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Abstract

Competitive endogenous RNA (ceRNA) represents a novel mechanism of gene regulation

that controls several biological and pathological processes. Recently, an increasing number

of in silico methods have been developed to accelerate the identification of such regulatory

events. However, there is still a need for a tool supporting the hypothesis that ceRNA regula-

tory events only occur at specific miRNA expression levels. To this end, we present an R

package, ceRNAR, which allows identification and analysis of ceRNA-miRNA triplets via

integration of miRNA and RNA expression data. The ceRNAR package integrates three

main steps: (i) identification of ceRNA pairs based on a rank-based correlation between

pairs that considers the impact of miRNA and a running sum correlation statistic, (ii) sample

clustering based on gene-gene correlation by circular binary segmentation, and (iii) peak

merging to identify the most relevant sample patterns. In addition, ceRNAR also provides

downstream analyses of identified ceRNA-miRNA triplets, including network analysis, func-

tional annotation, survival analysis, external validation, and integration of different tools. The

performance of our proposed approach was validated through simulation studies of different

scenarios. Compared with several published tools, ceRNAR was able to identify true ceRNA

triplets with high sensitivity, low false-positive rates, and acceptable running time. In real

data applications, the ceRNAs common to two lung cancer datasets were identified in both

datasets. The bridging miRNA for one of these, the ceRNA for MAP4K3, was identified by

ceRNAR as hsa-let-7c-5p. Since similar cancer subtypes do share some biological patterns,

these results demonstrated that our proposed algorithm was able to identify potential

ceRNA targets in real patients. In summary, ceRNAR offers a novel algorithm and a compre-

hensive pipeline to identify and analyze ceRNA regulation. The package is implemented in

R and is available on GitHub (https://github.com/ywhsiao/ceRNAR).

Author summary

The gene expression regulating mechanisms in humans are complex as many regulators

are highly connected and are compensatory to each other. Not to mention, a large
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proportion of the potential interactions between miRNA and gene expression remain

unclear due to the challenges and difficulties of performing biological experiments to vali-

date them. With the advancement in high-throughput genomic technologies, massive

data of different molecules can be generated within a short period of time. However, uti-

lizing such massive data towards unveiling the regulatory relationships through computa-

tional methods and statistical models poses a bottleneck. To address this issue, we present

an R package, ceRNAR, that enables researchers to explore and identify potential compet-

ing endogeneous RNA (ceRNA) events through three consecutive steps, and provides

novel biological insights into the analytical results. ceRNA constitutes of a set of different

RNAs that compete with messenger RNA for interacting with a given miRNA, towards

gene expression regulation. Through our proposed tool, users can avail a novel algorithm

and a comprehensive pipeline for identifying novel regulators and interactions among

miRNA and messenger RNA that may potentially explain biological and pathological

processes.

Introduction

Regulation of gene expression can occur at multiple levels via both transcriptional and post-

transcriptional mechanisms [1]. Many non-coding RNAs have critical roles in post-transcrip-

tional regulation of protein-coding genes [2]. MicroRNAs (miRNAs) are short, non-coding,

single-stranded RNAs with ~22 nucleotides. They usually bind protein-coding genes via partial

complementarity with many miRNA response elements (MREs) to repress gene expression by

inhibiting translation. Previous studies have shown that miRNAs are involved in a broad

range of cancer-associated biological processes, including apoptosis, proliferation, metastasis,

and angiogenesis [3]. Similar to gene expression, miRNA expression has cancer-specific pat-

terns that can be used to detect cancers. Therefore, the expression values of RNA can serve as

diagnostic, prognostic, or therapeutic biomarkers in a diverse range of cancers [4].

The concept of competing endogenous RNAs (ceRNAs), also called miRNA sponges or

miRNA decoys, has revolutionized our knowledge of miRNA regulatory mechanisms. Such

RNAs include canonical protein-coding messenger RNAs (mRNAs), long non-coding RNAs

(lncRNAs), circular RNAs (circRNAs), and pseudogenes [5]. Their mechanism is to compete

with miRNAs for binding their regulatory sequences. There are two primary hypotheses

regarding the regulatory function of ceRNAs, based on their expression level or their number

of MREs [6]. Taking miRNA-mRNA regulation for example (i.e., where two mRNAs act as

ceRNAs that can bind to the same miRNA), the first hypothesis is that the miRNA tends to be

sequestered by the mRNA with the higher expression level, leading to weakened inhibitory

effects of the miRNA on the other mRNA and thus increasing the expression of the other

mRNA under the assumption of equal MREs on the two RNAs. The second hypothesis is that

the miRNA has a greater affinity for the mRNA with more MREs in its sequence.

Some ceRNAs have been identified in multiple cancers; for instance, PTEN is an important

tumor suppressor gene that was also reported to encode ceRNA in prostate cancer [7], glio-

blastoma [8], and melanoma [9]. This suggests that elucidating ceRNAs can improve the

understanding of biological mechanisms in regulating cancer cells. However, using biological

experiments to identify ceRNAs is time-consuming and labor-intensive. To address this issue,

an increasing number of computational methods have been developed for identifying ceRNAs.

The traditional algorithm is based on the probability theory that two mRNAs share miR-

NAs and their binding sites (i.e., MREs) [10, 11]. A hypergeometric test is applied to find out if
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the probability of binding of an mRNA to a given miRNA is larger than that which would

occur by chance. However, such an approach usually uses a selected threshold to choose signif-

icant genes and takes only these genes into consideration; it may not extend to the whole-

genome level and fails to consider the correlation among genes because this approach treats

each gene independently [12].

Recently, because of the popularity of and advances in genomic sequencing technology,

more and more mRNA and miRNA gene expression profiles at the whole-genome level have

been released publicly [13–15]. However, the analytical results of such continuous data may

tend to be sensitive to the outliers in the sample and to the size of the dataset [16]. Therefore, a

second approach has been developed based on the observation of linear correlations between

pairs of mRNAs that suggest they have a higher chance of competing with a specific miRNA

[17–19]. Unfortunately, such a method ignores the contribution of the expression of the

miRNA in a ceRNA binding event. Additionally, it also uses a permutation test to estimate

mRNA pairs with significant correlation results; sometimes, it has a higher computational

cost. To overcome these drawbacks, in this study, we present a novel rank-based algorithm

considering the contribution of miRNA expression in a ceRNA binding event and extending

the pairwise correlation approach to identify ceRNA-miRNA triplets. All the steps in this algo-

rithm have been incorporated into a user-friendly R package called ceRNAR, which also pro-

vides several downstream analyses to further interpret the biological meaning of identified

ceRNA events for its users.

Results

Simulation results

To evaluate the performance of our proposed method, simulations of mRNA and miRNA

expression data in 100 samples were performed in different scenarios (S1 Table). Notably, we

focused on the sensitivity and the positive predictive value (PPV) because the number of

ceRNA triplets was small among all possible combinations of triplets.

In the beginning, we presumed the sample distribution of each gene follows normal distri-

bution because about 98% of genes’ sample distributions passed the normality test based on

9,835 samples in The Cancer Genome Atlas (TCGA) pan-cancer atlas (S1 Fig). Therefore, we

firstly presumed synthetic expression data were generated from a multivariate normal distribu-

tion with a mean value of 0 and a covariance matrix whose entries are 0.9. This ensured that

the ceRNAR algorithm supports the hypothesis that pairs of ceRNA binding partners of a spe-

cific miRNA are highly correlated and that it works well to sensitively identify them among a

pool of target pairs. However, it is unclear whether such an event between two target genes

would occur at the lower or higher expression of a specific miRNA. Therefore, five scenarios

were designed to capture how the molecular elements within a triplet interact with each other,

and simulations of different parameters were performed. Notably, the number of identified

ceRNAs dropped as the window size increased (S2 and S3 Tables, Fig 1). This is because more

uncorrelated samples were included in the analysis when longer window sizes were used, espe-

cially larger than 30%. In other words, higher noise was included in the analysis, resulting in

difficulty in identifying true ceRNA triplets. Next, we simulated different scenarios in which

the ceRNA peak was located at different miRNA expression levels (scenarios 1 to 4). As shown

in S2 Table and Fig 1A, the performance of our proposed algorithm was highly similar across

the four scenarios with true ceRNA signals. Such performance also was shown when removing

the permutation test (Fig 1B and S3 Table). Lastly, to reduce the calculation complexity and

computation time, we evaluated the performance of the algorithm without the random walk

step, which we called the “fast” version. Only minor differences were observed in these two
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versions (0.1 to 0.25 in terms of PPV value, S2 and S3 Tables), suggesting that both versions

were able to identify true ceRNA triplets without reporting high false positive results (Fig 1).

In addition to the analytical parameters for the algorithm, a simulation of different propor-

tions of the correlated samples was performed. Because no major differences were observed in

the simulated scenarios and running versions, only scenario 3 was evaluated in this round of

testing. As shown in S4 Table, four settings for the proportion of correlated samples were ana-

lyzed (10%, 20%, 30%, and 40%). Notably, the proposed algorithm showed similar perfor-

mance in the three highest settings (Fig 2A).

To further examine whether more false positive ceRNA triplets are reported in the fast ver-

sion, a null scenario without a true ceRNA signal was simulated (scenario 5). The results

showed that the negative predictive values of these versions were all higher than 0.9 (S1 and S2

Tables), suggesting there is a low chance of identifying false positive signals in both versions of

the algorithm (Fig 2B). Subsequently, we examined how much time can be saved by using the

fast version of the proposed algorithm, which omitted the random walk step. On average, the

fast version accelerated the algorithm by approximately 76 times (283.967 seconds versus

21,600 seconds), and only slightly higher false positive rates were reported (Fig 2B). Lastly, to

evaluate whether different window sizes for merging peaks are critical to the performance of

the proposed algorithm, four settings of the proportion of correlated samples and merging

window sizes were analyzed. As shown in Fig 2C and S5 Table, the performance of the pro-

posed algorithm was not sensitive to the window sizes for merging peaks.

In addition, to ensure the algorithm only sensitively identified ceRNA events under higher

correlation values between them, we also generated simulated data from a multivariate normal

distribution with the same mean value but a covariance matrix whose entries are 0.6 (S2A Fig

and S6 Table) or 0.3 (S2B and S7 Table). Although the ceRNAR algorithm was still able to

detect ceRNA pairs with moderate sensitivity values (0.4 to 0.5) when the correlation values

between target genes within a pair were 0.6, it did not work well (sensitivity values were all

below 0.25) when the correlation values between target genes within a pair were 0.3. Together,

Fig 1. Performance of our proposed method in four scenarios (1 to 4). (A) The complete version. (B) The fast version. The numbers in blue represent the

average number of identified ceRNA-miRNA triplets after 100 simulations.

https://doi.org/10.1371/journal.pcbi.1010497.g001
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these results support our correlation-based hypothesis that ceRNA events tend to occur when

they are highly correlated. However, the above-mentioned results were based on simple and

naïve simulations. We also mimicked the distribution of expression from pan-cancer data

(9,835 samples), allowing the synthetic data to be generated from a multivariate normal distri-

bution with a randomly selected mean value and a covariance matrix whose entries are also

randomly selected. The simulation studies were also performed under different correlation lev-

els. As shown in S3 Fig and S8–S11 Tables, the performance of the ceRNAR algorithm was

determined by the level of the correlation values. Nevertheless, it still performed well (sensitiv-

ity values> 0.75) when the correlation between genes was high and when the window size was

10 throughout all scenarios (S3B Fig.), suggesting the ceRNAR algorithm is efficient to identify

most potential ceRNA pairs when their correlation pattern is relatively high (0.8–0.9) to com-

pete with a specific miRNA, and such a pattern exists in at least 20% of the sample. The optimal

parameter settings for real data were also observed. For 100 samples, the best window size was

10, and the best cutoff correlation value for selecting the most significant event was 0.7.

Comparison with other tools

We have compared our tool with other state-of-the-art tools, including SPONGE, JAMI,

GDCRNATools, and CERNIA, in terms of their performances using synthetic data and their

running time using real data. Fig 3A and S12 Table illustrate that ceRNAR workflow generally

outperformed the other tools in terms of sensitivity and PPV in all scenarios when the window

size is set to 10 and the correlation cutoff is set to 0.7. It can be mainly observed when the cor-

relation values among correlated genes are relatively high. However, all of the tools could iden-

tify valid ceRNA triplets without reporting high false-positive results except JAMI (Fig 3B and

S12 Table). GDCRNATools generally had a high sensitivity compared to the other tools, and a

lower specificity than ceRNAR, suggesting that it is good for catching ceRNAs but comes with

a relatively high rate of false positives. Regarding running time, we used different sample num-

bers (250, 500, and 100) on a small subset of the pan-cancer dataset with 15 genes which form

105 triplets; we also used different triplet numbers (105, 1,225, and 4,950) on a small subset of

the pan-cancer dataset with 250 samples (S4 Fig and S13 Table). Although the ceRNA algo-

rithm was not fast with a large sample size and a large number of triplets compared with

SPONGE, GDCRNATools and CERNIA, it was slightly faster than JAMI.

Application to TCGA cancer cohort datasets

To further validate the applicability and robustness of the ceRNAR algorithm, we also applied

the algorithm to two TCGA-derived lung cancer cohorts–TCGA-LUAD and TCGA-LUSC

(S14 Table). The top bridging miRNAs and the hub genes among ceRNA triplets are shown in

S15 and S16 Tables. Intriguingly, the two cancer cohorts (LUAD and LUSC) shared some

common triplets involving 53 miRNAs and 905 ceRNAs, which allowed construction of a

miRNA-modulated ceRNA regulatory network (S5 Fig). Among them, PLEKHG6 had the

largest number of co-expressed ceRNAs, and of the 53 common miRNAs, the top three miR-

NAs that bridged over 20 ceRNA pairs were hsa-miR-183-5p, hsa-miR-133a-3p, and hsa-miR-

142-5p. MAP4K3 was another common hub gene in both datasets, and its bridging miRNA

was hsa-let-7c-5p, around which a regulatory network of corresponding ceRNAs was built

Fig 2. Performance of our proposed method in three extended cases. (A) Different proportions of correlated

samples in scenario 3 using the fast version. (B) Comparison between complete and fast versions in the null scenario

(i.e., scenario 5). (C) Different distances for merging peaks when window size is equal to 40 using the complete

version. The numbers in blue represent the number of identified ceRNA-miRNA triplets.

https://doi.org/10.1371/journal.pcbi.1010497.g002
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(S6A Fig), and the expression level related to the regulatory occurrence of its bridging ceRNAs

is displayed in S6B Fig. Since lung cancers share some common molecular characteristics, such

results demonstrate the applicability and robustness of the ceRNAR algorithm in multiple can-

cers or diseases.

In addition, we compared our findings against experimentally validated miRNA-gene pairs

in the miRSponge database to endorse the potential ceRNAs identified by ceRNAR. As shown

in S7 Fig, around 1% (ceRNA pairs that can be validated among total ceRNA founded based

on ceRNAR algorithm) of experimentally validated ceRNA triplets were identified in LUAD

and LUSC. The low proportion may be attributed to the fact that only 158 ceRNA triplets were

analyzed and that those ceRNA triplets may not be expressed in lung tissues. Furthermore,

approximately 13–14% of ceRNA triplets with at least one experimentally validated miRNA-

target interaction were identified by using the ceRNAR algorithm. A Chi-square test was per-

formed to examine whether the findings from the ceRNAR package were significantly

enriched in the TCGA data, and the results showed that the P-values obtained from the LUAD

and LUSC datasets were both less than 2.2e-16, suggesting our ceRNAR package can success-

fully identify previously reported ceRNA triplets.

Discussion

ceRNA events are a newly discovered type of post-transcriptional regulation, and the identifi-

cation of ceRNA-miRNA triplets using in silico methods is an emerging research area.

Fig 3. Performance comparisons between ceRNIA, JAMI, SPONGE, GDCRNATools and ceRNAR packages using synthetic data that mimic the real-

world case. (A) Sensitivity and PPV of various tools at different correlation levels for 100 samples of 105 pairs of target genes under four scenarios (1 to 4). (B)

Specificity and NPV of various tools at different correlation levels for 100 sample of 105 pairs of target genes under null scenario (scenario 5). “cor_levels”

represents four different correlation levels (all: 0.3–0.9; high: 0.8–0.9; low: 0.3–0.4; mid: 0.5–0.7).

https://doi.org/10.1371/journal.pcbi.1010497.g003
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Therefore, we developed a novel computational algorithm to explore such regulatory events

for further biomedical interpretation and application. Our proposed method is based on a sim-

ple pairwise correlation approach that considers the miRNA-modulated ceRNA interaction.

First, we ranked samples based on their miRNA expression value to include the contribution

of miRNA expression and identify which miRNA expression intervals tend to have a higher

correlation with pairs of mRNA targets. Secondly, we used a sliding window approach to form

more correlation values in a triplet to improve the performance and outcomes of the subse-

quent statistical approach. Lastly, we applied a cumulation-like approach to sum up the slight

changes in correlation values across samples. We used segment clustering to understand the

sample clustering in terms of the gene-gene correlations and the miRNA expression intervals

so that we could also use sample proportion to support our findings. Several simulations have

been conducted for the optimization of the parameters subject to specific ranges of settings,

and the robustness of our approach when it does not involve a permutation test has also been

evaluated through a simulation study. Connecting with six downstream analyses, our R pack-

age may assist researchers to have a deeper understanding of the disease-specific biological reg-

ulation and prognostic application for each identified ceRNA-miRNA triplet.

Recently, more and more tools have been developed to identify potential ceRNA events. It

is important to systematically evaluate the ceRNAR package in comparison with the five other

published ceRNA prediction tools—SPONGE [20], CERNIA [21], GDCRNATools [22], JAMI

[23], and CUPID [24]—that are expression-based (rather than sequence-based, i.e., spongeS-

can [25]). We have compared them in terms of several features, such as miRNA-target data

sources, study design, ceRNA classes, ceRNA prediction algorithm, and language for imple-

mentation (S17 Table). Noting that JAMI is the multi-threading version of CUPID, we decided

to keep only JAMI for further analyses. Thus, we used four algorithms, including SPONGE,

CERNIA, GDCRNATools, and JAMI, for the comparisons. Notably, the four algorithms and

our ceRNAR all used a similar strategy, which is utilizing miRNA-target data sources to iden-

tify potential miRNA-gene/lncRNA/pseudogene pairs from other databases. All four of these

algorithms are implemented in R. JAMI is based on conditional mutual information, which is

particularly useful to capture non-linear associations by estimating the effect of a miRNA on

its target pairs through a permutation test [26]. Excepting JAMI, the rest algorithms consider

the correlations between miRNA-mediated genes/lncRNA. Although the majority of such

algorithms are correlation-based, some differences still exist. For examples, GDCRNATools is

based on sensitivity correlation computation through effectively estimating covariate matrices

and also considering the impact of a miRNA on its target pairs. SPONGE also uses sensitivity

correlation to quantify the impact of a miRNA on its target pairs (i.e., linear partial correla-

tion), but further applies a null model-based p-value computation to estimate potential ceRNA

pairs. It is worth mentioning that CERNIA and JAMI consider both MRE- and expression-

based data, whereas SPONGE, GDCRNATools and ceRNAR only analyze genome-wide

expression data. Since several studies [18, 27, 28] indicate that ceRNA triplets may be observed

in a specific range of miRNA expression, such an approach can help to focus on the true posi-

tive region with high signal-to-noise ratio instead of missing the ceRNA triplets due to signal

dilution by global noise. Our ceRNAR algorithm showed the highest sensitivity in identifying

potential ceRNA triplets (Fig 3).

Regarding the two online servers, miRTissue_ce [29] and Encori (i.e., starBase v2) [30] are

two web servers that integrate ceRNA data sources, ceRNA prediction algorithms, and even

some data analyses and visualizations that can be easily accessed by the users. Fiannaca et al.
[29] have compared miRTissue_ce and Encori in terms of many features. Here, we further

compared these web servers with our ceRNAR based on these features to see whether there is

any add-on value that ceRNAR can provide these web services. First, the interactions between
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miRNAs and target genes in ceRNAR are supported by nine databases, including two experi-

mentally validated miRNA-target databases and seven computationally predicted miRNA-tar-

get databases. But Encori and miRTissue_ce are supported by 4 and 8 computationally

predicted miRNA-target databases, respectively. Second, Encori uses a hypergeometric test to

predict ceRNA, and miRTissue_ce integrates that method with a global test and SPONGE.

However, one major disadvantage of the hypergeometric test is that the test requires a prede-

fined p-value threshold to select significant genes. When using differentially expressed genes,

such an approach is not suitable to be applied to the whole genome, because the hypergeomet-

ric test fails to consider the interactions among genes due to its independence assumption

about genes. This is why we present a novel rank-based algorithm considering the contribution

of miRNA expression in a ceRNA event and extend the pair-wise correlation approach to iden-

tify ceRNA-miRNA triplets using whole genomic information. Lastly, these two web servers

can predict many types of ceRNA events, but ceRNAR only focuses on one ceRNA event class

(i.e., mRNA-miRNA).

In real application, we utilized non-small cell lung cancer (NSCLC) data to evaluate the

applicability of ceRNAR. NSCLC accounts for 85% of lung cancer and is one of the most com-

mon malignant tumors worldwide [26]. Although there has been progress in successful treat-

ment for NSCLC patients these past several decades, the 5-year survival rate for NSCLC is still

relatively low (25%) [31]. Also, the molecular networks involved in NSCLC remain incom-

pletely described in terms of their roles in etiology, progression, and metastasis. Hence, we

applied the ceRNAR algorithm to two NSCLC-related cancer datasets in TCGA lung cancer

cohorts. Several common miRNAs and ceRNAs identified by the ceRNAR algorithm have also

been previously reported by other studies. For example, hsa-miR-183-5p was found to

inversely regulate PTPN4, serving as a therapeutic target to suppress the metastatic potential in

NSCLC patients [32], and hsa-let-7c-5p was verified to prevent cancer metastasis by degrading

its bridging hub ceRNA, MAP4K3 [33]. Although our simulation results suggest that the

majority of performance indicators have only slight differences in the four scenarios using

both complete and fast versions, and the best parameter setting for window size is 10 and for

peak threshold is 0.7, and the fine-tuning of appropriate parameters for non-TCGA datasets

still needs to be tested. Nevertheless, these results still demonstrated our proposed method is

robust and potentially applicable, allowing it to be extended to studies of other diseases.

However, some limitations still existed in our study. First, a smaller sample size of cancer

cohorts (i.e., a smaller window size in our case) may lead to less statistical power of the find-

ings. Second, we presumed a linear relationship between the two ceRNAs in each triplet, but in

reality, they were not always linearly correlated. Although we have implemented a sliding win-

dow approach to capture such relationships, other methods such as mutual information [34]

can also be applied. Moreover, the accuracy of the miRNA target prediction databases we used

may have affected the definition of putative ceRNA-miRNA triplets and the outcomes of the

ceRNAR algorithm because the mechanisms of some miRNA targeting systems have not been

fully understood. It is also worth mentioning that our simulation results were based on a pre-

defined covariance matrix. That is the true positive events were from the correlation-based

approaches, and thus such events only showed linear relationships among the elements. Nota-

bly, such design may lead to the poor performance of JAMI because their algorithm was devel-

oped by using the mutual information strategy, which was able to capture non-linear

relationships among ceRNA pairs in addition to the linear ones. Lastly, the majority of our

findings from the real case study were novel compared to the miRSponge database, although

some of the miRNA-targets contained an interaction that was previously experimentally vali-

dated. Perhaps further experimental validation of those triplets that contained one experimen-

tally validated miRNA-target interaction should be prioritized to increase the robustness of
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our algorithm and the reliability of the novel findings. Therefore, the consideration of all types

of miRNA sponges, the amount of MREs, multiple miRNAs that may compete for the same

pair of target genes, nontrivial correlations which involve the comparison of pairwise correla-

tion and pairwise partial correlation, and the minimization of computational time are impor-

tant key areas for further optimization and extension of the ceRNAR algorithm.

In summary, ceRNAR is a promising tool for the recognition of ceRNA-miRNA triplets

and ceRNA-ceRNA interaction networks in many human diseases, and hence will speed up

our knowledge of the regulatory mechanisms and functions of ceRNA-miRNA triplets in the

pathogenesis of disease, including cancers.

Materials and methods

Pipeline of ceRNAR

The ceRNAR package is written in R (version 4.0.5) and is available in the Github repository.

The main pipeline of ceRNAR is illustrated in Fig 4 and contains three major components for

the identification and analysis of ceRNA-miRNA triplets:

• Data preprocessing

• Identification of ceRNA-miRNA triplets

• Downstream analyses

Fig 4. An overview of our ceRNAR package. This package includes three main parts. First, “Input data” has three functions: ceRNAputativePairs() for

extracting curated miRNA-target lists, ceRNATCGA() for retrieving TCGA data, and ceRNAcustomize() for importing customized data. Second, “Identification

of miRNA-ceRNA triplets” involves ceRNApairFiltering() and SegmentClusteringPlusPeakMerging() and is wrapped into a ceRNAmethod() function. Lastly,

“Downstream analyses” contains six functions for different tasks, that is, ceRNAFunction(), ceRNAModule(), ceRNASurvival(), ceRNALocation(),
ceRNAValidate() and ceRNAIntegrate().

https://doi.org/10.1371/journal.pcbi.1010497.g004
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To reduce the computational complexity and time cost, the interactions between miRNAs

and target genes were based on two experimentally validated miRNA-target databases (miR-

TarBase [35] and miRecords [36]) and seven computationally predicted miRNA-target data-

bases (DIANA-micro T-CDS [37], EIMMO [38], miRDB [39], miRanda [40], PITA [41],

RNA22 [42] and TargetScan [43]). In the default settings, only those interactions that were val-

idated by experiments and/or predicted by more than half of the databases are retained as tar-

get miRNAs and target genes (S8A Fig). Conceptually, the ceRNAR algorithm iteratively goes

over each miRNA-target list and runs through each mRNA pair in a list to evaluate the chance

of the potential ceRNA event involved. For a specific triplet (i.e., a miRNA and its two targets),

their expression vectors are extracted from the original expression matrix. Therefore, a

miRNA expression vector, miRNAm = [mm1, mm2, . . .], and two mRNA expression vectors,

mRNAi = [genei1, genei2, . . .] and mRNAj = [genej1, genej2, . . .], are used as inputs into the

ceRNAR algorithm to iteratively evaluate whether each mRNA pair is a potential ceRNA event

(S8B Fig).

Data preprocessing

To prepare expression data for further analyses, ceRNAR can automatically retrieve TCGA

data, including mRNA expression, miRNA expression, and survival data, by entering the can-

cer acronym [44], but it also supports the use of customized miRNA and mRNA expression

matrices that are pre-normalized and formatted according to the instructions. In ceRNAR, we

implement two functions to fulfill these two approaches: ceRNATCGA and ceRNACustomize.

Identification of ceRNA-miRNA triplets

To identify miRNA-ceRNA triplets (defined here as a miRNA and two target genes) from

expression profiles at a specific miRNA expression level, the ceRNAMethod function can be

used, and it contains three modules sequentially: ceRNApairFiltering, SegmentClustering, and

PeakMerging (Fig 5). We have two assumptions in this study: (1) the expression levels of two

target genes tend to be highly correlated when a possible ceRNA event occurs; (2) such events

between target genes of a certain miRNA occur at a specific expression interval of that

miRNA. However, for each ceRNA triplet from the real data, it is difficult to know which levels

of miRNA expression (low, middle, or high expression intervals) will lead to a high correlation

between a pair of target genes. Notably, for one miRNA, the high correlation values between

two target genes can only be observed in a specific range of the miRNA expression. Definitely,

the expression level of one miRNA can be regulated by many factors, such as compensation

and/or other interactors. However, with our current understanding of all miRNAs, it is not

feasible to consider all potential regulators of one specific miRNA at the same time. Therefore,

for one single miRNA, we adapted the approach of utilizing its expression level as the final out-

put instead of considering all possible confounding factors, which can be regarded as the hid-

den layers of the miRNA expression value.

The ceRNApairFiltering method

We adopted the sliding window approach to identify the correlation patterns of the two target

genes within a specific range of expression values for the miRNA. That is the reason why we

ranked the samples based on their miRNA expression value from each triplet to identify the

correlation patterns and provided the number of samples that meet the criteria. Therefore, the

purpose of this function is to identify ceRNA-miRNA triplets based on the Pearson correlation

coefficient through the sliding window approach (S9 Fig) and a running sum statistic for such
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values by the random walk approach (S10 Fig). First, the samples are sorted based on their

miRNA expression levels. For a putative triplet (genei, miRNAm, genej) among N samples, the

correlation coefficients of gene expression values between mRNA and miRNA are calculated

within each window (i.e., a length of sample size that is always less than N) with predefined

window size (w) as follows:

rm;i;jk ¼ corrð½geneik; gene
i
kþ1
; . . . ; geneikþðw� 1Þ

�; ½genejk; gene
j
kþ1; . . . ; genejkþðw� 1Þ�Þ ð1Þ

Here k is the number of windows and a predefined integer. Technically, the correlation value

between two genes is calculated using the gene expression values of all samples. By using a slid-

ing window approach [45], we can artificially create different varieties of a real dataset to

increase its size, which is a sort of data augmentation technique [46].

Because the accumulated changes in terms of correlation values between two genes among

samples may tend to increase the chance that a gene pair is highly correlated and, further, will

affect a specific phenotype, we borrowed the concept of gene set enrichment analysis (GSEA)

[47], which captures the accumulated changes in the expression of all genes within a pathway

through a random-walk method, to identify a significant triplet according to the number of

the samples enriched in such an event. The main idea of the GSEA algorithm is to understand

whether the differentially expressed genes are significantly enriched in the samples belonging

to the same phenotype (case or control). First, the differentially expressed genes were ranked

by using the differences in expression level between the two phenotypes. Next, the GSEA algo-

rithm gave a positive score to the genes located in the pathway, whereas a negative score was

assigned to the genes outside of the pathway. One possible scenario to obtain a high score is

that the differentially expressed genes were clustered and enriched in one phenotype instead of

Fig 5. Three main modules involved in the identification of ceRNA-miRNA triplets. First, ‘ceRNA pair filtering’ contains sample sorting based on a miRNA

expression vector, data augmentation in terms of correlation calculation through a sliding window, and permutation test by random walk. Next, ‘Segment

clustering’ is based on circular binary segmentation to identify certain miRNA expression intervals (i.e., segments) with the highest correlation between

potential ceRNA pairs. Short segments defined by our criteria are further merged and whether a segment is a peak or a trough is defined. Lastly, ‘Adjacent peak

merging’ checks whether a triplet is a candidate ceRNA through two filtering conditions.

https://doi.org/10.1371/journal.pcbi.1010497.g005
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being randomly distributed. This scenario is the same as what we want to identify for the

ceRNA triplet. That is, the highest correlation values were observed in a specific range of the

miRNA expression and thus we used the two statistics, Pobey(k) and Pviolate(k) to identify the

range (S11 Fig). Conceptually, to calculate a score (S) to represent the enriched correlation lev-

els among samples against a specific phenotype, we first rank ordered the k windows to form

L = {miRNA1, miRNA2, . . ., miRNAk} based on the average miRNA expression within each

window:

miRNAk ¼

Xw� 1

n¼0

mm;i;j
kþn

,

w ð2Þ

Next, the S is computed by walking down the window list to evaluated Pobey(k), which is the

proportion of samples whose gene correlations are over 0.3 (i.e., rm;i;jk > 0:3), weighted by their

corresponding correlation and Pviolate(k), which is the proportion of the rest of the samples at a

given ranking window position k across all samples. The formulas are as follows:

Pobey kð Þ ¼
X

rk2condition
l � k

jrlj
NR
; where NR ¼

X

rk2condition

jrlj ð3Þ

Pviolate kð Þ ¼
X

rk=2condition
l � k

1

Nviolate
; where Nviolate ¼

X

rk=2condition

Iðrk=2conditionÞ ð4Þ

S is then defined as the maximum distance from zero of the substations of Pobey(k) from Pviola-

te(k). If the samples with similar correlation values are not enriched at a particular miRNA

expression interval, it means those gene pairs are not biologically relevant to compete with

miRNA in a miRNA-gene triplet; that is, there is no ceRNA event observed in this triplet (S11

Fig). Finally, we accessed the significance of an observed S by comparing it with the theoretical

S computed by randomly permutating the expression of the candidate miRNAm 1,000 times to

provide assessment of significance. When an entire sample of potential triplets is evaluated,

these p-values will be adjusted by the false discovery rate, which provides the estimated proba-

bility of whether a triplet within an entire set of potential triplets is a false positive finding or

not. After that, we report the ceRNA pairs with statistical significance of the observed S (e.g.,

adjusted p-value <0.05) as significant ceRNA interactions. For one miRNA, a low score S will

be observed if the two target genes have no correlation within a specific range of miRNA

expression. On the other hand, the score S will be high if a large proportion of the samples

showed high correlation among the two target genes (Pobey(k) is high). Consequently, we can

use the score S to identify a ceRNA triplet when S is high, and a statistical approach was per-

formed to ensure that S cannot be identified randomly.

The SegmentClustering method

The motivation of the segment clustering is to group the samples showing high correlation

between the expression levels of the two target genes into one single cluster. In our analysis, we

divided the samples into small groups (i.e., a window) to calculate the correlation values of the

two target genes. Accordingly, we may identify several different groups showing high correla-

tions that actually can be clustered into one single cluster because of their similar correlation

values. Therefore, in this method, the concept of a circular binary segment algorithm, which

was originally designed for change-point problems such as the identification of copy number
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variation, is used [48] to evaluate whether those small windows showing high correlation val-

ues should be clustered into a larger group. This method has been widely used in the analysis

of copy number variations (CNVs) by many algorithms [49, 50]. Since several previous studies

[18, 27, 28] indicated that ceRNA triplets may be observed in a specific range, the purpose of

such an approach is to explore the clustering patterns of samples in terms of their gene-gene

correlation values per triplet and then group samples with similar correlation values so that a

certain miRNA expression interval with the highest correlation within a ceRNA pair can be

observed. This algorithm starts with all segments (i.e., several intervals of rank-ordered

miRNA expression) identified from the whole dataset. Similar to the previous method, the

samples are sorted by the miRNA expression values. A recursive test for the change-points is

calculated based on the correlation values of each gene-miRNA pair between each set of two

neighboring regions of rank-ordered miRNA expression, and it stops when no significant

changes can be found in any two segments. The maximal t-statistic with a permutation refer-

ence distribution is chosen to obtain the corresponding p-value. Let X1, . . .,Xn be the correla-

tion coefficients of two genes, which are indexed by the corresponding miRNA expression of

the n samples being studied. The test statistic is given by Zc ¼ max1�i<j�njZijj, where Zij is the

two-sample t-statistic to compare the mean of the correlation of two genes with the index,

which refers to the position within the rank-ordered miRNA expression from i+1 to j, to the

mean of the correlation of the rest of the genes. That is,

Zij ¼
1

j � i
þ

1

n � jþ i

� �� 1=2 Sj � Si

j � i
�

Sn � Sj þ Si

n � jþ i

� �

ð5Þ

where Si ¼ X1 þ � � � þ Xi; Sj¼ X1 þ � � � þ Xjð1 � i < j � nÞ are the partial sums. If the p-val-

ues are smaller than a threshold level α (typically 0.01), a change is declared to be statistically

significant. The locations of the change-points as the i and j that maximize the test statistic are

also estimated by using either Monte Carlo simulations [51] or the approximation approach

[52]. After performing the segment clustering approach, only a few groups of samples showing

high correlation remain for further analyses. We have a basic assumption here for the ceRNA

triplet: the correlation values should be stable across the sliding window approach and thus the

correlation values should not be bouncing up and down within a small sample size. Following

this assumption, we performed the peak merging step to ensure two nearby peaks were merged

into one under certain criteria.

The PeakMerging method

This method is designed to prevent smashed segments resulting from noise. First, two seg-

ments are merged when the difference of their correlation values is smaller than a predefined

value, and whether the finalized segments are peaks or troughs is defined compared to the

baseline. Then, the Fisher transformation is performed to test the difference between two adja-

cent peaks by comparing their differences against the null hypothesis. Two adjacent peaks are

further merged if there is no statistically significant difference between them. Because we pre-

sumed it is less likely that two genes are highly correlated to compete for a miRNA at more

than two miRNA expression intervals, the triplet was abandoned when more than two peaks

occurred in such a relationship. Lastly, candidate ceRNAs are finally selected when their corre-

lation pattern contains a peak with a correlation value over a predefined threshold value (0.3,

0.5, or 0.7).

The final output of the ceRNAMethod function provides information on each miRNA, its

candidate ceRNA pairs, its peak position within the rank-ordered miRNA expression interval,

and the number of samples involved in such ceRNA interactions (S12 Fig).
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Downstream functional analyses

To characterize the biological functions and pathways of identified ceRNA pairs, we imple-

mented the ceRNAModule function to generate ceRNA modules from their interaction net-

works. For the ceRNA modules, the ceRNAFunction function is used to perform functional

enrichment analysis based on two ontology databases, the Gene Ontology database (GO,

http://geneontology.org/) [53] and the Kyoto Encyclopedia of Genes and Genomes Pathway

Database (KEGG, https://www.genome.jp/kegg/) [54]. Survival analysis has been widely used

in biomedical fields to indicate whether the ceRNAs in the discovered interaction module are

associated with the survival of cancer patients. Hence, in ceRNAR, we implemented the ceR-
NASurvival function to perform survival analysis. First, the risk score of each sample is calcu-

lated using a multivariate Cox model. All the samples (i.e., different patients) are divided into

high or low risk groups based on their median risk scores. The Kaplan-Meier method with a

log-rank test is used to test and visualize the difference between the high and low risk groups.

Additionally, the ceRNALocation function allows users to further visualize the expression level

of a specific miRNA when modulated by a specific ceRNA. We also implemented an integrated

function (ceRNAIntegrate) to combine our results with other state-of-the-art tools, such as

SPONGE [20] and JAMI [23], and a validation function (ceRNAValidate) based on the miR-

Sponge database. The graphical outputs of the above-mentioned functions are presented in

S13–S15 Figs.

Simulation study

In the simulation study, two types of expression data (ceRNA and miRNA) of 100 samples were

generated. In each triplet, we presumed 10–40% of samples have correlated genes whereas the

rest of the samples do not. The simulated expression profile of 100 samples of miRNA was dis-

tributed uniformly between 0 and 1 and was used to sort our samples. We simulated the gene

expression profiles of these target gene pairs under two situations. The first is a naïve profile of

the correlated genes simply generated from a multivariate normal distribution with a mean

value of 0 and a covariance matrix whose entries are 0.9, while the expression distribution of the

uncorrelated genes was specified by setting its mean and variance to zero. Another simulation

scenario is mimicking a real-data profile (9,835 pan-cancer samples) generated from a multivar-

iate normal distribution with a randomly selected mean value (±2, ±1 and 0), and a covariance

matrix whose entries are also randomly selected from 0.3 to 0.9 (correlation level: all), while the

expression distribution of the uncorrelated genes was specified by setting its mean (also ran-

domly selected) at ±2, ±1, and 0, and its variance (randomly selected) at 0 to 0.2 (S16 Fig). We

also specified three correlation levels (high = 0.8–0.9, mid = 0.5–0.7, and low = 0.3–0.4) and ran-

domly selected values within them to construct the covariance matrix. The normality test for

sample distribution of each gene was conducted by the Anderson-Darling method [55].

Five scenarios were considered and are summarized in S1 Table. The first three scenarios

were designed for a single peak (i.e., the highest correlation value of the target genes compared

to the baseline) occurring at different locations (i.e., different miRNA expression intervals):

lower miRNA expression (left, scenario 3), higher miRNA expression (right, scenario 2), and

average miRNA expression (center, scenario 1), which represents specific correlation coeffi-

cient values existing at different expression levels of miRNA. The fourth scenario was designed

for considering the occurrence of two peaks. A null scenario was also compared to test the

validity of the other conditions. Two parameters were set under each scenario: window size

(10%, 20%, 30%, and 40%) and the threshold at which to define a peak (0.3, 0.5, and 0.7). Each

scenario was simulated 1,000 times. We conducted these simulations using either the complete

or fast versions of the algorithm, the latter of which reduced computational complexity by
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omitting the random walk step. The proportion of correlated samples (10%, 20%, 30%, and

40%) was also analyzed.

Real data application for tools comparison and validation

In order to compare many aspects, including the computational cost and the quality of the

results, of ceRNAR with the other tools (SPONGE [20], CERNIA [21] and JAMI [23]), which

similarly used miRNA and paired target gene expression to identify gene-miRNA-gene trip-

lets, we used subsets of the TCGA pan-cancer atlas with different sample sizes and gene/triplet

numbers. We ran these tools with default parameter settings in parallel processing with 8 cores

with varying sample sizes and numbers of genes.

Regarding real data application, we retrieved two sequencing datasets (TCGA-LUAD and

TCGA-LUSC) from TCGA [56] to demonstrate the potential application of our proposed algo-

rithm. These datasets are all retrieved from public domains (GDG data portal: https://portal.

gdc.cancer.gov/). The TCGA-LUAD dataset contained 510 samples from lung adenocarci-

noma patients, and the TCGA-LUSC dataset contained 476 samples from squamous cell carci-

noma patients. To validate the results, the potential ceRNAs identified by our tool were

validated experimentally using the miRsponge database [57], and the ceRNAs shared by these

two datasets were further analyzed.

Supporting information

S1 Fig. Normality assessment through Anderson-Darling test on sample distribution

based on TCGA pan-cancer atlas across genes.

(TIFF)

S2 Fig. Performance of our proposed method in four scenarios (I to IV) using naïve simu-

lated data with the complete version. (A) Synthetic data of correlated genes were generated

from multivariate normal distribution with a mean value of 0 and a covariance matrix whose

entries are 0.6. (B) Synthetic data of correlated genes were generated from multivariate normal

distribution with a mean value of 0 and a covariance matrix whose entries are 0.3. The num-

bers in blue represent the average number of identified ceRNA-miRNA triplets after 100 simu-

lations.

(TIFF)

S3 Fig. The performance of our proposed method in four scenarios (I to IV) uses simulated

data that mimics real-world data distribution with the complete version. (A) From a

covariance matrix with correlation values ranging from 0.3 to 0.9. (B) From a covariance

matrix with correlation values ranging from 0.8 to 0.9. (C) From a covariance matrix with cor-

relation values ranging from 0.5 to 0.7. (D) From a covariance matrix with correlation values

ranging from 0.3 to 0.4.

(TIFF)

S4 Fig. Run time comparisons between published tools and our package. (A) Run time for

different sample numbers on a fixed set of genes using real data. (B) Run time for different

numbers of genes (i.e., different numbers of triplets) on a fixed number of samples using real

data.

(TIFF)

S5 Fig. ceRNA regulatory network observed in TCGA-LUAD. The size of each dot repre-

sents the number of bridged miRNAs per ceRNA.

(TIFF)
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S6 Fig. The extended analyses of the observed ceRNA pairs that are related to miRNA hsa-

let-17e-5p. (A) The network of overlapping ceRNA pairs in both TCGA datasets. (B) The dis-

tribution of miRNA expression at which specific ceRNA interactions occur. The location of

each rectangle indicates the miRNA expression value at which particular ceRNA pairs interact

with miRNA has-let-17e-5p, and the depth of the color in each rectangle represents the num-

ber of samples that have such ceRNA-miRNA interaction. FPKM, fragments per kilobase mil-

lion.

(TIFF)

S7 Fig. Experimental validation of real case study based on miRSponge database. (A)

TCGA-LUAD (The Cancer Genome Atlas Lung Adenocarcinoma). (B) TCGA-LUSC (The

Cancer Genome Atlas Lung Squamous Cell Carcinoma).

(TIFF)

S8 Fig. The basic concept of our idea is illustrated graphically. (A) Lists of curated miRNAs

and their targets are verified from nine miRNA target databases based on the AnamiR package

and selected by being either experimentally validated or present in over half of the prediction

databases. (B) Our algorithm iteratively evaluates whether each mRNA pair is a potential

ceRNA event in each miRNA-target list.

(TIFF)

S9 Fig. A graphic overview illustrates sorting and correlation calculation in the ceRNApair-
Filtering method. First, samples [S1, . . .SN] based on the expression vector of each miRNA per

triplet (genei, miRNAm, genej) are sorted. Second, the window size is defined, and the correla-

tion between gene pairs among samples for the first window is calculated. Next, the correlation

between gene pairs among samples for the second window is calculated, and so on. Finally, a

new correlation vector per triplet is created.

(TIFF)

S10 Fig. A graphic overview illustrates the random walk and permutation test in the ceR-
NApairFiltering method. First, the k correlation values per triplet are ordered according to

the average miRNA expression, miRNAk ¼
Pw� 1

n¼0
mm;i;j

kþn=w. The score (S) reflects the degree to

which the correlation of a gene pair is overrepresented across all values (i.e., high/low/moder-

ate miRNA expression) of the entire set of ranked miRNA expression levels. It is calculated by

walking down the ranked value, increasing the score when encountering a specific miRNA

expression value with the correlation of a paired gene over 0.3. If the correlation is less than 0.3

(threshold), the score will be negative. The magnitude of the score depends on the number of

samples supported by such correlation values within a window. Subsequently, the permuted

miRNA expression data are generated 1,000 times to create a null distribution of the S, and

then the empirical P-value is calculated accordingly.

(TIFF)

S11 Fig. The meanings of score S are based on the values of Pobey and Pviolate. (A) Samples

with the highest correlation between target genes are enriched at a higher miRNA expression

value, supporting that these two target genes have a higher chance to compete with this

miRNA. (B) These target gene pairs do not represent a biologically relevant correlation with

the competition of this miRNA, suggesting that no ceRNA event occurs in this triplet.

(TIFF)

S12 Fig. Main tabular output in CSV format. Five columns are involved: miRNA name, can-

didate ceRNA pairs, the start and end of each miRNA expression interval, and the number of
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