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Abstract: Gestational diabetes mellitus (GDM) is the most frequent complication during pregnancy.
This complex disease is characterized by glucose intolerance and consequent hyperglycemia that
begins or is first diagnosed in pregnancy, and affects almost 7% of pregnant women. Previous reports
have shown that GDM is associated with increased pregnancy complications and might cause abnor-
mal fetal development. At present, treatments are not suitable for the prevention and management of
these patients. As an alternative therapeutic opportunity and a leading scientific technique, nanotech-
nology has helped enlighten the health of these affected women. Theranostic nanomaterials with
unique properties and small sizes (at least <100 nm in one of their dimensions) have been recently
engineered for clinics and pharmaceutics. Reducing materials to the nanoscale has successfully
changed their properties and enabled them to uniquely interact with cell biomolecules. Several
biosensing methods have been developed to monitor glucose levels in GDM patients. Moreover,
cerium oxide nanoparticles (NPs), selenium NPs, polymeric NPs, and drug-loaded NPs loaded with
therapeutic agents have been used for GDM treatment. Still, there are some challenges associated
with the detection limits and toxicity of such nanomaterials. This preliminary review covers the
aspects from a fast-developing field to generating nanomaterials and their applications in GDM
diagnosis and treatment.

Keywords: gestational diabetes mellitus; diagnosis; treatment; nanomaterials; nanotechnology

1. Introduction

Diabetes mellitus (DM) has reached epidemic proportions and is a leading cause of
death worldwide (despite the decades of clinical studies and trials of novel therapeutic
strategies) [1]. Because of inaccuracy and insufficiency of data for monitoring DM patients,
particularly in developing countries, there is a significant gap in comprehending the burden
nationally and globally [2]. The World Health Organization (WHO) estimated that the
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prevalence of DM in adults would rise to 300 million cases by 2025 [3]. This number
includes patients with GDM and should alert healthcare providers to concentrate on
preventive actions before childbirth.

GDM, defined as any level of glucose intolerance with onset or first recognition during
pregnancy, affects about 7% of all pregnancies worldwide and poses life-threatening short-
and long-term risks for the mother and the baby [4–6]. Inauspiciously, these health conse-
quences emerge at the maternal glucose values [7]. GDM is characterized by the failure of
pancreatic β-cells to respond appropriately to the insulin requirements during gestation,
which leads to hyperglycemia [8]. Obesity, family history of DM, age, and ethnicity are
among the main factors that may enhance the risk of GDM [9]. It has been well established
that most women with GDM return to the normoglycemic state soon after childbirth. Until
now, the consequences of GDM have extended beyond the pregnancy, with affected women
conferring a seven-times increased risk of developing type 2 diabetes mellitus (T2DM)
compared with women who maintained normoglycemic during maternity [10].

For screening GDM, all pregnant women should undergo oral glucose testing with 50-g
glucose at 24 to 28 weeks of gestation. If glucose tolerance is impaired, a subsequent glucose
tolerance test should be carried out to diagnose GDM [11]. At present, GDM diagnosis is
made by a 75-g or 100-g oral glucose tolerance test [12]. Still, this test has limitations, and a
single test cannot confirm the GDM diagnosis [11]. Regarding GDM treatment, various
efforts have been made to reverse hyperglycemia and decrease the risk of the related
adverse pregnancy outcomes [8]. Furthermore, lifestyle interventions, pharmacological
therapies (i.e., insulin therapy and administration of metformin or glibenclamide), and
postnatal managements present several therapeutic options associated with the enhanced
glycemic control for both the mother and the child [8,13,14]. With the increasing prevalence
of T2DM, specifically in the deprived areas, the precise diagnosis of GDM is now considered
an encouraging opportunity for the intervention to alleviate the burden of T2DM [15].
Accordingly, it seems imperative to develop new theranostic platforms for the accurate
diagnosis of this condition.

Recently, the advances in nanomedicine have prompted the designing of favorable
therapeutic modalities for various applications [16–19]. Furthermore, nanomedicine has
influenced these efforts by increasing the surface area of the biosensors, enhancing the
catalytic properties of the electrodes, and creating nanoscale sensors for a wide range of ther-
anostic purposes [20]. Nanomaterials, such as NPs [21–24], block-copolymer micelles [25],
nanocapsules [26], nanocages [27], and nanocarriers (i.e., nanoliposomes [28]), nanocom-
posites [29], and nanohydrogels [30]) with well-controlled properties have emerged for
monitoring the blood glucose levels as well as therapy and care of DM and/or GDM
patients. These nanomaterials mostly assisted in the direct measurement of glucose in
serum or substantially improved the glucose sensor function. Moreover, they acted as the
newly developed drug delivery systems (DDSs) to achieve active targeting [31]. The small-
targeted DDSs can ameliorate the severity of DM in patients and promotes the growth
and development of pancreatic β-cells via inducing the Wnt signaling pathway, activating
the autophagic target points, inhibiting inflammasome, and triggering other molecular
pathways [32]. Various nanosensors, including engineering periplasmic ligand-binding
proteins [33], acetone nanosensors [34], near-infrared optical nanosensors [35], copolymer-
based fluorescence nanosensors [36], graphene field-effect transistor nanosensors [37],
silver nanoparticle-modified nanosensors [38], and other biological nanosensors have been
designed as non-invasive diabetes sensing technologies for the sensitive detection of glu-
cose in the affected patients [39,40]. For the diagnosis of GDM, intensive development on
biomarker sensing is currently being conducted in advanced fields with the help of such
nanomaterials.

Several reports are currently available on the therapeutic effects of nanomaterials
against GDM in both in vitro and in vivo models. Most of these nanomaterials have offered
to increase the stability and therapeutic effects of anti-GDM agents. For instance, Du
et al. found that the chitosan encapsulated nano-resveratrol could diminish the level of
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interleukin 6 (IL-6), a pro-inflammatory factor, and reduce the markers of endoplasmic
reticulum stress in streptozotocin-induced GDM rats [41]. In another study, Cheng and
colleagues fabricated the biogenic polyacrylic NPs for GDM therapy and tested these NPs
in a rat model.

Available review articles primarily discussed the role of nanotechnology in the treat-
ment and diagnosis of diabetes mellitus. To the best of our knowledge, there are no
comprehensive reports on theranostic advances of nanomaterials against GDM. Hence, this
preliminary review discusses the recent findings and provides an empirical perspective on
the implications of nanomedicine for the diagnosis and cure of GDM in affected women.
In the end, we will also discuss the existing challenges and limitations of nanotechnology-
based approaches in this field.

2. Diagnosis of GDM
2.1. Potential Biomarkers

The specific biomarkers can target the treatment and potentially reduce the incidence
of GDM in women at a high risk of developing it. Overweight/obesity, age, race, and
family-related diabetes are risk factors of GDM, but the lack of specificity limits the GDM
diagnosis [42]. The simultaneous use of GDM predictive models can improve treatment
effectiveness for women at risk of developing GDM. The pathophysiologic causes of GDM
include chronic inflammation, impaired placental function, and insulin resistance, which
are reflected as predictive and diagnostic biomarkers. Furthermore, the significance of
epigenetic modifications in GDM pathogenesis highlights an intricate relationship between
the environmental and genetic variables, thus improving the risk prediction of GDM
disease [43]. In GDM research, numerous differentially expressed biomarkers have been
explored, offering a better understanding of the intricacies of GDM pathophysiology
and functioning as prospective diagnostic indicators. The essential biomarkers for GDM
detection are adipokines (leptin, tumor necrosis factor (TNF), interleukin 6 (IL-6), etc.),
glycoproteins (afamin, CD59, sex-hormone binding protein (SHBG)), pregnancy-associated
plasma protein-A (PAPP-A), C-reactive protein (CRP), and retinol-binding protein 4 (RBP4)
(Figure 1) [44,45]. To bring the screening and diagnosis of GDM disease into the 21st
century, several ongoing research efforts will continue to develop more effective and
accurate biomarkers. Moreover, nanotechnology can help us better understand the GDM
pathophysiology and improve its diagnosis at an earlier stage.

2.2. Role of Nanotechnology in GDM Diagnosis

Many women who are diagnosed with GDM may have had undiagnosed hyper-
glycemia before pregnancy. Screening for hyperglycemia should ideally occur as part
of well-resourced and well-organized preconception care in high-prevalence countries.
However, this strategy has limitations because only about 40% of pregnancies across the
globe are managed [46]. We cannot say for sure that testing in early pregnancy predicts
GDM because there is no preconception testing. On the other hand, early testing pro-
vides an opportunity to identify those women who are likely to have pre-existing glucose
metabolism problems [47]. Nanotechnology has made rapid advancements that can be
used to solve these problems. The effectiveness of high-performance diagnostic employing
relevant biomarkers in diagnosing GDM has been demonstrated in many studies [48,49].

Because of the significant number of pregnant women afflicted, it should be essential
to assess the level of glucose during pregnancy, and of course, a continuous assessing
platform is needed. Ge et al. employed graphene-GOx-Au NPs and graphene-GOx modi-
fied IDE sensing surfaces to investigate the quantity of glucose interaction (Figure 2). The
sensitivity of this method was determined to be 0.06 mg/mL, and GOx was coupled with
Au NPs to improve its detection. The Au NPs-GOx had a higher level of current changes
and a two-fold increase in sensitivity detection (from 0.06 increased to 0.03 mg/mL) at
all of the glucose concentrations examined. The specificity, repeatability, and increased
sensitivity detections of the above IDE sensing system demonstrated its good performance.
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Furthermore, the LOD was estimated to be between 0.02 and 0.03 mg/mL using linear re-
gression analysis [50]. This study demonstrated the potential strategy with nanocomposite
for diagnosing gestational diabetes mellitus.
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Figure 1. Potential biomarkers and recognized pathophysiologic mechanisms in GDM Abbreviations:
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In a similar study, with the help of Au nanorod (AuNR) that conjugated to glucose
oxidase (GOx) on an interdigitated electrode sensor, Zheng et al. detected glucose at a
LOD of 0.06 mg/mL. In the absence of AuNR, GOx indicated that the LOD of glucose was
about 0.25 mg/mL. Furthermore, the reactions of all glucose concentrations have acquired
larger levels of current with GOx-GNR compared to the baseline. The specificity evaluation
revealed that the glucose only interacts with GOx-GNR and effectively discriminates other
sugars. This kind of monitoring can be exploited to determine and continuously manage
glucose levels during pregnancy and postpartum [51]. This method of detection is useful
to diagnose and continuously monitor the glucose level during the pregnancy period.

In another study, Chen et al. developed a silica-alumina (Si-Al)-modified capacitive
non-Faradaic glucose biosensor for GDM monitoring. Through amine-modification, GOx
(as a probe) was attached to the surface of the Si-Al electrode. When GOx binds to glucose,
the Si-Al (with the size of 50 nm) modified electrode surface boosted the current flow.
The glucose concentrations were raised to boost capacitance values. A mean capacitance
value was plotted on the linear range between 0.03 and 1 mg/mL, and the LOD was found
to be 0.03 mg/mL (R2 = 0.9782). Furthermore, a biofouling experiment with galactose
and fructose did not raise the capacitance, demonstrating that GDM requires specialized
glucose monitoring [52]. This Si-Al-modified capacitance sensor detects a lower level of
glucose presence and helps in monitoring gestational diabetes.

Pandey et al. also proposed an electrochemical sensor based on dual imprinted
polymer-based flexible and nanocubes to simultaneously monitor multi diabetes indicators,
including non-glycated and glycated hemoglobin. For this purpose, electropolymerization
was used to deposit poly-rhodamine b nanocubes and dual molecularly imprinted poly-
aminophenyl boronic acid on the surface of the electrode (aluminum foil and carbon paste).
The selective targeting of glycated hemoglobin and hemoglobin in their complementary po-
sitions was due to cis–diol interactions and non-covalent bondings with poly-aminophenyl
boronic acid and poly-rhodamine b. Electrochemical tests showed that the suggested
flexible sensor could electrochemically catalyze both hemoglobin and glycated hemoglobin
redox reactions simultaneously and that its electrochemical responsiveness remained intact
after 450 bends. The LOD of hemoglobin and glycated hemoglobin were reported to be as
low as 0.08 and 0.09 ng/mL under optimal circumstances. Blood samples from diabetic
and healthy pregnant women were used to test the dependability of the proposed flexible
sensor using a standard chromatographic approach [53].

As previously stated, hemoglobin A1c (HbA1c) and glucose are the gold biomark-
ers currently applied for GDM diagnosis. However, HbA1c represents 2–3 months of
glycemic information and is too rare for monitoring the clinical impact of GDM Further-
more, glucose offers numerous daily measurements that are arguably unnecessary for mild
to moderate GDM, and frequently result in patient non-compliance [54]. As a result, an
alternative biomarker is needed to detect the glycemic state of GDM patients effectively.
The most common protein in serum albumin or blood is glycated non-enzymatically in
the bloodstream. It can be utilized as an intermediate biomarker because of its half-life of
21 days [55]. Glycation of albumin usually is between 10 and 16%, but it is substantially
higher in diabetes patients, between 16 and 40%. In this light, Belsare et al. designed a
diagnosis device with a point-of-care (POC) manner to determine glycated albumin (GA) as
a percent of total serum albumin. Briefly, an aptamer approach using Au NPs was utilized
to obtain colorimetric data in a dipstick paper fluidic test to quantify percent glycated
albumin. Glycated and un-glycated serum albumin were assessed in their physiological
concentration ranges (500 to 750 µM for un-glycated serum albumin and 50 to 300 µM for
glycated albumin), with a LOD of 21 and 6.5 µM for un-glycated and glycated serum albu-
min. The use of aptamers as recognition elements, instead of commonly used antibodies,
providing not only the required sensitivity, specificity, and dynamic range but also has the
added advantage of being stable at room temperature for an extended period, providing
the potential for these dipstick tests to be used for GDM monitoring at the point-of-care
(POC) [56].
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Moreover, in a similar study, using a lateral flow experiment and Au NPs, Ki et al.
designed a sensor that can identify the glycation ratios of human blood albumin and
glucose levels at the same time. A spiked glucose solution, total human serum albumin,
and glycated albumin were tested simultaneously using particular enzyme reactions and
immunoassays. Clinical serum samples from healthy persons and diabetic patients were
tested to test the performance of the proposed sensor. Glucose levels of the samples and
glycation ratios were shown to be reasonably correlated. The glucose level and glycation
ratio assessments had R-squared values of 0.932 and 0.930, respectively. The sensor’s
average recognition recoveries for glycation ratio and glucose were 98.32% and 85.80%,
respectively. Based on the outcomes of the present study, they proposed that this novel
platform could be utilized for the simultaneous detection of glucose and glycation ratios to
diagnose and monitor diabetes mellitus [57]. Representation of the sandwich immunoassay
sensor in the detection of glycated albumin (GA) glucose (GLU), and human serum albumin
(HSA) for diagnosis of GDM is demonstrated in Figure 3.
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On the other hand, elucidating mechanisms of GDM by integrating proteomics and
other omics technologies have recently gained considerable attention [58]. In this respect,
there is a report on detecting the sequence of some peptides that are differentially expressed
between healthy women and GDM cases using a non-liquid chromatography-electrospray
ionization-tandem mass spectrometry (nano-LC/E.S.I.–MS/MS) system and a mass spec-
trometer [59]. This method allows sensitive detection of derivatized peptides, as GDM
biomarkers, at attomole levels [60].

3. Nanotechnology for Treatment of GDM

As discussed earlier, GDM is a condition of glucose intolerance, in which a person who
does not have diabetes will experience hyperglycemia during pregnancy. Therefore, the
onset and first diagnosis of this diabetes occur during pregnancy. Risk factors include being
overweight, a history of previous GDM, a family history of type 2 diabetes, and polycystic
ovary syndrome. A blood test is used to diagnosis this type of diabetes [61,62]. GDM
can occur due to insulin resistance or decreased insulin production. It also increases the
incidence of congenital malformations in the fetus. According to research, mitochondrial
damage and oxidative stress are the most influential factors in diabetic fetuses [21].

3.1. Use of Metallic NPs for Treatment of GDM

Cerium is the second element in the lanthanide series in the periodic table. It is one of
the rare elements of the planet, often showing a +3-oxidation state, but is also stable in the
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+4 state. Cerium has no biological role in humans and is not very toxic [63]. Cerium oxide
(CeO2), in combination with oxygen in an NP. formulation, forms an alloy crystal structure
that exhibits profound antioxidant properties [64,65]. CeO2 NPs are potential new drugs
for oxidative disorders that overcome the weaknesses of previous treatments and ischemic
brain damage [21,66]. In a study by Vafaei-Pour et al. in diabetic rats, they used nanoceria
as an antioxidant to improve fetal diabetes treatment. Diabetes was induced by a dose of
streptozotocin and blood glucose levels were calculated on the 0, 5th, 10th, and 15th day of
pregnancy. Diabetes was confirmed when the blood glucose concentration reached more
than 200 mg/dL. Oxidative stress, pathological parameters, abortion, and live embryos
were assessed. Histological studies showed that diabetes causes abortion. Nanoceria
treatment inhibited embryonic oxidative stress as well as pathological changes in diabetic
rats. Because diabetes has a teratogenic nature, nanocrystals help treat a diabetic fetus
through their antioxidant effects. Therefore, early diagnosis of GDM and administration
of antioxidants can reduce these complications [21]. In another study, Vafaei-pour et al.
investigated the protective effect of ceria NPs in preventing mitochondrial damage due
to GDM After induction of diabetes by streptozotocin and reaching blood glucose above
200 mg/dL on the 16th day of gestation, the embryo was isolated, and the mitochondria
were purified by centrifugation. Markers related to mitochondrial damage and oxidative
stress were then analyzed. The results showed that treatment with nanoceria at a dose of
60 mg/kg significantly prevented the development of oxidative stress and mitochondrial
toxicity (p < 0.05) [67]. The defensive effect of CeO2 NPs in diabetic mice was investigated.
CeO2 NPs enhanced the morphological abnormalities of dorsal root ganglion neurons
(DRG). Administration of CeO2 NPs for 8 weeks significantly reduced the ADP/ATP level
in diabetic rats compared to non-diabetic rats (p < 0.001). This study showed that the effect
of diabetes was repressed by CeO2 NPs [68].

Selenium (Se) is present in plants and is a rare element. Selenium deficiency in the
body causes various diseases, including diabetes. This element has antioxidant properties,
and Se NPs can inhibit tissue oxidation by inhibiting numerous peroxides, protecting lipids
and cellular macromolecules from oxidative damage to membranes, growing glutathione
peroxidase levels, then thyroxine reductase [69,70]. In a study of T2DM mice, Hanaa
et al. found that selenium-containing liposomes maintain β-cell integrity, enhance insulin
excretion, lower glucose levels, restore the equilibrium of oxidative, antioxidant production,
and reduce pancreatitis; therefore, they have antidiabetic properties [71]. Hassan et al.
examined the effect of Se NPs and their therapeutic effects on puppies of mothers with
GDM, after administration of 5 mg/kg body weight twice a week for one month. Blood-,
pancreas-, and kidney-sacrificed puppies were then biochemically analyzed, and tissues
were studied. The results showed that puppies of diabetic mothers treated with synthesized
NPs displayed good redox parameters (reduction of glutathione and malondialdehyde
in tissue samples). The current findings suggested that the Se NPs could counteract
the diabetes-related complications in offspring by reorganizing the cellular redox state.
Therefore, the present study shows that Se NPs acted protectively in diabetic mothers
containing GDM and did not allow their infants to pass [72].

In 2021, Wang et al. designed an antidiabetic drug delivery device by mimicking
pancreatic cells. In this study, hollow mesoporous silica nanoparticles with dual-responsive
copolymer coatings were used for subcutaneous delivery of glucose. The dual-response
glucose drug delivery system involves a combination of pH and H2O2 reacting with a
bonded copolymer of hollow mesoporous silica nanoparticles (HMSNs), with a microneedle
(MN) patch array. Poly (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzyl acrylate)
-b-poly (2-(dimethylamino) ethyl methacrylate) (PPBEM-b-PDM)—the polymer holds the
gate and prevents the drug from secreting from the HMSN cavity at the normoglycemic
level. Moreover, due to the chemical change of the H2O2-sensitive PPBEM block and acid-
responsive PDM block on H2O2 and pH stimuli, the drug release rate increases significantly.
The combination of antidiabetic and glucose oxidase in HMSNs coated with stimulant
polymers results in forming a glucose-mediated MN device after deposition of drug-laden
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nanoparticles to MN Laboratory and in vivo results showed that the MN device has the
property of releasing the drug with glucose adjustment, which has a rapid release of the
drug at the level of high blood sugar, but the release of the drug at the normoglycemic
level is delayed. Therefore, such a drug delivery system can be very effective in treating
diabetes [73].

3.2. Use of Polymeric NPs for GDM Treatment

Chitosan (CS) is the second richest polysaccharide in nature next to cellulose. An
amino polysaccharide is a linear product gained through alkaline acetylation of chitin
(found in the exoskeleton of certain crustaceans for example shrimp, crabs). Chitosan is
biocompatible, degradable, and non-toxic. It can chelate with metal ions. As a result of its
cationic and high charge density, CS has various applications in preparing materials, such as
flocculants, coagulants, food additives, and weight loss/pharmaceutical formulations [74].
In the study by Du et al., zinc oxide (ZnO)-resveratrol (RS) was encapsulated with CS,
and CS-ZnO-RS NPs were synthesized (Figure 4). Characterization of the NPs by electron
microscopy, besides particle analysis, proved that the synthesized CS-ZnO-RS NPs were
spherical in shape and had an average size of 38 nm. Moreover, the therapeutic properties
of these NPs on GDM were investigated. The results showed that CS-ZnO-RS NPs were
able to deliver resveratrol by reducing the side effects and increasing bioavailability. These
NPs significantly reduced blood glucose levels, and fat levels in mice with GDM. CS-ZnO-
RS NPs at a concentration of 500 µg/mL inhibited α-glucosidase (77.32%) and α-amylase
(78.4%). It also reduced the levels of inflammatory agents (IL-6 and MCP-1) in addition to
endoplasmic reticulum stress (GRP78, p-IRE1α, p-eIF2α, and p-PERK) [41].
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Presently, for the treatment of GDM, it is difficult to deliver drugs accurately and
appropriately to the intended treatment site. Uses of gold NPs include use in the treat-
ment of diabetes mellitus, insulin transport, anti-diabetes, and as carriers for delivering
various drugs. A research study by Cheng et al. proposed a new method for releasing and
producing a diabetic drug. Using the green synthesis method, Ramulus mori methanolic
extract (RME) was loaded on polyacrylic gold NPs (PAA-Au) using chemical polymer-
ization and examined for GDM treatment (Figure 5). FT-IR results showed the formation
of Au-PAA-NPs extract. The results of microscopic observations in diabetic mother rats
showed normal variations in liver cell layers. The rat liver received Au NPs and caused
significant improvement in liver tissue. Biochemical tests also showed that the use of
Au-PAA-NPs improves changes in serum glucose levels in the mother. The present study
showed that AuNPs are active in contrast to diabetes. Therefore, it has introduced a new
method for treating GDM [75].
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In another study by Yan et al., Murraya koenigii extract (M. koenigii) and Au-PLGA
nanoformulation were synthesized. GDM in rats was induced by streptozotocin (STZ). As
a result of treatment with M. koenigii leaf extract with Au-PLGA nanoformulation, serum
levels of lipids and glucose were significantly increased. In pancreas and liver tissue,
levels of antioxidant enzymes, due to GDM, were significantly reduced, and levels of
cell-strengthening compounds in the pancreas and liver tissue in diabetic rats were the
same as in control. M. koenigii leaf extract, rich in antioxidants, is very effective and can
protect cells against chemicals, suppress oxidative blood pressure and insulin and, thus,
increase the blood glucose level of GDM in rats [76].

4. Challenges in GDM Diagnosis by Use of Nanosensors

As mentioned above, glucose nanosensors (i.e., NPs, nanotubes, and nanocomposites)
were incorporated into implantable devices to function as continuous glucose monitors
(C.G.M.s). Although various versions of CGMs are developed, because of the diffusion
of glucose from the blood to the interstitial fluid, these devices lag 5 to 15 min behind
blood sugar levels. Another limitation is that the implantation procedure of CGMs is
relatively invasive. Additionally, these CGMs might need to be calibrated multiple times
in a day via a handheld glucometer. It has been hypothesized that calibration of CGMs
using fluorescent signals across the skin might change the skin color, thickness, and hair
density. Sensor instability is another issue that might result in frequent replacement of
the biosensor. The long-term safety profile and biocompatibility of these devices remain
unknown [77,78]. Despite the stability and sensitivity of glucose biosensors, their ability to
monitor glucose in a complex matrix is a critical issue that eludes CGMs from entering the
market [79].

On the other hand, both insulin resistance and β-cell dysfunction were reported to
be responsible for GDM Still, little is known regarding the impact of these factors on
perinatal outcomes [80]. Recently, much effort has been made to isolate and protect trans-
planted β-cells from the immune system and preserve their function. These include several
conformal coating procedures applied to islets to create nano-thin coatings, such as the
chemical reaction of polymers, formation of polyion complex, and layer-by-layer polymer
deposition [81–91]. These approaches allow adequate diffusion of glucose, nutrients, and
oxygen [84]. Nevertheless, the lack of encapsulating materials that can avoid foreign body
responses to implanted biomaterials while escaping host recognition are the main barriers
of islet encapsulation [85].

5. Conclusions and Outlook

GDM is a frequent condition during pregnancy, and constant blood glucose level
surveillance is required for the mother’s and baby’s health. Non-compliance, largely owing
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to the unpleasant side effects of standard drugs, is the primary cause of diabetes treatment
failure. Moreover, there are problems in diagnosing and classifying hyperglycemia in
GDM patients. To make an ideal sensing system with high-performance and easy opera-
tion, different studies focused on nanotechnology-based approaches. Recent discoveries
demonstrated the advantages of using NPs as an alternative treatment for DM, using
different nanomaterials, including Cu NPs, ZnO NPs, MgO NPs, CeO2 NPs, and Se NPs,
which proved to have antidiabetic activity. Using these NPs reduces possible damages
to the kidneys, pancreas, liver, and reproduction system by ameliorating oxidative stress,
increasing antioxidants levels, and enhancing insulin sensitivity. Although using these
nanotechnology-based approaches hold significant substantial potential for improving the
care of GDM patients, one major obstacle involves the prolonged log times to elevated
blood sugar levels. Restricting delivery of teratogenic drugs to the maternal compartment
(such as warfarin) may reduce risks to the fetus. Alternatively, targeted delivery of drugs
or nanosensors to the fetus (such as those to treat fetal arrhythmias) may minimize side
effects for the mother.

Nanostructures and their respective nanocomposites—thanks to their small sizes, great
biocompatibility, slow-release, and unique physicochemical characteristics—offer an ap-
propriate means of transporting drugs, organic molecules, small molecules, and biomacro-
molecules to diseased cells, along with other miscellaneous applications. Presently, there
are multiple nanostructures at different states of preclinical development for GDM man-
agement. Still, characterization of their systemic performance is necessary to advance
nanomedicine. Interestingly, each multimodal nanostructure is unique and should be
studied individually to discover how it behaves and interacts in biological systems. More-
over, investigating the pharmacokinetics, in vivo and in vitro toxicity, and efficacy of these
nanostructures must be conducted before entering clinical trials. Further technological
advancements are required to improve β-cell encapsulation or designing next-generation
biosensors to treat and diagnose GDM.
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