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CDK1 plays an important role in the maintenance
of pluripotency and genomic stability in human
pluripotent stem cells

I Neganova', K Tilgner', A Buskin', | Paraskevopoulou', SP Atkinson', D Peberdy', JF Passos? and M Lako*"

Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) are characterised by an unusual and tightly
regulated cell cycle that has been shown to be important for the maintenance of a pluripotent phenotype. Cyclin-dependant kinase
1 (CDK1) is a key player in cell cycle regulation and particularly mitosis; however, its role has not been studied previously in hESC
and hiPSC. To investigate the impacts of CDK1 downregulation, we performed RNA interference studies which in addition to
expected mitotic deficiencies revealed a large range of additional phenotypes related to maintenance of pluripotency, ability to
repair double strand breaks (DSBs) and commitment to apoptosis. Downregulation of CDK1 led to the loss of typical pluripotent
stem cell morphology, downregulation of pluripotency markers and upregulation of a large number of differentiation markers. In
addition, human pluripotent stem cells with reduced CDK1 expression accumulated a higher number of DSBs were unable to
activate CHK2 expression and could not maintain G2/M arrest upon exposure to ionising radiation. CDK1 downregulation led to the
accumulation of cells with abnormal numbers of mitotic organelles, multiple chromosomal abnormalities and polyploidy.
Furthermore, such cells demonstrated an inability to execute apoptosis under normal culture conditions, despite a significant
increase in the expression of active PARP1, resulting in tolerance and very likely further propagation of genomic instabilities and
ensuing of differentiation process. On the contrary, apoptosis but not differentiation, was the preferred route for such cells when
they were subjected to ionising radiation. Together these data suggest that CDK1 regulates multiple events in human pluripotent
stem cells ranging from regulation of mitosis, G2/M checkpoint maintenance, execution of apoptosis, maintenance of pluripotency
and genomic stability.
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The high proliferation ability and maintenance of pluripotency
in human pluripotent stem cells is directly linked to the
regulation of core cell cycle factors."™ Human embryonic
stem cell (hnESCs) are derived from the inner cell mass of pre-
implantation blastocysts, whereas induced pluripotent stem
cells (hiPSCs) are generated from the reprogramming of
somatic cells back to pluripotency. Both cell types have the
potential to generate almost any cell type of the human adult
organism and for this reason, it is assumed that the
requirement for genomic stability is critical; however, chromo-
somal instabilities are often observed in hESCs and
hiPSCs.5 "0

With the aim to better understand mitotic progression and its
regulation in human pluripotent stem cells, we focused on a
key cell cycle regulator, cyclindependent kinase 1 (Cdk1)."!
Although the majority of Cdks and cyclins have been shown to
be largely dispensable, Cdk1 has emerged as the master
regulator of mammalian cell cycle, whose role in vivo cannot
be compensated by other closely related Cdks, including
Cdk2.'>7'* Studies performed in primary cultures and

established cell lines do not always match up to the wide
range of Cdk and Cyclin compensatory mechanisms observed
in vivo and this has led to the idea that certain cell types
(especially cells emerging during embryonic development)
may have not developed the full spectrum of compensatory
mechanisms.'®'®

Cdk1 is highly expressed in murine ESCs and interacts
directly with Oct4, enhancing its binding to the trophoectoderm
marker Cdx2 and promoting its repression.'” Knockdown of
Cdk1 relieves this repression, resulting in the activation of
Cdx2 and differentiation of mouse ESCs into trophoectoder-
mal lineages.'”'® Conditional knock-out of Cdk? in mouse
results in the arrest of embryonic development around the
blastocyst stage and DNA re-replication, because of an
increase in Cdk2/Cyclin A activity.'* Similarly, the inhibition
of Cdk1 via a chemical inhibitor (R03306) leads to abortive
endoreduplication and apoptosis in murine ESCs,'® suggest-
ing an important role for this kinase in mitotic progression in
ESCs. Till now, insights on CDK1 function in hESC and hiPSC
are missing, despite CDK1/2 emerging as the central kinome
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controlling self-renewal and differentiation of these cells.°
The high proliferative nature of hESC and hiPSC would
suggest a high dependence of these cells on CDK1 for the
proper regulation of mitosis and successful completion of cell
cycle. However, how CDK1 regulates and/or impacts other
processes, for example, apoptosis, maintenance of pluripo-
tency and genomic stability is unknown and forms the main
focus of this manuscript.

Results

Downregulation of CDK1 causes pluripotent stem cell
accumulation in G2 phase, loss of pluripotency and
induction of differentiation. Our western blot analysis of
hESC synchronised at different stages of the cell cycle shows
that although total CDK1 expression does not vary through
the cell cycle, the expression of the phosphorylated form
(Thr161), which is required for the activation of the CDK1-
CYCLIN B1 complex, is highest in S and G2 phases of the
cell cycle (Figure 1a). In contrast, the expression of the Tyr15/
Thr14 phosphorylated form, which results in CDK1 inactiva-
tion, is lower in S and G2 (Figure 1a). Together, these data
suggest highest expression of active CDK1 in S and G2
phases of hESC cell cycle. Immunoprecipitation analysis
indicates that CDK1 forms complexes with CYCLIN B1 and
CYCLIN A which are key players in the regulation of mitosis
(Figure 1b). Immunofluorescence analysis (with Ki67 and
CDK1 antibodies) to distinguish the specific stages of the
cell cycle (performed as in Becker et al?') indicated
a high nuclear CDK1 accumulation and a low cytoplasmic

expression pattern (Figure 1¢) during late G1/S and S-phase/G2
transition in hESC.

To further investigate the role of CDK1 in hESC and hiPSC,
we performed RNA interference studies using small interfering
RNAs (siRNAs). Combined quantitative reverse transcription-
polymerase chain reaction (QRT-PCR) analysis (Figure 2a)
and western blotting (Figure 2b, Supplementary Figure 1A)
indicated effective CDK1 downregulation as early as day 1
post transfection of CDK7-siRNAs. Immunocytochemical
analysis revealed the complete loss of cytoplasmic CDK1
expression and a very significant reduction of nuclear CDK1
expression in CDK1 siRNA-transfected cells (Supplementary
Figure 2), when compared with control cells. Furthermore, we
observed changes in the location of CYCLIN B1 expression
(Supplementary Figure 3). We noticed that CYCLIN B1 in
hESC is localized at the nuclei of control cells (Supplementary
Figure 3); however, in the CDK1 siRNA group, CYCLIN B1
was observed both at cytoplasm and the nuclei, suggesting a
requirement for CDK1 activity in nuclear translocation of
CYCLIN B1 in pluripotent stem cells similarly to observations
made in human somatic cells.?223

CDK1 downregulation resulted also in cell cycle changes
with hESC accumulation in G2 phase at the expense of G1
and S phases (Figures 2c and d). Similar experiments
performed in hiPSC indicated the accumulation of cells in
G2 phase at the expense of S phase; however, no changes in
G1 phase were observed highlighting some differences
between hESC and hiPSC (Supplementary Figure 1B,C).
Despite this, we observed the loss of typical pluripotent stem
cell morphology upon CDK1 downregulation in both cell types
(Figure 2e, Supplementary Figure 1D). Expression analysis
indicated a reduction in expression of three pluripotency
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Figure 1

Expression and cellular localization of CDK1 in hESC. (a) Western blot of a total hESC lysates probed with antibodies against total CDK1 and specific phospho-

residues important for cell cycle progression. Cells were synchronized at G1 (70%), S (75%) and G2 (68%) phases of the cell cycle as described before at Neganova et al.;?
H9-unsynchronized population. (b) Analysis of specific complex formation between CDK1/Cyclin B1 and CDK1/Cyclin A via immunoprecipitation in unsynchronized hESC.
(c) CDK1 cellular localisation in H9 hESC during transition from late G1 to S phase and late S/G2 phase transition revealed by indirect immunofluorescence with anti-CDK1
antibody (green) and anti-Ki67 (red). Scale bar=10 um. Presented images are representative of at least three independent experiments
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Figure 2 Downregulation of CDK1 by RNAI effectively abrogates CDK1 expression and induces the accumulation of hESC at the G2 phase of the cell cycle. (a) Quantitative
RT-PCR analysis for expression of CDK1 from 24 to 120 h post transfection. Results are presented as average + S.E.M. (n=3). T-test analysis was carried out to assess
differences in gene expression between the control and CDK1 siRNA group, *P< 0.05. (b) Western blot analysis of CDK1 expression. 3 —Actin was used as the loading control.
The data shown are representative of six independent western blots carried out in H9 hESC line. (¢) Graphical representation of the ModFit analysis of cell cycle distribution in the
control and CDK1 siRNA group, 48 h post transfection with siRNAs. Results are presented as average + S.E.M. (n=#6). T-test analysis was carried out to assess the differences
in gene expression between the control and CDK1 siRNA group, *P< 0.05. (d) Flow cytometric histograms showing cell cycle distribution in control and CDK1 siRNA groups. The
percentage of cells in each stage of the cell cycle is indicated in the top right corner of flow histogram. Data are representative of at least six independent experiments. (e) Phase-
contrast images of hESC transfected with control and CDKT siRNAs (upper and lower panel respectively) at 2, 3 and 4 days post transfection. Scale bar =25 um

markers, namely OCT4, KLF4 and LIN28 (Figures 3a and c),
and upregulation of CDX2 (trophoectodermal marker), PAX6
and NESTIN (ectodermal markers), FGF5 (primitive ectoderm
marker), BRACHYURY (mesodermal marker) and AFP
(endodermal marker), suggesting the loss of pluripotency
upon CDK'1 knockdown (Figure 3b). This was also confirmed
by alkaline phosphatase (AP) staining for almost complete
loss of AP+ colonies in the CDK1 siRNA group that was
observed when compared with control siRNA-transfected
group which contained on average about 80% AP+ colonies

(Figure 3d, Supplementary Figure 1D). Counting of cell nuclei
also showed that a considerable proportion of cells (~14%) in
the CDK1-siRNA transfected group became polyploid
(Figures 3e and f; Supplementary Figure 1D). Cytogenetic
analysis revealed the presence of abnormal and multicentric
chromosomes in addition to loss and gain of whole chromo-
somes in 100% of metaphases obtained from the CDK1
siRNA group, whereas control cells showed normal karyotype
(Supplementary Figure 4). Together, these data indicate an
important role for CDK1 in cell cycle regulation, maintenance
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Figure 3 Downregulation of CDK1 leads to the loss of pluripotency, differentiation and polyploidy. (a) Expression analysis of main pluripotency genes by quantitative RT-PCR.
Results are presented as average + S.E.M. (n=3). The value for the hESC transfected with control sSiRNA was set to 1 and all other values were calculated with respect to that.
T-test analysis was carried out to assess the differences in gene expression between the control and CDK1 siRNA group, *P< 0.05. (b) Upregulation of differentiation markers
analysed by quantitative RT-PCR. Results are presented as mean + S.E.M. (n= 3). The value for the hESC transfected with control siRNA was set to 1 and all other values were
calculated with respect to that. T-test analysis was carried out to assess the differences in gene expression between the control and CDK1 siRNA group, *P<0.05. (c) Western
blot analysis for the expression of key pluripotency markers. Note that the protein level of KLF4 and LIN28 was not restored by day 4 post transfection. GAPDH was used as a
loading control. Data are representative of at least three independent experiments. (d) Alkaline-phosphatase-positive staining was observed in hESC transfected with control
siRNA (upper row) but differentiated morphology and lack of typical staining was observed in cells transfected with CDK1 siRNAs (lower panel), 48 h post transfection. Images are
representative of at least three independent experiments. (e) Representative histogram showing the percentage of polyploid cells in the CDK7 siRNA group at 48 h post
transfection. At least 300 cells were analysed in each experiment. (f) Examples of appearance of multinucleated cells (black arrows) on a second day after CDK1siRNA treatment.
Scale bar=50 um
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of pluripotency and genomic stability in human pluripotent
stem cells.

Downregulation of CDK1 results in accumulation of
double strand breaks (DSBs) and impairment of CHK2
activation. Under normoxic culture conditions, hESC accu-
mulate a small number of DSBs (Figures 4a and b;%).
However, upon CDK1 knockdown, we observed a significant
increase both in the percentage of hESC with DSBs
(Figure 4a) and the number of DSB foci per cell (Figures 4a
and b), corroborating data previously published in mamma-
lian somatic cells.?*2® To further confirm this, we carried out
y-H2A.X detection by flow cytometric analysis (Figure 4c). Itis
evident that upon CDK'1 downregulation, there is a significant
increase in the number of accumulated DSBs (Figures 4a
and c); however, this is not accompanied by increased
apoptosis in the CDK1 siRNA group when compared with the
control (Figure 7d). When analysed under the context of cell
cycle regulation, 59% of S-phase cells were positive for
y-H2A.X;, in contrast to control cells which showed only 6.7%
of S-phase cells with y-H2A.X foci (Figure 4c). We repeated
the same analysis at 16h after administrating ionising
radiation (IR) (2Gy) to hESC (Figure 4c). Although there is
a slightly higher DSBs accumulation in hESC with reduced
CDK1 expression under IR when compared with the same
group under non-IR conditions (Figure 4c), the pattern is
similar with the majority of cells with y-H2A.X in the S phase
of the cell cycle.

Next, we investigated whether downregulation of CDK1
affects DNA damage response signalling. We observed a
slight upregulation of CHK1 (day 1-3 post transfection,
Figure 4d); however, there was a very significant down-
regulation of CHK2 up to 48h post transfection of CDK1,
suggesting an important link between CDK1 function and its
ability to maintain intact CHK2 expression. This effect is also
observed upon the administration of IR) which leads to a
significant increase in the expression of the phosphorylated
form of CHK1 (Ser 345), but not the phosphorylated form of
CHK2 (Thr368, Figure 4e) following the downregulation of
CDK1. p53 has been shown to be activated by both CHK2
and CHK1 in response to DNA damage; however, the
specificity of CHK1 versus CHK2 activation can be distin-
guished because CHK2-dependent activation of p53 results in
the phosphorylation of Ser20 of p53,%® whereas CHK1
activation results in the phosphorylation of Ser15 of p53.2”
It is clear from our results (Figures 4d and e) that upon
downregulation of CDK1, p53 stabilisation in response to DNA
damage is achieved mostly via activation of CHK1 and not
CHK2 because only the phosphorylated Ser15 of p53 is
increased in response to DNA damage.

Studies performed in murine ESC have shown that
complete absence of Chk2 leads to an inability to maintain
G2 arrest after IR-induced damage.?® In addition, Chk2 has
been reported to localise aberrantly to the centrosomes in
mouse ESC and failed to translocate to the nucleus after
irradiation.?® In contrast, hESC are able to activate ATM-
CHK2-p53 checkpoint signalling resulting in G2 arrest after
administration of IR of the same dose.** To investigate
whether this G2 arrest is maintained in hESC treated with
CDK1 siRNAs, we repeat cell cycle analysis after IR
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administration. This analysis showed that of hESC treated
with control siRNA accumulate in G2/M, corroborating
published data;° however, this is compromised in the CDK1
siRNA group where a lower percentage of cells are found in
the G2/M part of the cell cycle after IR (Figure 4f). It is
interesting to note that the reduction of cells in the G2/M phase
in the CDK'1 siRNA group is accompanied by an increase in
G1 phase which is perhaps due to increases in p21 and p27
expression in the CDK1-siRNA-treated groups under normal
and IR conditions (Figure 4e). Unlike murine ESCs, hESCs
have been shown to be capable of executing G1/S checkpoint
activation in response to DNA damage.®3" Hence, a mixed G1
and G2 arrest may be the response of hESC to protect their
genome under conditions (such as CDK1 knockdown) where
a full G2/M arrest cannot be guaranteed.

An important role for CDK1 in mitosis progression.
Given the role of CDK1/CYCLIN B1 complex in mitosis
progression, it is important to investigate whether cells with
reduced levels of CDK7 expression and correspondingly
greater numbers of DSBs can pass through mitosis, as this
would lead to propagation of DNA damage to daughter cells.
Site-specific phosphorylation of histone H3 at Ser10 initiates
during G2, peaks during metaphase and diminishes during
late anaphase and early telophase.®? Immunofluorescence
analyses (Figures 5a and c) indicated a significant increase in
the number of cells expressing phospho H3 (Ser10) in the
CDK1 knockdown group (Figure 5d). These results were also
corroborated by western blotting (Figure 5e). When this
information was analysed in context of G2/M progression, it
was evident that about half of the phospho H3+ cells from the
CDK1 knockdown group accumulated at G2/prophase and
the rest in metaphase/anaphase (Figure 5d). Although
accumulation at G2/ prophase would enable cells to check
their DNA damage and respond, the progression to meta-
phase and anaphase is disconcerting and suggests that
these cells can escape from proper checkpoint control
and progress through mitosis whilst still carrying
unrepaired DSBs.

CDK1 controls many aspects of mitotic chromosome
behaviour, kinetochore function and spindle microtubule
dynamics to ensure accurate chromosome segregation.®33*
The presence of kinetochores is essential for proper chromo-
some segregation, because chromosome fragments that lack
a kinetochore are not inherited faithfully and are quickly lost.®®
Defects in kinetochore, in cohesion or in any of the factors that
promote biorientation lead to chromosome missegregations
and hence aneuploidy.>®> We frequently observed abnormal
mitosis, with chromosome missegregations, misaligned chro-
mosomes and chromosome loss in the CDK1 knockdown
group (Figure 5¢) and went on to investigate this further
using immunocytochemistry with an antibody against the
kinetochore-specific marker CREST. We observed proper
bipolar organisation and correct numbers of kinetochores
in 35.6% cells of control group; however, only 15.6% of
the cells in CDK1 siRNA group were characterized by a
normal kinetochore number (for an example, see Figure 6A,
panel c).

Another important event for mitosis progression is the
proper function and movement of centrosomes. We performed

o
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control. (e) Impacts of CDK1 inhibition on the regulation of key factors involved in G2 checkpoint activation analysed by western blotting at day 2 post transfection and after 6 h
post IR on the same day (shown in the figure as IR group). -Actin served as the loading control. The data represent at least three independent experiments. (f) Representative
flow cytometric histograms at 2 days post transfection+6 h post IR. The percentage of cells in each stage of cell cycle was calculated using ModFit. Graphic representation of
these data is shown on the right hand panel. Results are presented as mean + S.E.M. (n=3). T-test analysis was carried out to assess the differences in gene expression
between the control and CDK1 siRNA group, *P<0.05
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The data shown are representative of at least three independent western blots

direct visualisation of centrosomes using a PERICENTRIN-
specific antibody (Figure 6B). In agreement with this previous
publication, we observed normal (75% of cells in the control
group and 47.3% of cells in CDK1 siRNA group; for an
example see Figure 6B, panel b) and increased numbers of
centrosomes (25% of cells in control group and 52.7% of cells
in the CDK1 siRNA group (Figure 6B, panels: a, ¢, g, h) both in
the control and in CDK'1 knockdown groups. Nevertheless, the
percentage of cells with increased centrosome number in the
CDK1 siRNA group suggests an altered centrosome biogen-
esis upon CDK1 downregulation, which could be due to an
inability to activate CHK2 expression in response to DNA
damage. In support, it has been shown that CHK2 localises at
centrosomes during mitosis and alteration of CHK2 function
promotes chromosome segregation errors in dividing cells, a
feature which is commonly observed in cancer cells and might
drive chromosomal instability and cellular transformation.3®
Centriole function, duplication and organisation are impor-
tant events for mitotic progression.3”** Immunofluorescence
analysis with a centriole-specific marker, CENTRIN-2, also
revealed defects in the distribution and number of this
organelle upon CDK1 downregulation (Figure 6C, panels d—k).

Although normal CENTRIN-2 staining was observed in 82.7%
of control cells (for an example, see Figure 6C, panel a),
only 41.5% of the cells in the CDK1 siRNA group showed
normal centriole numbers. Together these data suggest that
CDK1 downregulation contributes to abnormal kinetochore,
centrosome and centriole biogenesis and that all these events
could be the causative factor leading to the observed
chromosomal abnormalities in the CDK1 knockdown group
(Supplementary Figure 4).

CDK1 downregulation leads to PARP1 activation but
impaired apoptosis in hESC. The CDK1/CYCLIN Bf1
complex is able to interact and phosphorylate both pro- and
anti-apoptotic proteins such as Bad, Caspase 9, Caspase 8,
Caspase 2, Caspase3, Bcl-2, Bel-xl, Mcl-1 and Survivin. 3943
We performed western blotting analysis and observed that
the expression of anti-apoptotic/survival proteins (such as
Survivin, BCL2, BCL-xL) was downregulated in the CDK1
siRNA group (Figure 7a). In addition, the expression of pro-
apoptotic protein BAD was increased upon CDK1 down-
regulation. At the same time, the expression of active BAX
(pro-apoptotic protein) was downregulated (Figure 7a);
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however, this is more likely to reflect the loss of pluripotency expression of CASPASE 3 and 9, because it has been shown
in hESC upon CDK1 downregulation, as it has recently been that the loss of phosphorylation on Thr34 of SURVIVIN can
shown that active BAX is only detected in undifferentiated result in the disassociation of the Survivin-Caspase 9
hESC.** We also performed flow cytometric analysis for complex and initiation of caspase 9-dependent apoptosis;
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however, we were unable to detect significant changes
between the control and CDK17 siRNA groups (Figure 7b).
Another important apoptosis executor is PARP1 (poly ADP
ribose polymerase 1), whose activity increases substantially
in response to cellular stress.*® Flow cytometric analysis
indicated significant upregulation of active PARP1 upon
CDK1 downregulation (Figure 7c); however, TUNEL analysis
did not reveal significant differences in the number of
apoptotic cells, suggesting an inability to commit to apoptosis
in the absence of CDK1 (Figure 7d). Similar data were
obtained in hiPSCs (Supplementary Figure 5).

However, upon increased DNA damage (such as IR),
commitment to apoptosis occurs (Figure 7d), suggesting that
the threshold of accumulated DNA damage is the factor
behind the hESC decision to expunge damaged cells either
through induction of differentiation (steady state culture
conditions) or apoptosis (IR conditions).

Discussion

Our results suggest that downregulation of CDK1 leads to the
loss of hESC and hiPSC pluripotency and upregulation of a
variety of lineage markers that are not only associated with
differentiation to trophoectoderm but also extend to other
lineages such as ectoderm, mesoderm and endoderm. That
led us to speculate that the impacts of CDK1 downregulation
must go beyond a single interaction with OCT4."” With this in
mind, we screened the list of published target genes that are
transcriptionally activated by pluripotency factors and also the
range of substrates that are phosphorylated by CDK1 in
hESC.2%4¢ We found that CDK1 is transcriptionally regulated
by SOX2 and NANOG. 2°4® Furthermore, a very recent paper
that was published whilst this manuscript was under review
showed that NANOG, a key pluripotency factor, is directly
phosphorylated by CDK1.%” This later direct interaction has
not been explored functionally; hence, it is impossible to
conclude whether the impacts of CDK1 on maintenance of
pluripotency are through direct interactions with pluripotency
factors or indirectly through the large number of targets it may
phosphorylate on human pluripotent stem cells.

Associated to these published data are also our important
findings of polyploidy occurrence (14% of cell population) and
multiple chromosomal abnormalities upon CDK'1 downregula-
tion. For genomic instability to occur, there must be problems
with the cell’s ability to activate checkpoint signalling and
repair DNA damage, its inability to activate and/or execute
apoptosis and/or cell intrinsic problems during chromosome
separation/cell division. To investigate which of these scenar-
ios is prevalent when CDKT is downregulated, we first

<
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assessed how hESCs protect their genomes against DNA
damage. We found that cells with reduced CDK1 expression
show almost three times as much accumulation of unrepaired
DSBs compared with the control group, suggesting either a
higher generation of DSBs or/and impaired ability to repair
DSBs. Currently, it is unclear whether this is due to increased
generation of DSBs during DNA replication or an inability to
repair them via HR as CDK1 has been known to interact
closely with the replication machinery as well as DSB DNA
repair systems. Our data showing a very high percentage of
cells with DSB foci in the S phase of the cell cycle are
supportive of these two hypothesis; however, further work is
needed to investigate this. Furthermore, upon exposure to IR,
those cells are unable to maintain the G2/M arrest that is
typical for hESC.% Instead, a mixture of G1 and G2/M arrest
was noticed for a prolonged time after administration of IR,
leading us to investigate further the pattern of CHK1 and
CHK?2 activation upon CDK'1 downregulation. We noticed that
whilst CHK1 activation and downstream p53-dependent
transactivation was occurring, CHK2 activation was comple-
tely impaired. Although activation of CHK1 can compensate
for some of the CHK2 functions, it is clear from our results that
this is not sufficient to maintain a fully functional G2/M
checkpoint arrest in response to DNA damage and to repair
the DSBs arising under normal culture and stress conditions,
when CDKT is downregulated in hESC.

Given the improper maintenance of G2/M checkpoint in the
CDK1 siRNA group, we went on to investigate mitotic
progression using the mitosis-specific marker, phospho-
Histone 3 (Ser10). We observed that a significantly higher
number (15.7%) of cells in the CDK1 siRNA group were at
mitosis when compared with the control group (6%), suggest-
ing an inappropriate escape from the G2 checkpoint back into
the cell cycle, likely to result in tolerance to cells bearing DNA
damage and/or unstable genomes. We analysed kinetochore,
centrosome and centriole numbers and in all cases, we found
a higher percentage of cells with altered distribution and
number of these organelles. These organelles are essential
for proper spindle microtubule formation, chromosome segre-
gation and cell division; hence, the presence of multiple
abnormalities of these organelles could lead to the formation
of dicentric chromosomes as observed in the CDK1 siRNA
group. In addition to chromosomal abnormalities, CDK1
downregulation also led to polyploidy in about 14% of the cell
population corroborating previous data on somatic cells*®="
and suggesting an important role for CDK1 in full and proper
execution of mitosis and cytokinesis.

In the absence of proper DNA damage repair and
presence of mitotic deficiencies, execution of apoptosis for

Figure 6 Downregulation of CDK1 leads to multiple abnormalities in kinetochore, centrosome and centriole numbers in hESC. (A) Specific antibody to kinetochores, CREST
(red), was used for immunofluorescence staining of hESC treated with control siRNA (a, ¢) and CDK siRNAs (b, d) at 2 days post transfection. DNA was counterstained with
DAPI (blue) in all images. Examples of hESC with supernumericial kinetochores at interphase nuclei observed in control siRNA (a) and CDK1 siRNA-treated cells (b).
(B) Immunostaining of centrosomes with a specific antibody, Pericentrin (red). Examples of hESC with normal (b, d, f) and supernumerary centrosomes (a, ¢, g, h) at 2 days post
transfection with control and CDK1 siRNAs, respectively. Note abnormal nucleus blebbing on the CDK1 siRNA group shown by long arrows (e). Centrosomes are shown by short
white arrows. (C) Centrin2-specific antibody (red) for visualisation by immunofluorescence of centrioles at 2 days post hESC transfection with control siRNA (a, b, €) and CDK1
RNAi (d-k). Normal (a: two centrioles; pointed by arrow) and abnormal centriole number (b) was observed in the control siRNA-transfected group in interphase nucleuses (b) and
during mitosis (c). White arrows point to centrioles. Knockdown of CDK1in hESC causes abnormalities in centriole number in interphase nuclei (d), nuclei blebbing with abnormal
centriole number (e, f) and abnormal mitoses (g-k) with wrong distribution and number of centrioles (g—k). A-C: Scale bar =5 um. Images are representative of at least three

independent experiments
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Figure 7 Knockdown of CDK1 in hESC results in PARP1 activation, but impaired apoptosis. (a) Western blot analysis showing downregulation of pro-survival proteins and
activation of pro-apoptotic markers at 2 days post transfection of hESC with control and CDK siRNAs in the absence and presence of IR (extracts were collected 16 h post IR).
Images are representative of at least three independent experiments. -Actin served as the loading control. (b) Graphical representation of flow cytometric analysis for caspase
9 and 3 activation in hESC at 2 days post transfection with control and CDK1 siRNAs. Results are presented as mean + S.E.M. (n=3). (¢) Graphical representation of flow
cytometric analysis for PARP1 activation in hESC at 2 days post transfection with control and CDK1 siRNAs. Results are presented as mean + S.E.M. (n=3). T-test analysis was
carried out to assess the differences in gene expression between the control and CDK1 siRNA group. (d) Graphical representation of TUNEL analysis at each stage of cell cycle
at 2 days post transfection with control and CDK1 siRNA under normal culture conditions as well as IR. Results are presented as mean + S.E.M. (n=3), ttest analysis was
carried out to assess differences in gene expression between the control and CDK7 siRNA group, *P<0.05

elimination of damaged cells with genomic instability
becomes very important. Indeed, it has been suggested
that hESCs prefer to eliminate damaged cells by apoptosis
rather than undergo DNA repair.>2 This was not the case as
there was no significant increase in activation of CASPASE
3 and 9 in the CDK1 downregulation group when compared
with the control. We then investigated the activity of PARP-1
which is known to trigger the release of the mitochondrial
apoptosis-inducing factor that promotes programmed cell
death through a caspase-independent pathway.®® Although
PARP1 activity was increased upon CDK1 downregulation
in hESC, we failed to detect a significant commitment to
apoptosis in both hESC and hiPSC; however, administration

Cell Death and Disease

of IR (which is known to cause increased DSBs) does result
in enhanced apoptosis in hESC deficient for CDK1.
Together, these data suggest that commitment to apoptosis
in hESC and hiPSC is impaired in the absence of CDK1;
however, this is dependent on the level of accumulated DNA
damage, such that above a certain threshold, apoptosis is
preferred rather than stem cell differentiation. Hence, loss of
pluripotency and induction of differentiated state in the
CDK1 siRNA group could be the pluripotent stem cells
response to restore the genomic stability by coupling the
mitotic checkpoint control to execution of apoptosis upon
induction of differentiation (refer to Figure 8 for a schematic
summary).



Materials and Methods

Pluripotent stem cell culture and transfection experiments. The
human H9 embryonic stem cell line (WiCell Research Institute, Madison, MI, USA)
line was cultured on mitotically inactivated mouse embryonic fibroblasts and
passaged as described by Neganova et al? Human iPSC (SB-NEO1) was
generated from reprogramming of neonatal fibroblasts using the Sendai-based
Cytotune 1 kit provided by Life Technologies (Paisley, UK). Full in vitro and in vivo
characterisation was performed as part of the STEMBANCC European project and
can be found in the StemBio Gateway. Human iPSCs were cultured the same way
as hESCs on mitotically inactivated murine embryonic fibroblasts. A few passages
prior to start of experiments, hESCs and hiPSCs were transferred to Matrigel-
coated plates with feeder-conditioned media as previously described Neganova
et al® Downregulation of CDK1 was achieved using siRNAs: CDK1 siRNAs
Validated Stealth RNAi DuoPak [CDC2VHS40172; duplex 1: (RNA) - CCU AGU
ACU GCA AUU CGG GAA AUU U and duplex 2: (RNA) - GGA CAA
UCA GAU UAA GAA GAU GUA G] from (Invitrogen Lid, Paisley, UK; www.
invitrogen.com) following the protocol reported in our previous publication.?
The cells were analysed at 24, 48, 72 and 96 h after transfection. Cell synchronisation
at particular stages of the cell cycle was performed as described before.?

Karyotype analysis. Karyotypes were determined by Standard G-Banding
Procedure. At least 30 metaphases were analysed for each experiment.

Western immunoblotting and immunoprecipitation. Protein extrac-
tion, western blotting and immunoprecipitation were performed as described in our
previous publication.? Primary antibodies used in this work were purchased from
Santa Cruz Biotechnology Ltd (Middlesex, UK) and Cell Signalling (Danvers, MA,
USA): Cdc2 p34; CDK2; SURVIVIN; p-SURVIVIN (Thr34); cyclin B1; p-Histone H3
(Ser10); p-53; p-Chk1 (Ser345); p-Chk2 (Thr68); Chk1; Chk2; Cyclin A, p21, p27
and pg-Actin. Bcl-xL; Bcl-2, BAX, active BAX; BAD; Cdc2; p-cdc2 (Tyr15); p-Cdc2
(Thr161); p-Cdc2 (Tyr15/Thr14); p-p53(Ser15) and p-p53(Ser20). The antibodies to
p-actin and/or GAPDH (Abcam) were used after membrane stripping to confirm
uniform protein loading. Antibody/antigen complexes were detected using ECL
(Amersham Biosciences, Little Chalfont, UK; www.gelifesciences.com) and images
were acquired using a luminescent image analyser FUJIFILM and LAS-3000
software (FUJI, Abingdon, UK; www.rndsystems.com).

Quantitative reverse transcription-polymerase chain reaction.
Total RNA was extracted using TRIzol reagent (Invitrogen) according to the
manufacturer's instructions. Following DNase treatment using RQ1 DNasel
(Promega, Mannheim, Germany; http:/www.promega.com), cDNA was synthesized
using SuperScript Reverse Transcriptase (Invitrogen). qRT-PCR analysis was
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Figure 8 A schematic presentation of CDK1’s function in maintenance of
pluripotency and genomic stability in human pluripotent stem cells
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carried out using SYBR Green PCR master mix (Sigma Aldrich, Dorset, UK) and
the primers are listed in supporting information Table 1. All samples were analyzed
using an AB7900HT real-time analyzer (Life Technologies) and were normalized to
GAPDH, RPL13A and SDHA expression.

Cell cycle analysis. hESCs and hiPSCs were collected using Accutase
(Chemicon, Temecula, CA, USA; www.millipore.com). Cell cycle analysis was
performed using the CycleTest Plus DNA reagent kit (BD Biosciences, Oxford, UK)
using a FACS Canto (BD Biosciences). The data were analysed using ModFit (Verity
software House, Topsham, ME, USA; www.vsh.com) to generate percentages of cells
in G1, S and G2/M phases. At least 10 000 cells were analysed in each experiment.

Immunocytochemistry and confocal microscopy. Briefly, hESCs
were cultured on Matrigel-covered glass slide flasks (SlideFlask, NUNC, Roskilde,
Denmark; www.nuncbrand.co) in the presence of feeder-conditioned media. Cells
were quickly washed with phosphate-buffered saline (PBS), prior to being fixed with
2% formaldehyde for 10 min and permeabilized with 0.1% Triton X-100 in PBS for
15min at room temperature. Unspecific binding was blocked by incubation of
samples in PBS containing 5% normal goat serum for 40 min. Staining with the
mouse monoclonal anti-phospho-histone H2A.X (Ser 139; Millipore, Watford, UK;
www.millipore.com) was carried out as described before.? Slides were examined
using a Zeiss confocal microscope (Carl Zeiss, Jena, Germany; http:/www.zeiss.
com). Quantification was performed by counting -H2A.X-positive foci in 150-200
nuclei per experiment.

For other immunocytochemical analyses, the cells were fixed in 4% (wt/vol)
paraformaldehyde for 20 min. An additional permeabilization step in 0.2% (vol/vol)
Triton X-100 in PBS was performed prior to staining with primary antibodies. Blocking
step was performed by incubation in 1% (wt/vol) bovine serum albumin or
alternatively in 10% (volivol) goat serum. Cells were incubated with primary
antibodies overnight at 4 °C and secondary antibodies for 2 h. Primary antibodies
used in this study are anti-Ki67, anti-Cdc2, anti-Cyclin B1, anti- Cyclin A and anti-p-
Histone H3 (Ser10), all purchased from Santa Cruz Biotechnology. The nuclei were
counterstained with DAPI. The bright-field and fluorescent images were obtained

Table 1 The sequences of oligonucleotides used for gRT-PCR analysis.

Gene Name Primer (5’-3))
CDK1 For: TTTTCAGAGCTTTGGGCACT
Rev: CCATTTTGCCAGAAATTCGT
OCT4 For: AGCTCTGCAGAAAGAGTCCCAGG
Rev: TGAGCCCCACATCGGCCTGT
KLF4 For: CCCAATTACCCATCCTTCCT
Rev: CGTCCCAGTCACAGTGGTAA
Lin28 For: TCCTGCACTGTGTTCTCAGG
Rev: AAAGCCAGCTCTTATTGGCA
Sox2 For: GGCAGCTACAGCATGATGCAGGACC
Rev: CTGGTCATGGAGTTGTACTGCAGG
NANOG For: TCCAGCTTGTCCCCAAAGCTTGC
Rev: ACAGTCTCCGTGTGAGGCATCT
CcbhXx2 For: GGCAGCCAAGTGAAAACCAG
Rev: GGTGATGTAGCGACTGTAGTGAA
GATA4 For: ACACCCCAATCTCGATATGTTTG
Rev: GTTGCACAGATAGTGACCCGT
PAX6 For: ACAGTCACAGCGGAGTGAATC
Rev: ACTTTTGCATCTGCATGGGTC
FGF5 For: ATTTGCTGTGTCTCAGGGGAT
Rev: CTGTGAACTTGGCACTTGCAT
NESTIN For: CAGGAGAAACAGGGCCTACA
Rev: TGGGAGCAAAGATCCAAGAC
BRACHYURY For: TCAGCAAAGTCAAGCTCACCA

Rev: CCCCAACTCTCACTATGTGGATT
AFP For: CTTTGGGCTGCTCGCTATGA
Rev: ATGGCTTGGAAAGTTCGGGTC

GAPDH For: TGCACCACCAACTGCTTAGC
Rev: GGCATGGACTGTGGTCATGAG
RPL12A For: CCTGGAGGAGAAGAGGAAAGAGA
Rev: TTGAGGACCTCTGTGTATTTGTCAA
SDHA For: TGGGAACAAGAGGGCATCTG

Rev: CCACCACTGCATCAAATTCATG
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using a Zeiss microscope and the AxioVision software (Carl Zeiss). At least 100 cells
were analysed for each technical replicate.

TUNEL Assay. Analysis of DNA fragmentation was performed with APO-
DIRECT kit (BD Pharmingen, Oxford, UK). Cells were prepared according to
manual instructions and analysed by flow cytometry. Flow cytometric analysis (BD
Biosciences LSRII) with two dyes, namely propidium iodide for staining total DNA
and FITC-dUTP for staining the apoptotic cells, was carried out. At least 10 000
events were analysed in each experiment.

CASPASE activity assay. APO LOGIX Carboxyfluorescein (FAM) Caspase
Detection kit (Cell Technology, Kennesaw, GA, USA) was used to detect active
caspases in living cells through the use of a carboxyfluorescein (FAM)-labelled
peptide fluoromethyl ketone (FMK) caspase inhibitor (FAM-Peptide-FMK). The FAM-
peptide inhibitor (FAM-LEHD-FMK) irreversibly binds to active caspase 9 and FAM-
DEVD-FMK inhibitor to active caspase 3. Flow cytometry (LSRII, BD Biosciences)
was used to measure the percentage of caspase 9-positive cells. At least 10 000
events were analysed in each experiment.

Alkaline phosphatase staining. AP staining was carried out using the AP
Detection kit according to manufacturer’s instructions (Chemicon, Temecula, CA,
USA). The bright-field images were obtained using a Zeiss microscope and
AxioVision software (Carl Zeiss).

Flow cytometric analysis for assessing apoptosis, DNA damage
and cell proliferation. This was performed using a flow cytometric kit (cat. no.
562253; BD Biosciences) following the manufacturer’s instructions. In brief, hESCs
were labelled with BrdU, then fixed, permeabilized and treated with DNAse. Following
this treatment, cells were simultaneously stained with PerCP-Cy5.5-labelled BrdU,
PE-labelled anti-cleaved PARP and Alexa Fluor 647-labelled anti-yH2AX. Cells were
resuspended in staining buffer and analysed by flow cytometry. Cell cycle distribution
was analysed by adding DAPI. At least 10000 events were recorded for each
sample. Annexin-V-PE apoptosis detection kit (BD Bioscience, Oxford, UK; www.
bdbiosciences.com) was also used as described before in Neganova et al®

Statistical analysis. T-test analysis was used to assess differences between
the control and CDK1 siRNA group. The results were considered significant if P < 0.05.

Indirect immunofluorescence for kinetochores, centrosomes
and centrioles. For immunodetection of kinetochores, cells were fixed in 2%
paraformaldehyde for 5min at room temperature and in cold methanol for 5 min,
then washed for 5 min in MBST buffer containing 10 mM 3-(N-Morpholino)- propane
sulfonic acid (pH 7.2), 150 mM NaCl and 0.05% Tween- 20. The cells were blocked
with 5% FBS in MBST buffer and incubated with human anti-centromere sera
(CREST, 90C-CS-1058, Europa Bioproducts, Cambridge, UK; www.europa-
bioproducts.com) diluted in MBST buffer containing 2% FBS. For immunodetection
of pericentrin, hESCs were fixed in an 95% ethanol/1% acetic acid solution for
30 min on ice, transferred into PBS and permeabilized for 15 min with 0.1% Triton-X,
blocked for 1 h with 1% bovine serum albumin in PBS (pH 7.4) containing 0.05%
Tween-20 and incubated overnight at 4 °C with primary antibody against pericentrin
(ab4448, Abcam, Cambridge, UK). For immunodetection of centrin, cells were fixed
in ice-cold methanol:acetone (9:1) solution for 20 min, washed with PBS and
permeabilized for 15 min with 0.1% Triton-X, blocked for 1 h with 1% bovine serum
albumin in PBS (pH 7.4) containing 0.05% Tween-20 and incubated overnight at
4°C with anti-centrin-2 (sc-27793-R, Santa Cruz Biotechnology). Incubations with
secondary antibodies were carried out for 1 h at room temperature. Cell nuclei were
counterstained with 4', 6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich). Micro-
scopy was performed using Zeiss microscope with Z-scanned (step 0.15 um) using
x 63 objective and the AxioVision software (Carl Zeiss). At least 10 fields with were
analysed for each of the three technical replicates.
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