain, forming a vicious cycle of the cytokine storm and
neuronal injury (Fig. 2). The dysfunction of the peripheral and CNS
could ultimately contribute to the neurologic and neuropsychiatric
manifestations in COVID-19 patients.

STRATEGIES FOR TREATMENT OF SARS-COV-2-RELATED
NEUROPSYCHIATRIC COMPLICATIONS

As the neurologic and neuropsychiatric manifestations are
commonly reported in COVID-19 patients, especially in severe
conditions, there is an urgent need to develop effective strategies
and therapeutic frameworks to prevent and reduce them in the
clinic (Table 3).

ACEIs/ARBs

Previous studies showed that ACE2 expression level was
correlated with susceptibility to SARS-CoV infection and the
development of neuropsychiatric symptoms [172]. Angiotensin-
converting enzyme inhibitors (ACEls)/angiotensin receptor block-
ers (ARBs) are commonly used in the treatment of cardiovascular
diseases such as hypertension and coronary heart disease.
Comorbidity with hypertension has mostly been reported among
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patients who died of COVID-19. Many of these patients used
renin—angiotensin system inhibitors, such as ACEls and ARBs,
which increase ACE2 receptor expression at the cell membrane in
experimental animals, and theoretically this larger number of
ACE2 receptors enhance viral entry and lead to a higher risk of
SARS-CoV-2 infection [116, 138]. However, little current human
evidence supports this assertion. Recent clinical evidence
indicates that the use of these drugs improves clinical outcomes
by reducing the occurrence of new-onset or worsening mental
confusion (e.g., mild disorientation or hallucinations) and
decreases the risk of all-cause mortality in COVID-19 patients
with hypertension [173-175]. A retrospective multicenter cohort
study reported that statin treatment in combination with an ACEI
or ARB had beneficial, albeit nonsignificant, effects on serious
clinical outcomes of COVID-19 in older adults who lived in
nursing homes [176]. Society and practice guidelines recommend
continued therapy for patients who have previously prescribed
these drugs for another indication [177]. ACEIs/ARBs should not
be discontinued for COVID-9 infected patients as their protective
role in heart injuries and lung damage caused by the infection.
However, it is not recommended to initiate ACEIs/ARBs because
there has been no definitive evidence that they benefit COVID-
19 patients’ survival [138, 178]. Randomized clinical trials are
needed to further clarify the safety and efficacy of ACEIs/ARBs in
COVID-19 patients with neuropsychiatric complications such as
stroke [179].

Anti-inflammatory drugs and interventions

Early adaptive immune responses, such as the recruitment of
multiple immune cells and the concomitant production of
immunoglobulin antibodies, may predict better clinical out-
comes in COVID-19 patients [180]. During aging, immune
system function declines, and adaptive immunity fails to
develop, which can significantly weaken the defense response
to SARS-CoV-2 infection in the elderly and worsen clinical
outcomes. Because of the risk for a cytokine storm syndrome in
a subgroup of patients with severe COVID-19, immunosuppres-
sion is recommended for COVID-19 treatment [156]. Immuno-
suppressive agents are also widely used to combat several
disorders of both the central and peripheral nervous systems
such as multiple sclerosis. Corticosteroids were commonly used
during the outbreaks of SARS-CoV and MERS-CoV, especially for
patients with critical conditions [181, 182]. Corticosteroids
inhibit systemic inflammation, but also suppress immune
activity and prevent viral clearance. Some clinical evidence
suggests that corticosteroid treatment had no beneficial effects
on SARS-CoV-2-induced lung injury or mortality [183-185].
Conversely, a meta-analysis revealed that low-dose corticoster-
oid therapy appeared to reduce all-cause mortality in critically
ill patients with COVID-19 [186, 187]. Corticosteroids were also
reported to exert potential beneficial effects on COVID-19-
associated neurological disorders, including encephalitis and
acute disseminated encephalomyelitis [188].

IL-6 is prominent in the cytokine storm that underlies COVID-
19-related acute respiratory distress syndrome and brain injury.
Increasing evidence supports the safety and efficiency of the IL-6
receptor blocker tocilizumab for treating patients with severe or
critical COVID-19, especially those with cytokine release syn-
drome [189-191]. Case reports described that tocilizumab
exerted potential beneficial effects on COVID-19-related neurop-
sychiatric symptoms, including encephalopathy presenting with
aphasia and posterior reversible encephalopathy syndrome
[192, 193]. Case reports and case series showed that immu-
notherapy with intravenous immunoglobulin was safe and
effective for the treatment of COVID-19-associated neurological
disorders, including encephalopathy, GBS, and new-onset
refractory status epilepticus [194-196]. Janus kinase inhibitor
baricitinio has been shown to reduce macrophage and

Translational Psychiatry (2021)11:499



A. Healthy system
Astrocyte Microglia

Bloodstream /—< /\\\

\’J ,\» T——
&K:C/
Neuron \N

B. Infected system

BBB and blood-CSF
barrier breakdown

Glial cell
activation

Neuroinflammation
Neuronal excitotoxicity N

Demyelination \ \
Synaptic alterations )

IL-1B, IL-6, TNF-a et £

Immune complementand
coagulation dysfunction

Fig. 2 Schematic illustration of proposed consequences of SARS-
CoV-2 neuroinvasion. A In healthy systems, the blood-rain barrier
(BBB) prevents most of the macromolecules and neurotoxins in the
bloodstream from entering the brain tissues, which is achieved
through the components of the neurovascular unit (e.g., endothelial
cells, astrocytes). B Growing evidence suggests that SARS-CoV-2 may
invade brain tissue. The virus may enter the bloodstream through
multiple pathways and infect the neurovascular cells, causing the
breakdown of the BBB and blood-cerebrospinal fluid (CSF) barrier.
Their breakdown will further trigger the inflammatory responses,
including the recruitment of macrophage and T lymphocytes,
activation of astrocytes and microglia, cause a vicious cycle of the
cytokine storm (production and release of IL-1p, IL-6, TNF-a, etc.),
and disrupt immune complement and coagulation cascades. The
infection may also cause immune-mediated demyelination, neuro-
nal excitotoxicity, and dysfunction of synaptic plasticity, which
ultimately contributes to worsened neurological and neuropsychia-
tric symptoms in COVID-19 patients.

neutrophil recruitment and suppress inflammation in a rhesus
macaque model of SARS-CoV-2 infection [197]. Baricitinib
treatment could affect both inflammation and cellular viral
endocytosis and entry into cells, thus it could be a potential
treatment for COVID-19 [198]. Thiamine, a vitamin and dietary
supplement, was recently reported to attenuate the Th17 cell-
mediated IL-17 pro-inflammatory cytokine storm related to
COVID-19, and is a promising repurposed drug for treating
neurological symptoms in COVID-19 patients [199]. Meta-analysis
of randomized clinical trials showed that psychosocial interven-
tions are associated with enhanced immune system function for
at least 6 months following treatment cessation, as indexed by
decreases in levels of pro-inflammatory cytokines or markers
(e.g., IL-6, CRP), and by increases in immune cell counts (e.g.,
CD56, CD4) [200]. Psychosocial interventions, including cognitive
behavioral therapy, psychological first aid, and a community-
based psychosocial arts program, were reported to have
beneficial effects on psychological and psychiatric complications
in COVID-19 patients [201].
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Other approaches

Large-scale compound repurposing of known antiviral drugs
identified several small molecules, such as the PIKfyve kinase
inhibitor and the cysteine protease inhibitors, as candidate
therapeutic drugs for COVID-19 [202]. Antimalarials such as
chloroquine and hydroxychloroquine were found to counter
neuroinflammation and have promising beneficial effects on
COVID-19-related neurological/neurovascular complications [203],
although randomized clinical trials showed that hydroxychlor-
oquine had no efficacy to prevent transmission of SARS-CoV-2
among hospital-based healthcare workers [204], and was asso-
ciated with increased mortality in COVID-19 patients [205]. In
addition, potential neuropsychiatric side effects of chloroquine
and hydroxychloroquine suggest avoiding them as COVID-19
treatments, and if these agents are used, evaluation of patients’
psychiatric presentations such as psychosis, mood disorders, and
suicide risk should be implemented [206-208]. A vaccine
BNT162b1 targeting the receptor-binding domain of the SARS-
CoV-2 spike protein elicited robust T cell and strong human
antibody responses, indicating promising therapeutic and pre-
vention potential against COVID-19 [209]. A pilot randomized
controlled study intends to evaluate the effects of low-intensity
transcranial direct current stimulation on dyspnea relief in COVID-
19 patients requiring mechanical ventilation in ICU [210]. In
addition, intranasal delivery is proposed in the management of
neurological and neuropsychiatric manifestations of COVID-19 as
it could overcome the BBB impediment and enter the CNS, with
minimal adverse effects [211].

CONCLUSIONS AND PERSPECTIVES

Neurological and neuropsychiatric symptoms are common in
COVID-19 patients. Emerging neuroimaging and neurochemical
evidence indicate neuroimmune dysfunction and brain injury in
severe COVID-19 patients, especially those with neuropsychiatric
manifestations. These neuropsychiatric complications are recog-
nized as critical contributors to morbidity and mortality during the
COVID-19 pandemic and have become major public health
challenges. SARS-CoV-2 infection can directly invade the CNS
through the blood circulation and neuronal pathways, and
indirectly affect the innate and adaptive immune system and
cause neuroinflammation. Both of these disruptions to immune
functioning and neuroinflammation ultimately lead to brain
lesions and accelerate the progression and worsening of the
clinical outcomes of neuropsychiatric disorders.

Immun-suppressive therapies, vaccines targeting the corona-
viruses’ spike protein, and pharmacological agents that improve
endothelial integrity, reduce hypercoagulation status or targeting
the host’s ACE2 receptor, to which the virus binds, could prevent
neuropsychiatric complications such as stroke and benefit an
individual’'s mental health such as poststroke depression in COVID-
19 patients (Fig. 1). However, to date, no pharmacologic guidelines
or standard protocols exist for the management of neuropsychia-
tric symptoms in COVID-19 patients. Integrated multilayered and
multidisciplinary research including epidemiology, pharmacology,
imaging, translational experimental studies, and randomized
clinical trials are urgently needed to develop safe and effective
interventions to reduce the short- and long-term neuropsychiatric
complications in hospitalized or recovered patients with
COVID-19.

Some neurological and neuropsychiatric manifestations may be
due to systemic involvement rather than direct CNS infection.
Thus, it should be made with caution when lacking solid evidence
for neuroinvasion in COVID-19 patients with neurological symp-
toms such as the absence of viral detection in CSF samples or
abnormalities in brain imaging. Further experimental animal
studies, prospective or retrospective observational studies, rando-
mized clinical trials, autopsies, and CSF analysis are urgently

SPRINGER NATURE

13



Y. Han et al.

14

9AI1D9)J9 pue 9jes e aq Aew
ulngojbounwiwi snousAeU|

S9W02IN0 dAnebau
1uaAa4d 03 snieydssus
sunwwiolne pajdadsns
yum spuaned 61-QIAOD

snondajids sniels Aioidelyol
19suo-mau ul Adesayy
uljngojbounwiwi snousAenu|

Jo 9sn ay1 1oddns

Ssauyeam [elde} pue
‘SWOIPUAS 911eg-ule||ino
‘91se) JO Sso| 01 buipes)
JUSWISA|OAUI |ed16ojoINsU
9)Nde Ul payNsai
C-\OD-SHVS YHM uondsju|

siasnuou
gdVv/I3DY yum pasedwod
Ayljeyow asned-jje jo

3SU J9MO| B UM pPa3eIdosse
gYVv/I3DV Jo 3sn jusnedul
‘uoisuaniadAy bunsixaod
pue 61-AIAOD Yum

sjyuaned pazijeydsoy buowy
uojisusyadAy yum syusped
61-AIAOD JO sswod1no
|ea1uld anoudwi sioxqiyul
widsAs uisualolbue—ujusy

uoisuspadAy yum syusned
61-dINOD Ul uoisnjuod jo
uonuanaid sy} oy |eyausq
99 PINO> sgdV/sIIDV

osls Aq paidaye

a1am oym syuaned 61-AINOD
JO 9SIN0D [ed1Ul]D 3Y) Pa1ddye
wid)sAs ujsualolbue—-ujuai
Y1 Jo uonejnpowodew.eyd
MOY pue J3Yysym Jesppun

SSWODIN0 [edluld
219A3S SS3| YHM pa3eidosse
g4V 10 [3DY YUM pauIqiod
juswiealy unels ‘swoydwiAs
|es1uld> paieji-6L-dIAOD
UO S109J9 |eIdYauUag Yum
pa1eID0SSe JUusWIeal) uels

sbuipuy urepy

K1anodal
|e21Ul|D04323]9
919|dwo)

|lexdsoy
woJj pabieydsiq

ZlL Aep uo
pabieydsig

dnoib gyv/I3DV ul
Jamo| Apuedyiubis
sem Ajjjepow
asned-|je Aep-gz Jo
Jsu ‘syusned gL L
JO 1IN0 SYieap 66

(P3Ip L "B43A8s T1)
SgYV/S[3DV-uou
‘(P3lp 0 ‘243A3s 1)
sgyV/sIIDV

(85) Adesayy
uabAxo

‘(71) uone|nuaA
[e2o1UeYdBW ‘(1)
yreap [eudsoy-u|

K19n003Yy

(snopasuou

G ‘snouas 9)
u3els ‘(snouasuou
¥ ‘snouas 9)
Sgyv/sI3Dv

S3wW0d3no [ediuid

(6%/6 t7°0)
uingojbounwiwil
snouaAeNU|

(6%/6 t°0)
ujingojbounwiwii
SnouaAeIU|

uljngoj6ounwiwi
snousAeu|

(ov6) sguv
/SI3DVy-uou
‘(881) sgYV/sIIDVY

(S7) sauv
/SI3DYy-uou
‘(£1) sayv/sI3DV

(81) squv
/SI3DVy-uou
‘(L2) sgyv/siADV

SgyVv/sI3dV

(Lg) uners
'(0€) sayv/sI3dVY

(syuaned
U) SUOIUAAIRIU|

Jnaupe ‘uoneynbe
‘WNUIBP ‘UoISNjU0d
‘AYredojeydadug

swoldwAs
ain|ie} L1ojesidsal
2J9A3S ‘sndnda|ids
SNJe1S SAIS|NAUOD

uonesuss
9)se)1 Jo sso| ‘|jiws

01 3|qeun ‘saka aso|> 0}
9|geun ‘smoigaka asiel

0] 9|geun ‘ssauyeam
|e1oey [esole|ig

uoliss| bun|

|es3e|lq pue ‘esudsAp

J9A9} Jo ddudjensid
12yb1y e pey

dnoib gyy/I3DV-UON

payiads 10N

(1) eluownaud
0} paje|al
UoISNJuUOD [RIUBN

payiads 10N

payidads 10N

swoydwAs

Sa119s aseD

SaLSs ase)

Hodai ase)

110yod 3AIadsonsy

110yod 3AIadsonsy

110y0d dA1dadsonRYy

SauSs ase)

110Yyod 3AIadsonsy

ubisap Apms

‘suonedidwod dujeiydAsdoinau palerosse-6L-dIAQD JO JuswIeal|

S

[4

8ClLl

(474

LS1

Sl

azis a|dwes

sjuaned 61-AINOD

snonids|ds

snjels juelsisal
-6bnip yum
sjusied 61-AIAOD

SWoIpUAS
2Jieg-ule||ino

YuM 61-AINOD

61-dINOD
pue uoisuanadAy
yum syusned

uolsuamadAy yum
suaned 61-AIAOD

(uoisuayadAy
Yam 6¢)
syuaned 61-AINOD

011 Aq paraye
syuaned 61-dINOD

SJUSPISAI
pasoubeip
-61-dINOD

syuedniyed

[v6l]
LZ0T “|e 1®
Aey 10PN

[s61]
Lzoz “|e 19
Ajey 11jouebuepy

[961] 0T0CT
vsn “Ie 33 efeyy

ulingojfounwiwi snousAeAU|

[¥£1] ozoT

eulyd “|e 312 bueyz

[€£1] ozoT

eulyd “|e 3@ buspy

[sz1]
020z “|e 1

ueder emeznsie|\

[6£1]1 0z0T
Ajey “|e 19 1zzn

911

0Z0T “|e 19

JEETETElo[N

wnibjag Ele|

SgyVv/sI3dV

uoibay Apnmis

't 9lqel

Translational Psychiatry (2021)11:499

SPRINGER NATURE



Y. Han et al.

15

(qewnzi|1>0}

“B6'9) Adesayrounwiwii
9AI19231 oym asoy) Ajeidadss
‘Ayredojeydasus yum
sjyuaned 61-qIAOD Buibeuew
usym sasoubelp [enuaJayip
ul dwoipuAs Ayledojeydadua
9|q1s19Aa4 Jouysod

J9PISUOD p|noys suepiulD
Ayzedojeydadus
paiejaJ-61-dINOD

Bunessy ul gewnzi|doy

JO 3]04 9Y3 d1ebnsaAul
Jay1ny pjnoys salpnis
2in1n4 ‘gewnzi|ido} Yyum
1uswieal) buimol|oy paAjosal
swoldwiAs duelydAsdoinan

abe1s a19A8s ay3 buunp
parenul Apdwoid Ji uondayul
Z-\OD-SHVYS |BDI13D O DIDASS
yum sjuaned Joy buisiwoid
9q Aew gewnzi|ipo]

Ayredojeydadus pajeidosse
-61-AINOD 10j 1uswiean

sbuipuy urepy

£T Kep uo paiq

JnewoydwAse
pabieydsig

(S10AIAINS-UOU
9 ‘SIOAIAINS Q1)
|es1d
‘(JOAIAINS-UOU
| ‘SIOAIAINS 61)
EJEVETS

S3W0d3No [ediuld

gewnz||ipof

(le2nuo

7T '219A35 07)
gewnz||ol

(syuaned
U) SUOlUAAIRU|

wnuilsp aAndeodAy
‘eaudsAp |euoiyoxs
‘4ybnod “Uans4

uolsnjuod
payiew ‘uoneynbe
‘ssaUAIIUSNIeUL
‘eiseyde oAIssaudx]

(L1) ejNUUED [ESEeU
eIA UsbAxo BuialedAI
‘(L€) >sew aoey

eIA U3bAXo BulAIedY

subis ases|as [ejuo.y
pue ‘[epiweiAdenxs

‘lepiwesid
pue ‘eixesde ‘wispnw

swoydwAs

's19y20|q 103dada. ulsulolbue/sIoNqIYUl dWAZUS BulIaAUOD-UIsUSIOIBUR SgYY/SITDY

1odai ase)

Hodai ased

[el1} P3[|OJIUODUON

ubisep Apmis

L

L

[4%

azis ajdwes

Ayiedojeydadus
Yyium
syuaned 61-QINOD vsn

Ayredojeydadus

pa3e[3.-61-AINOD Aley
sjyuaned
T-N\OD-SHVS

|ed1111d 10 3I9ASS uel|

syuedpiyed uoibay

[€61] 1202
“le 32 unjjel

[c61]
020T “[e 1®
112N

[681] 0zOT
“le 19 uelseg

gewnzi|ino]

Apms

psnuiuod € ajqel

SPRINGER NATURE

Translational Psychiatry (2021)11:499



Y. Han et al.

16

needed to elaborate the direct or indirect effects of SARS-CoV-2
infection on different cell types in the CNS, spinal cord, and
peripheral nervous system, clarify the neuroinvasive pathways of
this devastating virus and confirm the causative roles of
inflammation or immune system dysfunction, hypoxic-ischemic
brain injury, and hypercoagulability in disease pathology. These
clinical-epidemiological laboratory and biological mechanism
investigations will ultimately guide the clinic to prioritize and
individualize therapeutic protocols based on the disease severity,
neuropsychiatric presentations, and predominant organ involve-
ment. Awareness and management of these neuropsychiatric
complications are critical to improve the prognosis and reduce
mortalities of critically ill COVID-19 patients.

Search strategy and selection criteria

References for this review were identified by searching PubMed
for articles on COVID-19 from database inception to August 2021,
without language restrictions. The following search terms were
used: “COVID-19”, “SARS-CoV-2”, “neurological”, “psychiatric”,
“neuropsychiatric”, “neurotropism”, “neuroinvasion”, “nervous sys-
tem”, “treatment”, and “intervention”. Additional articles were
identified by searching the references of relevant articles. The final
list of included articles was generated based on relevance and
originality with regard to the topics covered in this review.
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