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Abstract

In invasive electrophysiological recordings, a variety of neural oscillations can be detected

across the cortex, with overlap in space and time. This overlap complicates measurement of

neural oscillations using standard referencing schemes, like common average or bipolar

referencing. Here, we illustrate the effects of spatial mixing on measuring neural oscillations

in invasive electrophysiological recordings and demonstrate the benefits of using data-

driven referencing schemes in order to improve measurement of neural oscillations. We dis-

cuss referencing as the application of a spatial filter. Spatio-spectral decomposition is used

to estimate data-driven spatial filters, a computationally fast method which specifically

enhances signal-to-noise ratio for oscillations in a frequency band of interest. We show that

application of these data-driven spatial filters has benefits for data exploration, investigation

of temporal dynamics and assessment of peak frequencies of neural oscillations. We dem-

onstrate multiple use cases, exploring between-participant variability in presence of oscilla-

tions, spatial spread and waveform shape of different rhythms as well as narrowband noise

removal with the aid of spatial filters. We find high between-participant variability in the pres-

ence of neural oscillations, a large variation in spatial spread of individual rhythms and many

non-sinusoidal rhythms across the cortex. Improved measurement of cortical rhythms will

yield better conditions for establishing links between cortical activity and behavior, as well as

bridging scales between the invasive intracranial measurements and noninvasive macro-

scale scalp measurements.

Author summary

Invasive electrophysiological recordings of human brain activity offer the unique ability to

measure multiple, simultaneously active brain rhythms. Analyzing brain rhythms is com-

plex due to the fact that different oscillations often overlap in space and time. Here we

explore human resting state invasive electrophysiological recordings by using spatial fil-

ters, which combine information from all available recording electrodes to specifically
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extract oscillations with high signal to noise ratio. Using this technique, we explore vari-

ability in oscillation presence across subjects, the spatial spread and waveform shape of

oscillations. We find that participants differ a lot in presence of oscillations, even when

the recording electrodes have similar placement. We find that oscillations exhibit spatial

spread exceeding the distance between electrodes and that the waveform shape of oscilla-

tions in different brain regions can be highly deviating from a sine wave.

This is a PLOS Computational Biology Methods paper.

Introduction

Invasive, intracranial electroencephalography (iEEG) recordings from patients undergoing

epilepsy monitoring have been tremendously valuable for examining neuronal activity. This is

because iEEG provides both high temporal and spatial resolution that is impossible to achieve

using solely noninvasive human neuroimaging [1, 2]. There are different types of recording

electrodes for iEEG, using electrodes arranged in grids that are commonly referred to as elec-

trocorticography (ECoG) or using electrodes arranged along a linear array, which is referred

to as stereoencephalography (sEEG). Because of the superior spatial and temporal resolution

of iEEG, combined with the possibility of simultaneous single-neuron recordings from

humans [3], these rare recordings provide a bridge between human cognition and decades

of animal electrophysiology. The recordings display myriad types of complex activity, for

instance prominent rhythms [4] in several frequency bands, overlapping in time and space.

Cortical rhythms have been examined during resting-state activity [5, 6] as well as during tasks

[7–10]. The rhythms show distinct spectral peaks, for instance in alpha- and beta-frequency

range, distinct spatial distribution across rhythm types, for instance with beta-bursts promi-

nent in the precentral gyrus, and the sensorimotor mu-rhythm in the postcentral gyrus [11].

Theta-rhythms are visible to a greater extent in invasive recordings, whereas in non-invasive

recordings theta is mostly limited to mid frontal areas [12]. Rhythms show distinct task-related

modulation and intricate waveforms strongly deviating from sinusoids, with these non-sinu-

soidalities potentially providing improved physiological interpretability beyond oscillation

power alone [13].

Because the coexistence of different types of neural activity leads to superposition on the

signal recorded with electrodes, many different methodological approaches exist to untangle

distinct activity sources from electrode signals. One can leverage the multivariate structure of

iEEG recordings, in which a number of electrodes are placed on the cortical surface to acquire

time series data, toward this end. Each electrode picks up a mixture of signals from different

types of cortical sources, determined by location and orientation of the generating sources and

the biophysical properties of the tissue. Fig 1 illustrates the underlying data model for iEEG.

This spatial mixing is given by the forward model and is assumed to be linear here [14].

For noninvasive electrophysiological recording techniques such as electroencephalography

(EEG) and magnetoencephalography (MEG), source reconstruction techniques are commonly

used to extract independent activity sources from sensor space data [15]. Many approaches

can be framed as the estimation of spatial filters that satisfy pre-defined optimization criteria,

taking into account either biophysical constraints given by cortex morphology or statistical

properties of the signals, which for instance are considered when computing principal or inde-

pendent component analysis. A spatial filter allows computation of a new, filtered signal trace
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using a weighted sum of all other electrodes. For each time point, the dot product of the elec-

trode data with the spatial filter is taken to yield the corresponding entry for the source trace.

The spatial filter vector is the same for all time points and this operation can be performed effi-

ciently by matrix multiplication.

For iEEG recordings, source reconstruction has mostly been employed in the context of

localizing epileptic seizure focus, both with biophysical modeling [16–19] and approaches

using independent component analysis [17, 20–23]. But in contrast to non-invasive

electrophysiological methods, data referencing techniques dominate for iEEG.

Data referencing can be viewed as the application of a particularly simple spatial filter. For

instance, in the case of a bipolar filter, the spatial filter is a vector with as many entries as elec-

trodes, containing weights -1 and +1 for two selected electrodes and zero for all other elec-

trodes. The two most prevalent methods for referencing iEEG data are to apply either a

Fig 1. Generative linear model of electrophysiological data. Sources S in the gray matter mix according to the forward model A with the corresponding propagation

of currents through tissue to the electrodes. The resulting signals X are recorded with electrodes placed on the cortical surface. The objective is to estimate the source

time series Ŝ from the electrode signals X with a backward model W. Three different backward models are illustrated with one specific example of their respective

corresponding spatial filters and patterns. While the spatial filters can look quite different from each other, the spatial patterns point to a similar spatial origin of the

extracted signal. Image source for coronal cut: public domain Gray’s anatomy plate 718 [28].

https://doi.org/10.1371/journal.pcbi.1009298.g001
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common average reference, with the aim to minimize common noise or distal activity, or to

use bipolar reference, with the aim to extract locally generated signals. While a referencing

approach is computationally simpler than an approach involving biophysically or statistically

constrained source reconstruction, the referencing choice will highly impact the dynamics

present in the resulting signal [24–27].

For examining high-frequency activity, an electrode-based approach (using a standard

common average or bipolar reference) seems to be justified because of limited spatial spread of

high-frequency signal content not exceeding inter-electrode distance [29, 30], with sub-centi-

meter functional specificity [31]. In contrast to that, activity in lower frequency ranges displays

an increased spatial spread, showing a high degree of correlation between neighboring elec-

trode locations depending on oscillation frequency [10, 32]. Because of the spatial spread, it is

expected that different rhythms contribute to activity of several electrodes due to spatial super-

position. Therefore, multivariate separation techniques may improve measurement of cortical

rhythms also in iEEG, as for instance was examined using independent component analysis in

[33].

Here, we explore a data-driven spatial filtering method, spatio-spectral decomposition

(SSD) for specifically extracting oscillatory sources in iEEG data. This technique, based on gen-

eralized eigenvalue decomposition, has been shown to be superior to independent component

analysis in EEG for extraction of oscillatory sources [34]. The SSD approach estimates distinct

putative neuronal sources from the summation activity recorded via the electrodes, i.e., it esti-

mates a backward model in the form of spatial filters with the optimization constraint focussed

on a specific frequency band of interest, in order to best measure the temporal dynamics of

oscillations in that band and their associated features of interest The focus of this approach

here is primarily on estimating the source time series. The estimated source time series are

subsequently referred to as components. Information about the location of a source is only

indirectly provided through the computation of spatial patterns.

It is important to make a distinction between spatial filters and the spatial patterns associ-

ated with each filter. A spatial filter assigns a weight to each electrode that quantifies how

much each electrode contributes to the calculation of an extracted component. A spatial filter

is generally not interpretable [35], in the sense that the magnitude of the weights directly

reflects the contribution of the source to the spatially filtered signal, as a large spatial filter

weight may also be related to cancellation of noise, for instance.

Once the spatial filter weights are calculated, one can examine the spatial structure of each

component by computing the spatial patterns, with each pattern reflecting the mapping of

sources onto measured electrode signals. This quantifies the strength and polarity of a putative

source signal on all electrodes. For instance, in Fig 1, for the bipolar referencing only two elec-

trodes contribute to the calculation of the component. But due to the fact that neighboring

electrodes exhibit signal correlation to the involved electrodes due to spatial spread, informa-

tion about this source is also present in the vicinity of the two electrodes used for calculation of

the bipolar derivation. Therefore, the associated spatial pattern has intermediate coefficients

around the involved electrodes. The spatial patterns can for instance be computed by matrix

inversion of the spatial filters. It can be seen that although the spatial filters in Fig 1 have differ-

ent structure respectively, the associated spatial patterns are quite similar, reflecting a source

originating in the sensorimotor region.

In this article, we use spatial filters to investigate rhythms present in mainly the alpha and

beta-frequency bands in human iEEG recordings. We illustrate two aspects of measuring oscil-

lations in iEEG data. First, that the activity spread of individual rhythms can exceed inter-elec-

trode distance, with single rhythms contributing to several electrodes. Second, that spatial

mixing of rhythms in intracranial recordings can affect the oscillatory power of a given rhythm
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as detected on the electrodes and alter its non-sinusoidal waveform shape. We demonstrate

how spatial filtering can identify rhythms that otherwise may not be apparent in the data due

to masking by other stronger oscillatory contributions, from low signal-to-noise ratio (SNR),

and/or from destructive interference. We also extract dominant rhythms in a resting state

dataset with spatial filters and discuss variability across participants in presence of detected

rhythms. Additionally, we illustrate how spatial filtering can be used as a powerful way to

remove band-limited noise, without artefacts from temporal bandstop-filtering. While the

employed spatial filtering methods are already used in analysis of noninvasive recordings, the

aim here is to also highlight the specific benefits of using data-driven spatial filters for invasive

electrophysiological recordings. Improved measurement of rhythms will aid bridging the

scales from recordings obtained invasively to noninvasive recording techniques.

Materials and methods

Experimental recordings

We analyzed openly available datasets from a library of intracranial recordings [9]. We primar-

ily used the dataset fixation_pwrlaw where participants fixated on a target location for several

minutes, as our focus here is physiological rhythms in the resting state. For the single partici-

pant spatial mixing illustration in Fig 2 as well as S1 Fig and to show that spatial filtering pre-

serves oscillatory task dynamics in S2 Fig we used the dataset motor_basic. In addition, we

used one recording from the faces_basic-dataset to demonstrate the application of spatial fil-

ters for strip electrode recordings for several leads that are in close vicinity and one recording

for removing noise with a specific spectral profile. We include the required ethics statement

for each of those datasets in the following, as mandated by the data usage requirements of the

data library.

Ethics statements. Data set fixation_pwrlaw: Ethics statement: All patients participated

in a purely voluntary manner, after providing informed written consent, under experimental

protocols approved by the Institutional Review Board of the University of Washington

(#12193). All patient data was anonymized according to IRB protocol, in accordance with

HIPAA mandate. These data originally appeared in the manuscript “Power-Law Scaling in the

Brain Surface Electric Potential” published in PLoS Computational Biology in 2009 [36].

Dataset motor_basic: Participants in this dataset performed hand or tongue movements

with timing based on a cue, with movement contralateral to placement of the recording grid.

Cues were presented as written words in a 10 x 10 cm presentation window, within a distance

of 0.75–1 m from participants. The analyzed dataset features a 39 year old female participant

with a 5 x 5 electrode array, with an inter-electrode spacing of 10 mm, with a 4 mm diameter

of each electrode. The sampling frequency was 1000 Hz, acquired with the sample recording

system as above and hardware band-pass filtered in the same range.

Data set faces_basic: Ethics statement: All patients participated in a purely voluntary man-

ner, after providing informed written consent, under experimental protocols approved by the

Institutional Review Board of the University of Washington (#12193). All patient data was

anonymized according to IRB protocol, in accordance with HIPAA mandate. These data origi-

nally appeared in the manuscript “Spontaneous Decoding of the Timing and Content of

Human Object Perception from Cortical Surface Recordings Reveals Complementary Infor-

mation in the Event-Related Potential and Broadband Spectral Change” published in PLoS

Computational Biology in 2016 [37].

Participants. For resting state group analyses, the data from 20 participants was used. The

mean age was 31.1±9.5 (mean±standard deviation), 9 female, 7 male. For four participants, age

and gender information was not available.
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Experimental design and recording setup. Dataset fixation_pwrlaw: The task was a fixa-

tion task where participants fixated on a fixation cross placed on the wall in three meters dis-

tance for several minutes (mean data length: 157±51 s). Intracranial recordings were made

from subdural electrode arrays (mean number of electrodes: 60±12), with an inter-electrode

spacing of 10 mm, with a 4 mm diameter of each electrode. For most participants, data was

Fig 2. Example: Spatial mixing of sensorimotor rhythms for one participant. A) Power spectral densities for three channels along the sensorimotor strip. The

gray bar indicates the frequency band defined as the signal contribution for estimating the SSD spatial filters. The power spectrum shows a peak frequency in the

alpha-band, with additional harmonic peaks. The channels were selected a according to highest SNR in the chosen frequency range. B) The corresponding signal in

the time domain showing oscillatory bursts in the alpha-band, amplitudes are normalized for comparison of time courses. The red box marks a time period in

which less pronounced oscillations can be seen in the electrode signals, but the oscillatory power of the constituent SSD components is not decreased. C)

Coefficients in the spatial patterns for the selected electrodes, i.e., electrode 2 can be approximated as a linear combination of: e2 = 0.34 component1 +

1.05 component2 + 0.59 component3. D) Power spectral densities for the first three components as estimated by SSD, showing a higher alpha-SNR, with less spectral

peaks in flanking frequency bands. E) Time domain signal for the corresponding three components, showing pronounced sensorimotor bursts, normalized

amplitudes for comparison of time courses. F) SNR per component, for all 25 components. The SNR drops off fast, only a number of components need to be

inspected. For the components last in the sequence, the SNR increases as rhythms in flanking bands increase spectral power also in the band of interest. G)

Approximate location of the ECoG-grid in head coordinates. The black markers highlight the electrodes shown in A) and B). H) Spatial filter coefficients showing

similarity to bipolar and Laplacian-type filters. I) Spatial pattern coefficients showing focal contributions from sources along the sensorimotor strip.

https://doi.org/10.1371/journal.pcbi.1009298.g002
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available with a sample rate of 1000 Hz and was resampled to 1000 Hz for participants with a

higher sampling rate. The recordings were made with Neuroscan Synamps2 amplifiers (Com-

pumedics-Neuroscan, San Antonio, TX) in conjunction with a clinical recording system

(XLTEK or Nicolet-BMSI). A common ground and reference electrode, placed on the scalp,

was used. A hardware band-pass filter from 0.15 Hz to 200 Hz was applied.

Dataset motor_basic: Participants in this dataset performed hand or tongue movements

with timing based on a cue, with movement contralateral to placement of the recording grid.

Cues were presented as written words in a 10 x 10 cm presentation window, within a distance

of 0.75–1 m from participants. The analyzed dataset features a 39 year old female participant

with a 5 x 5 electrode array, with an inter-electrode spacing of 10 mm, with a 4 mm diameter

of each electrode. The sampling frequency was 1000 Hz, acquired with the sample recording

system as above and hardware band-pass filtered in the same range.

Dataset faces_basic: Participants in this dataset performed a simple visual discrimination

task. The electrodes had 4 mm diameter and 10 mm inter-electrode spacing, with silastic

embedding. We selected three electrode leads over the left parietal hemisphere for analysis.

The sampling frequency was 1000 Hz, acquired with the sample recording system as above

and hardware band-pass filtered in the same range, the signals were measured with respect to

a scalp reference and ground.

Data analysis

Data analysis was performed using Python in conjunction with MNE v.0.20.4 [38]. Analysis

code necessary to produce the figures in the manuscript from raw data is available at: https://

github.com/nschawor/ieeg-spatial-filters-ssd.

Spectral analysis and parametrization. Power spectra were calculated with Welch’s

method (3 s window length, 0% overlap). The spectral parameterization method and

toolbox of [39] (version 1.0.0) was employed for determination of peak frequencies. In this

method, the power spectrum is modeled as a superposition of aperiodic and oscillatory com-

ponents, which allows to distinguish between oscillatory and aperiodic contributions to the

power spectrum. The power spectrum P(f) for each frequency f is expressed as:

Pðf Þ ¼ Lðf Þ þ
X

n

Gnðf Þ: ð1Þ

With the aperiodic contribution L(f) expressed as:

Lðf Þ ¼ b � log½f w�; ð2Þ

with a constant offset b and the aperiodic exponent χ. When the power spectrum is plotted on

a log-log axis, the aperiodic exponent χ corresponds to the slope of a line. Each oscillatory con-

tribution Gn(f) is modelled as a Gaussian peak:

Gnðf Þ ¼ an exp �
ðf � mnÞ

2

2s2
n

� �

; ð3Þ

with an as the amplitude, μn as the peak frequency and σn as the bandwidth of each component.

The number of oscillatory components is determined from the data, with the option to set a

maximum number of components as a parameter. The model assumption is that oscillatory

and aperiodic processes are separable. Settings for the spectral parameterization algorithm

were: peak width limits: (0.5, 12.0); maximum number of peaks: 5; minimum peak amplitude

exceeding the aperiodic fit: 0.0; peak threshold: 2.0; and aperiodic mode: ‘fixed’. Here, we only
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extracted the peak frequencies and bandwidths for each electrode of each participant, discard-

ing the aperiodic exponent.

Calculation of spatial filters. We estimate spatial filters via spatio-spectral decomposition

(SSD) [34], which specifically maximizes spectral power in a frequency band of interest (for

example from 8–12 Hz), while minimizing spectral power in flanking frequency bands (for

example from 6–7 Hz as well as 13–14 Hz). This procedure enhances the height of spectral

peaks over the 1/f-contribution, exploiting specifically the typical narrowband peak structure

of neural oscillations. The underlying data model for the method assumes that the measured

time series X (a matrix with t samples and k electrodes) constitute a linear superposition of

signal XS and noise XN contributions in the data. In the particular case, signal here means

oscillations in a narrow frequency band, while noise represents the signal in the neighboring

frequency bands. The estimation procedure uses temporally band-pass filtered activity, cen-

tered on a peak frequency with a specified bandwidth. The choice of peak frequency and band-

width was informed by spectral parametrization of signals from all electrodes. Following the

original paper [34], we use a 4th order Butterworth filter for temporally filtering the respective

signal and noise contributions. The covariance matrices across electrodes of the signal and

noise contributions are calculated on the basis of the band-pass filtered electrode activity.

X ¼ XS þ XN

signal covariance CS ¼ XT
SXS with CS 2 R

k�k

noise covariance CN ¼ XT
NXN with CN 2 R

k�k

The objective is to find a spatial filter w, which maximizes the power of the projected signal PS,
while minimizing the power of the projected noise PN.

SNRðwÞ ¼
PS

PN
¼

varðwTXSÞ

varðwTXNÞ
¼

wTCSw
wTCNw

This Rayleigh quotient can be transformed into a generalized eigenvalue problem, which

allows efficient and fast computation. In matrix form, the above equation can be written as:

CSW ¼ CNWΛ

where W is the matrix of all spatial filters with individual filters as columns, and Λ is the unity

matrix with the corresponding eigenvalues on the diagonal. While the spatial filters are esti-

mated with the aid of covariance matrices obtained from narrowband activity (from the nar-

rowband activity defined as signal as well as the flanking narrowband noise), the spatial filters

are then applied on the broadband activity recorded by the electrodes X to yield the compo-

nent time series Ŝ ¼WTX. The data can be reconstructed using X ¼W� 1 Ŝ ¼ A Ŝ; where the

inverse of the spatial filter matrix W−1 constitutes the matrix of spatial patterns A.

Applying the spatial filters to the broadband activity ensures that features of activity origi-

nating from the same spatial location will also be extracted by the spatial filter, for instance the

harmonics of a non-sinusoidal signal. The number of components returned by SSD is equal to

the number of electrodes, with the components ordered by relative SNR in the frequency band

of interest. In contrast to PCA, the first few SSD components only capture a small fraction of

global variance, as the method is focused on maximizing variance in a specific frequency band.

PCA has strong constraints, and can only return a spatial filter matrix W which is orthogonal,

i.e., for which WTW = Id needs to be satisfied. Therefore WT = W−1 = A, which means that

spatial patterns A are equal to spatial filters for PCA. As this results in spatial filters with high

degree of smoothness between neighboring values, PCA will not be able to distinguish rhythms
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in the same subspace. SSD and other generalized eigenvalue decomposition methods do not

have this constraint. There, the following constraint needs to be satisfied AW = Id. Therefore,

the spatial patterns are not generally equal to the spatial filters, as the inverse of a matrix is not

generally equal to its transpose. This allows distinguishing sources in the same subspace, e.g.

rhythms coming from the same cortical area in the same frequency band. In terms of ampli-

tude of the individual components, they are independent of each other for PCA as well as SSD.

A technical note: certain preprocessing operations, like removal of ICA components, can

result in a covariance matrix that does not have full rank. To determine whether the covariance

matrices have full rank, the eigenvalue problem involving only the signal covariance CSV =

VΛ is solved. The rank r is determined by calculating the number of eigenvalues that are not

zero (above a small numerical threshold, 10−6). If the matrix is not full rank, SSD is computed

on the expansion: ~CS ¼ ðV1:rΛÞ
TCSV1:rΛ, with Λ being the identity matrix, having 1=

ffiffiffiffi
li

p
on

the diagonal, with eigenvalues λi and V1:r constituting the first r eigenvectors. After solving the

generalized eigenvalue problem, the resulting spatial filters ~W are multiplied with V1:rΛ to

obtain the spatial filters in the original space: ~W ¼ V1:rΛ ~W.

The peak frequency of estimated SSD components can differ slightly from the target peak

frequency used to define the signal contribution. Therefore, after spatial filter estimation, the

peak frequency and the SNR of each component (spectral peak height exceeding the 1/f-contri-

bution) was assessed by calculating the power spectra and parametrization of them with the

same parameter settings as for the electrode signals. Components exceeding a SNR-value of 5

dB were retained. This will discard weak rhythms, but the main objective here is to identify

rhythms using a common threshold in order to make comparisons across participants. This

was also done to illustrate a caveat in iEEG analyses, which commonly involves pooling of elec-

trodes across participants, i.e., underlying here is the assumption of similar SNR across partici-

pants. The value of the SNR threshold was chosen in accordance with our previous studies

[40], which were set to examine temporally resolved features of oscillations, e.g., instantaneous

phase.

Calculation of spatial patterns. Spatial patterns A for interpretation of the spatial origin

of the extracted component can also be obtained by multiplication of spatial filter matrix W

with the covariance matrix calculated for the signal component in the frequency band of inter-

est CS [35]: A ¼ 1

ZW
TCS.

For appropriate scaling, the patterns are normalized by a scaling factor Z = (WTCS)
+ W,

with + denoting the Moore-Penrose pseudoinverse, such that the product of spatial patterns

and spatial filters will yield the identity matrix ATW = Id. This is required in order for the

product of the patterns and source estimates Ŝ to yield the electrode measurements X.

To illustrate spatial spread of oscillatory components, we analysed the topography of spatial

pattern coefficients. For each component, the absolute value of the associated spatial pattern

coefficients was taken and the values were then divided by the maximum value. The maximum

spatial pattern coefficient in a distance of 2.5 cm around the maximum (distance value deter-

mined by Euclidean distance) was extracted to assess contribution of a single component onto

several electrode signals. We chose to limit the calculation to the immediate surrounding of

the spatial maximum based on work from [32], who modelled the decrease in spatial correla-

tion across electrodes using different function fits in high density ECoG data. As the spacing

across electrodes in the dataset used here was too coarse to fit a function, we opted to quantify

the decrease in spatial spread across space by the maximum spatial pattern coefficient in the

vicinity of the spatial maximum.

Waveform shape analysis. The bycycle toolbox [41] was used for detecting and quantify-

ing burst features in the time domain, using the following steps: First, a narrow band-pass filter
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(finite impulse response filter, peak frequency ±3 Hz) was used for identification of zero-cross-

ings. With aid of zero-crossings, cycle features are determined on broadband filtered (1–45

Hz) data. All cycles that pass predefined criteria were classified as bursts. We used the follow-

ing parameter settings for determining bursts, consistent across datasets: minimum of three

present cycles, amplitude fraction threshold = 0.75, amplitude consistency threshold: 0.5,

period consistency threshold: 0.5, monotonicity threshold: 0.5. An amplitude fraction thresh-

old of 0.75 retains only the cycles exceeding an amplitude higher than the 75th percentile. The

relatively high threshold was chosen to allow for improved measurement of asymmetries, as

burst occurrence may be quite infrequent. Then, mean waveform features across burst cycles

(e.g., voltage amplitude and cycle frequency) were calculated for each component. A main

focus here was the measurement of waveform shape asymmetries, i.e., peak-trough asymmetry,

where the fraction spent in peak time (time from rising flank zero-crossing to falling flank

zero-crossing) differs from the fraction spent in trough time (time from falling flank zero-

crossing to rising flank zero-crossing), as well as rise-decay asymmetry, where the time taken

from peak to trough differs from the time taken from trough to peak.

Noise removal with spatial filters. For removing noise with a specific spectral profile, we

estimate spatial filters for maximizing SNR around the frequency peak that should be removed,

e.g., 60 Hz ± 1.75 Hz for line noise. For defining the contribution that should be minimized,

i.e. the contribution that should remain in the cleaned data, we adjusted the used frequency

ranges slightly: while previously only a narrow frequency range was used for defining the

flanking frequency, here we adjusted the lower range of the flanking pass-band to be at 1 Hz,

such that the activity across the whole frequency range should be considered to remain in the

data. The adjustment of frequency borders is a benefit of SSD, as it allows for flexible incorpo-

ration of prior knowledge for estimation of spatial filters. After estimation of spatial filters, the

components constituting line noise are subtracted from the raw signal with a linear operation:

Xcleaned ¼ X �
XN

j¼1

ajsj

with X the raw signal matrix, N the number of components to remove, aj the spatial pattern

associated with component j and sj the time course of the SSD component j. N can be deter-

mined by inspection of the power spectra of the estimated components, and removing compo-

nents iteratively until the noise level reaches a sufficiently low state.

Results

Several rhythms contribute to intracranial activity from single electrodes

First, we illustrate how activity taken from single intracranial electrodes shows a mixture of

several different rhythms. Each electrode features sensorimotor bursts in the alpha-frequency

range, as indicated by a peak around 10 Hz in the spectral domain (Fig 2A) and cycles with a

period of approximately 100 ms in the time domain (Fig 2B). We compute data-driven spatial

filters using narrowband activity in the alpha-frequency range defined as the signal contribu-

tion and flanking frequency bands defined as the noise contribution. The estimated spatial fil-

ters are then applied on broadband activity. The spectra and examples of the time domain

activity of the three components with highest SNR are shown in Fig 2D and 2E. The compo-

nents display an increase in relative SNR (peak amplitude height over 1/f-contribution), com-

pared to the raw electrode signals. The ordering of the components is according to the SNR in

alpha-range, with the strongest relative SNR rhythm shown first. The SNR for all components

can be seen in Fig 2F showing that SNR is highest for the first component, and a fast drop off
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in SNR. This ordering enables fast inspection, as only the first couple of components typically

contain activity in the frequency band of interest with sufficient SNR.

Of note in the example is that the first component is of much smaller total power than the

second and third components, as can be seen in the power spectrum. The large relative SNR of

the oscillation stems in part from the low power of the 1/f-contribution. In electrode 1 and 3,

this component has a large contribution, as evidenced by large coefficients of the spatial pat-

tern. But due to contributions of other components with a higher overall amplitude, this com-

ponent is obscured on the level of electrodes. Only the activity in the alpha frequency band

and surrounding bands is used to estimate spatial filters, but since harmonics originate from

the same spatial location, due to the non-sinusoidal nature of the oscillation, the application of

the spatial filters retains the SNR in the harmonic bands when the spatial filter is applied on a

broadband signal.

Examining the spatial patterns associated with each component (Fig 2I), it is evident that

the multiple rhythms co-occur in a small area, which results in each component contributing

to the activity of the electrodes as indicated by large coefficients in the spatial pattern. In the

case of tangentially orientated sources, the sign of the contribution can switch between neigh-

boring electrodes. Depending on the spatial mixing of those rhythms, they can cancel out or

enhance each other during specific time periods, due to changes in their phase relationship. In

time periods where components of comparable amplitude are phase-aligned, constructive

interference takes place, resulting in a large amplitude of the electrode signal. In periods with a

phase shift reaching π or 180 degrees, with peaks of one component coinciding with troughs of

another, destructive interference can result in a low electrode signal amplitude, even though

oscillations are still present in the individual components (see time points marked with red

box in Fig 2B). Therefore, by constructive and destructive interference, changes in the power

of the electrode signal can reflect changes in synchronization of rhythms across space [42], and

do not necessarily reflect changes in the oscillation strength of the source signals. Disentangl-

ing these different possible causes of changes in oscillatory power cannot be done based solely

on activity that displays a large degree of spatial mixing and data-driven spatial filters may be

helpful to distinguish such phenomena.

Examining the spatial filters for each component (Fig 2H), they resemble but also diverge

from bipolar or Laplacian-type spatial filters. The spatial filter associated with component 1

has a bipolar-type form, but with the advantage that the direction along which the bipolar deri-

vation is taken is learned from data. In S1 Fig we show the same traces for common average

referenced electrodes, which shows higher SNR compared to the common reference, but still

exhibits spatial mixing, as well as bipolar derivations in two directions (anterior to posterior

and lateral to medial). Additionally, we show in S2 Fig that task-related temporal dynamics are

preserved by SSD spatial filtering, in line with other referencing methods, showing high con-

sistency. The main argument here is not that SSD will achieve the highest SNR, but that

referencing to capture specific sources is dependent on properties of the source and that not all

sources will be captured best by a fixed referencing scheme, whose utility may depend on the

local cortex morphology. In that sense, using data-driven spatial filters uses information given

by the multivariate structure of recordings to a greater extent.

Improvement of signal to noise ratio for sEEG signals

There are many ways to reference stereoelectroencephalography (sEEG) recordings, ranging

from monopolar, bipolar, common average or Laplacian referencing [25]. The choice of refer-

ence is a researcher degree of freedom. Fig 3 shows application of SSD for a recording consist-

ing of three close-by sEEG leads, as shown in Fig 3A. Fig 3B shows time domain examples of
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electrode signals that were first common average referenced within a lead as well as examples

for bipolar referencing (choosing a neighboring electrode on the same lead as the 2nd elec-

trode), compared to the first SSD component for a peak frequency that was selected according

to the spectrum of electrode signals, as is visible in Fig 3C for all three types of signals. It can be

seen that SNR of rhythms of interest was improved in sEEG recordings by spatial filtering

using SSD. In the case of the 8.2 Hz component, an enhancement of the spectral peak for the

harmonic frequency is also visible, demonstrating the potential for SSD for isolating non-sinu-

soidal rhythms.

Additionally, all signals were submitted simultaneously to the SSD procedure, without sub-

selection, making it possible to combine information from multiple leads and electrode config-

urations efficiently. While standard referencing techniques tend to enhance signals generated

via a specific way, SSD is agnostic to the biophysical generation, and can be used more flexibly

in this regard. For instance, monopolar and common-average referencing preserve correlation

across channels to a higher degree than bipolar referencing [25]. This will influence measure-

ment of rhythms, which can have a different spatial spread across subjects, depending on local

cortex anatomy. So, while common average referencing highlights radial sources, bipolar

referencing has a focus on locally generated activity and emphasizes bipolar sources. SSD will

Fig 3. Illustration: Increase of relative SNR for sEEG. A) Three sEEG leads (blue, green, purple color respectively) plotted on cortical surface, ventral view. The

electrodes highlighted with a larger circle size correspond to the colored traces. B) Time domain signals for common average referenced (CAR) signals, bipolar

referenced signals and strongest SSD components for two selected peak frequencies, with bandwidth highlighted with colored boxes in spectral plots. C) Power

spectral densities for common average referenced signals, showing multiple peak frequencies in the spectrum. D) Power spectral densities for bipolar-referenced

signals. E) Power spectral densities for SSD components, showing an increased SNR over standard referencing.

https://doi.org/10.1371/journal.pcbi.1009298.g003
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extract components with maximum SNR agnostic about their spatial spread. In the next sec-

tion, we further examine the spatial spread present empirically in iEEG data.

Determining number and spatial extent of rhythms

Having demonstrated basic properties of spatial filtering with SSD, we turn to a number of

physiological aspects to consider. Fig 4B shows time domain examples of two closely neigh-

boring electrodes (black traces) with oscillatory activity in the same frequency band. The

time domain activity of these electrodes looks similar, with prominent alpha-band oscilla-

tions. While these two electrodes look similar, it is unclear whether this is due to several

independent rhythms with the same peak frequency, or one underlying source that is pro-

jecting onto both electrodes. Estimating spatial filters with SSD shows the existence of two

Fig 4. Identifying independent sources. A) Spatial patterns for two components with electrodes highlighted in green. B) Time domain activity for two

neighboring electrodes (black) and the top SNR components for alpha range (gray span in the spectrum in C), showing that the oscillatory activity is largely

captured by the first component, with a smaller alpha component in the second component that is otherwise masked in the electrode activity. C) Power spectral

densities for electrode and component signals. D) Spatial spread for components with different peak frequency showing large variation. Each circle corresponds to

one component. E) Example spatial pattern coefficients visualized on electrode grids, for high spatial spread (top row), where a component contributes to activity

of many electrodes and low spatial spread (bottom row) with a single maximum. In contrast to A), the absolute value is plotted here to better illustrate the spread,

regardless of polarity. The electrode with the largest coefficient is marked with a green circle.

https://doi.org/10.1371/journal.pcbi.1009298.g004
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components with alpha-rhythm activity, one strong alpha-rhythm (in terms of relative SNR)

and a second alpha-rhythm with much smaller spectral power (Fig 4C), which would be

masked in individual electrode traces. Of note is that the spatial spread of these rhythms

exceeds inter-electrode spacing, with the same rhythm having large contributions to the

activity of neighboring channels, as indicated by the spatial pattern coefficients showing high

values for a cluster of electrodes. The components are closely overlapping in space as can be

seen from the topography of spatial patterns (Fig 4A). By applying data-driven spatial filters,

the rhythms close in frequency and space can be disentangled, enhancing the detectability of

small amplitude rhythms, for instance.

To go beyond a single participant, we analyzed the coefficients of spatial patterns for our

resting dataset. Fig 4D shows the spatial spread of different rhythms, as measured by the spatial

pattern coefficients of electrodes neighboring the electrode with the maximum coefficient. It

is visible that rhythms can have large contributions onto several electrodes, as indicated by

neighboring channels with high coefficients. We show examples of rhythms with high spatial

spread in Fig 4E, top row. A key point we want to highlight is that the spatial spread can also

be small (see Fig 4E, bottom row), with only one singular maximum for one electrode relative

to other electrodes. In such a case, a standard common average reference might be a sufficient

but more simple approach for investigating rhythms. However, in the case of a rhythm of a

large spatial spread across a large number of electrodes however, this rhythm may be attenu-

ated when using a common average reference. Thus, the benefit of using data-driven spatial fil-

ters is that they may work in both cases, because the spatial correlations across electrodes for

different present rhythms cannot be known a priori.

In general, signal decomposition techniques like SSD can be used for dimensionality reduc-

tion, keeping only the N components that contribute most strongly to the signal in the band of

interest, and projecting out all other components to limit analyses to a specific subspace. The

determination of which components to keep can be made using several different approaches,

such as a threshold criterion based on 1/f-corrected SNR as in this article, a more local relative

SNR-threshold criterion only focusing on the peak frequency band and neighboring flanking

bands [34, 43], with the aid of a bootstrapping procedure [44], or based on physiological con-

siderations such as focusing on rhythms originating from a specific location, which can be

determined with aid of the spatial patterns. We want to stress that a criterion of the number of

components to keep is dependent on the specific objectives of the study and needs to be care-

fully considered within the scope of those desired objectives. In the following, we employed a

1/f-corrected SNR criterion, as the aim was to quantify all dominant resting rhythms without

any regional pre-selection.

Variability of resting rhythms across the cortex

To demonstrate how data-driven spatial filters can be used for data exploration, we assess the

resting rhythms in the frequency range of 5 to 20 Hz for different participants in an iEEG rest-

ing state dataset. For this analysis, spatial filters were computed separately for specific fre-

quency bands, with the frequency ranges selected via spectral parameterization of electrode

signal to identify putative oscillations that exhibit narrowband power above the 1/f-contribu-

tion. The components with SNR exceeding a specified threshold (>5 dB) were retained. Fig

5A shows the spatial distribution of different rhythms extracted with SSD for individual partic-

ipants. The location of the respective component marker reflects the electrode location of the

maximum spatial pattern coefficient. In general, there are several rhythms detectable in the 5

to 20 Hz range. But there is considerable variation in peak frequency and measured SNR
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Fig 5. Variability of resting rhythms across the cortex. A) Each subplot shows the location of electrodes (white squares) on a template brain for one individual

participant. Each sphere indicates an oscillatory component, with the size indicating 1/f-corrected SNR and the color indicating peak frequency of that

component. If there is no sphere of a respective color in the vicinity of an electrode, no rhythm above the SNR-threshold could be detected in that frequency

band. There is large variability between participants. For improved comparison across participants, all electrodes and rhythm locations were mapped onto the

right hemisphere. Participants are ordered according to the mean z-coordinate across the electrode grid, to ease comparison. B) Each component is represented
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across participants, as indicated by a variety of possible component arrangements across the

cortex.

We also show the peak frequency of all identified components in Fig 5B and 5C. We find a

distribution similar to [5], where there are more rhythms detected with a peak frequency

around 7 as well as 16 Hz, and fewer rhythms with a peak frequency around 10 Hz, in contrast

to non-invasive electrophysiological measurements. Note that because we use spectral parame-

trization on the spectra of SSD components, the peak frequency of SSD components can

slightly vary from the peak frequency used as an input parameter for SSD. This distribution of

peak frequencies is possibly related to the spatial bias of electrode placement, wherein most are

placed over sensoriomotor and temporal areas, with less coverage over occipital areas, as deter-

mined by clinical needs. Additionally, the recording spans the duration of several minutes,

during which time the participant’s behavior is relatively unconstrained and variable. How-

ever, such a duration is typical for resting-state or baseline recordings across different studies.

Another factor to consider, especially in iEEG data, is the fact that patients have the grids

implanted for clinical reasons, with different pathologies and different medication status,

which might contribute to the observed variability. Nevertheless, variability in peak frequen-

cies and oscillatory SNR is also observed in non-invasive electrophysiological measurements.

For iEEG, this might be more of a concern, since a smaller number of participants are usually

included per study, compared to studies using non-invasive measurements. In the case of such

small sample sizes, a single participant with a large amplitude, prominent rhythm across many

electrodes may dominate the analysis due to the way that iEEG data are often pooled. This can

result in a seemingly large effect in the group-average, despite only being present in a small

number of participants.

The key point we aim to illustrate here is that rhythms are present with different SNR and

variation in peak frequency across participants, and canonical oscillations of interest may or

may not be detectable in individual participants in iEEG data, given the large between partici-

pant variability. The variability may contribute to inconsistent results, as temporal band-pass

filtering of activity in a certain area within a predefined frequency band might not actually

reflect oscillatory dynamics, but might capture only contributions from 1/f-components.

Applying data-driven spatial filters can aid in verifying the presence and spatial origin of

rhythms of interest, while also improving measurements of their precise temporal dynamics

by increasing the SNR.

Waveform shape and spatial mixing

Neural oscillations are often of a non-sinusoidal shape, for instance in the form of a pro-

nounced arc-shape in the case of the sensorimotor mu-rhythm (e.g., see Fig 2, component 1).

While waveform can be informative about neuronal processing [13], the detectability of wave-

form shape requires a high enough SNR to capture harmonic frequencies, which may not be

detectable with a high level of 1/f-noise. While non-sinusoidality is also present in noninvasive

signals, the difficulty there is that it is often obscured by spatial mixing and a low SNR. There-

fore, invasive cortical recordings provide an excellent opportunity to study waveform shape.

As the amplitude envelope of rhythms in the same frequency band tends to co-fluctuate [45]

positively, such as when oscillations are present for one source, there are also oscillations pres-

ent in neighboring sources, there is a risk of harmonics canceling out due to spatial mixing.

For instance, a temporal shift of 12.5 ms constitutes a period of 1

4
p for a 10 Hz alpha, but twice

as a circle, with y-position reflecting peak frequency and x-position reflecting participant ID. Color represents position along the posterior-anterior axis, with

negative values reflecting most-posterior position. C) Histogram across all participants and components showing a relative lack of detectable 10 Hz rhythms.

https://doi.org/10.1371/journal.pcbi.1009298.g005
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the amount, 1

2
p, for a harmonic 20 Hz beta-rhythm, resulting in waveform changes solely

induced by spatial smearing [42]. Therefore, using spatial filtering techniques can be beneficial

to explore waveform properties in iEEG recordings.

Fig 6A shows an example where spatial demixing reveals two different rhythms with vary-

ing waveform shape properties. While the frequency spectra (Fig 6B) of the raw electrode

traces activity traces look similar, waveform shape features are masked in the signals because

different neighboring (Fig 6C) rhythmic components with different waveform shape

Fig 6. Waveform shape of intracranial neuronal rhythms. A) Neighboring rhythms with different waveform shape for two electrodes and two components

estimated based on alpha band activity. B) Power spectral density for electrodes and components. The presence of harmonic spectral peaks at exact multiples of the

alpha peak frequency indicates a non-sinusoidal waveform shape. The gray marked area corresponds to the frequency range defined as a signal for estimation of

spatial filters. While both electrode signals show a peak in the beta-band, in component space the sharp beta-harmonic is largely captured by the second

component, showing a spike-wave waveform shape, with the first component being a triangular waveform. C) Topographies for the first and second components

showing a radial and tangential source distribution (respectively); the electrodes shown as traces in B are marked with green circles. D) Group-level assessment of

waveform asymmetry, with intracranial recordings showing considerable peak-trough asymmetry in the waveform (where a peak-trough asymmetry value of 0 is

indicating perfect symmetry). E) Peak-trough asymmetry values, plotted across the cortex, larger circles indicate larger SNR. Rhythms with high asymmetry can be

found through-out the cortex.

https://doi.org/10.1371/journal.pcbi.1009298.g006
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characteristics summate. The estimated components show a differentiation between a triangu-

lar rhythm and one that has a spike-wave shape (reminiscent of local field potential traces that

can be found for instance in deep layers of macaques [46] or mice [47]. Differentiation

between different waveforms may be difficult to make on the basis of signals highly impacted

by spatial mixing.

Fig 6D illustrates that many ECoG rhythms in the 5–20 Hz frequency band have a non-

sinusoidal waveform shape, which is information that could be taken into account to make

inferences about underlying cellular physiology. Here, a peak-trough asymmetry value of 0.2

would mean a peak time of 60 ms and a trough time of 40 ms for an oscillation cycle of 100 ms

length (a strong deviation from a 50/50 duty cycle). Non-sinusoidal rhythms can be present in

various cortical locations, and in Fig 6E we show examples of high peak-trough asymmetry in

the sensorimotor as well as temporal regions. Of note is that the triangular rhythm visible in

Fig 6A is not asymmetric with respect to duty cycle, but still deviates from a sinusoid by show-

ing sharpness around peaks and troughs. Therefore, construction of measures capturing wave-

form properties requires careful consideration regarding which aspects to measure, which may

be different regarding physiological settings or disease pathologies of interest, e.g., peak-trough

asymmetry for the sensorimotor mu-rhythm [48] or cycle sharpness in Parkinson’s disease

[49].

Removing noise with a specific spectral profile using spatial filters

Another use case of spatial filters that we want to highlight here is in the removal of noise with

a specific spectral profile in multichannel data. A prominent noise source in that respect is line

noise with a high narrowband spectral peak at e.g., 50 or 60 Hz. Fig 7 illustrates the removal of

noise from a raw ECoG recording that shows high levels of noise at 60 Hz across the majority

of electrodes, as well as narrowband noise at 200 Hz that is of unknown origin (possibly caused

by medical equipment). We estimate spatial filters to maximize SNR first for the 200 Hz noise,

and subsequently project these components out from the raw signal by a linear operation. The

signal after removal of noise is shown in Fig 7B. Fig 7C shows the signals after applying com-

mon average referencing; though the level of noise is attenuated, narrowband noise remains

present in the signals. The benefit of using spatial filters to remove noise, as opposed to band-

stop filtering, is that spatial filters do not cause distortions in the time domain around the

noise frequency. This is especially important because signals in the frequency range of 50–70

Hz can be highly informative in ECoG, which makes preserving information in this frequency

band of particular interest. Another benefit is the computational simplicity, the free parame-

ters here are the peak frequency, the bandwidth around the peak frequency and the number of

components to remove. The degree of attenuation can be selected by adjusting the number of

noise components to remove, with a larger number yielding greater attenuation at the cost of

potentially removing the signal of interest. For line noise removal with spatial filters, the

ZapLine toolbox [50] provides several optimized routines. In ECoG, in addition to line noise,

other noise sources can be present, and the flexibility of spatial filters allows for the efficient

removal of noise with stationary spectral profiles.

The cost of this type of noise removal is the loss of dimensionality equal to the number of

removed components, similar to the effect of applying a common average spatial filter. This

loss of dimensionality is not of concern when a high number of electrodes are present, but

would not be recommended for a small number of electrodes. While a common average spatial

filter may work well if there is a common noise source that is manifesting in all electrode sig-

nals, using data-driven spatial filters allows for more flexibility if noise is not present in all sig-

nals. If too many noise-related components are removed, this bears the risk of removing signal
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contribution that is of interest to the research question. It is therefore necessary to inspect the

estimated noise components, for instance regarding the presence of spectral peaks in the fre-

quency band of interest. If time-locked analyses are performed, noise components can also be

inspected for the presence of time-locked contributions, to rule out reduction in valuable

information by noise component subtraction.

Discussion

In this article, we highlighted the benefits of using spatial filters for the extraction of neural

oscillations in invasive electrophysiological recordings. Applying spatial filters that specifically

optimize for oscillatory SNR in iEEG recordings, we assessed presence, spatial spread, variabil-

ity and waveform shape of iEEG resting rhythms. SSD and other spatial filtering techniques

can be a potential tool in the toolkit for researchers specifically interested in oscillations. As

with all tools, careful consideration of the benefits and limitations has to be weighed against

the increased complexity and freedom in parameter choices that might give way to potential

false positives.

Fig 7. Illustration: Removal of noise with spatial filters for ECoG data. A) Time series of six electrodes and power spectra for raw ECoG recording for 87

electrodes, color code corresponds to electrode position, with neighboring electrodes having a similar color. B) Time series and power spectra after removal of

components maximizing SNR for 60 Hz and 200 Hz spectral peaks. Note that there are no band-stop type artefacts in the spectrum since no temporal filtering

was performed. C) Time series and power spectra after common average referencing. While the 200 Hz noise is largely attenuated, 60 Hz line noise still

persists. D) Time series and power spectra after common average referencing and then band-stop filtering. The band-stop filters introduce artefacts in the

spectral domain.

https://doi.org/10.1371/journal.pcbi.1009298.g007
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General benefits of data-driven spatial filtering

Spatial filters can be used for distinct purposes in the study of neural oscillations: to identify

rhythms in the frequency band of interest and improve their signal-to-noise ratio, to examine

their correlational structure, as well as to denoise data without band-stop filters. On the con-

tinuum of using a common average reference spatial filter (potentially capturing mainly non-

local activity) to local bipolar spatial filters (with a potentially non-optimal direction of the

fixed derivation), the presented spatial filter technique represents a middle ground, extracting

signals based on spatial spread as estimated from the data. This procedure results in reduced

bias compared to a fixed reference choice.

The presented method belongs to a subclass of spatial filtering techniques that estimate a

backwards model using solely the statistical properties of the signals recorded from the elec-

trodes. The benefits of using statistical approaches like SSD, in contrast to biophysical model-

ling, is that no anatomical information or biophysical model is required for the estimation of

the spatial filters, which strongly reduces the complexity of the procedure. While our demon-

strations are mostly using ECoG data (as this was the predominant recording type present in

the used dataset), the method can be similarly applied to sEEG data, as seen in Fig 3, for the

benefit of combining information from different electrode leads. Whenever time series data

from multiple electrodes is available, the method can be applied. The electrode locations are

only needed for the interpretation of spatial patterns, but the source time series estimation is

independent from the localization accuracy of the electrode positions.

The main benefit of SSD for the study of neural oscillations is that information about the

signal structure at the frequency band of interest is incorporated, enhancing activity in that

band of interest. This procedure is in contrast to independent component analysis or principal

component analysis, which both maximize global objectives, which may not be optimal

because components in specific frequency bands might only contribute a small amount to

global variance. SSD results in an ordering of components according to SNR in the frequency

band of interest, which reduces manual inspection and can facilitate data exploration. Addi-

tionally, SSD has few parameters and is computationally fast. The signal is defined using a

temporal band-pass filter around the frequency of interest. The temporal filter requires a speci-

fication of frequency ranges for respective signal and noise contributions, for which the prior

values can be derived from electrode power spectra. Even though only narrowband informa-

tion is used for the estimation of spatial filters, the application on broadband data preserves

information beyond these narrow frequency bands, such as waveform shape, as long as they

originate from the same spatial location.

While we chose SSD as a spatial filtering technique for our illustrations, other types of gen-

eralized eigenvalue decomposition algorithms are available to solve specific objectives. For

enhancing specifically oscillatory SNR, there are variants that maximize the spectral power in a

frequency band of interest, compared to the total spectral power [51], with demonstrations for

MEG/EEG as well as monkey ECoG and optical imaging given in [52] and which are bench-

marked for EEG in [53]. Note that in the latter, the benchmark test for SSD only used the

band-pass filtered activity for evaluation after application of spatial filters; in this way, many of

the non-sinusoidal properties are lost. In our study, we compare the output of SSD using

broadband filtered data to preserve nonsinusoidal waveform shape, and we expect other gener-

alized eigenvalue decomposition methods aimed at amplifying oscillatory SNR to perform

similarly to SSD when evaluated on broadband (versus narrowband filtered) data. The main

aspect we want to highlight here is that generalized eigenvalue decomposition methods are

highly flexible and permit interesting contrasts for maximizing/minimizing SNR along specific

dimensions. For instance, in the case of task-based data, Common Spatial Patterns [54]
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maximizes differences between conditions, for instance to investigate main contributions to

task-related modulation. Source Power Correlation analysis [55] maximizes correlation with a

target variable, for instance with reaction times. To consider extracting coupled neuronal

sources, an extension of SSD termed Nonlinear Interaction Decomposition [56] has been sug-

gested. If specific types of rhythms are of interest, SSD can also be used as a regularization tech-

nique before using other analysis methods to limit the analyzed signal to the frequency range

of interest, for instance focusing on rhythms in the alpha band [43, 57].

Benefits of data-driven spatial filtering for iEEG recordings

While the above listed benefits are general and also hold for applying data-driven spatial filter-

ing for noninvasive electrophysiological signals, there are specific considerations when apply-

ing these methods for invasive electrophysiological recordings.

In contrast to noninvasive scalp recordings with standardized EEG electrode caps or sensor

arrays in MEG, invasive electrodes are placed according to specific and heterogeneous clinical

demands, and therefore do not conform to standardized positions. This complicates the incor-

poration of anatomical information into analyses. For biophysical source estimation/localiza-

tion approaches, the accuracy will vary depending on electrode localization accuracy based on

postimplantation CT imaging as well as accuracy of the estimated forward model. Reference-

choice is also more variable in invasive recordings, with referencing often done to bone or a

shank, as well as bipolar or monopolar referencing schemes, which may bias analyses. In the

specific case of analyzing neural oscillations, using SSD may be beneficial, since it specifically

utilizes information in the frequency band of interest, maximizing SNR in a more flexible way.

In addition, nearby electrodes can have different SNR due to the placement of individual elec-

trode contacts on cortical vasculature, which can influence the resulting signal in a frequency-

dependent manner when using other common referencing schemes [58]. In addition, SSD

allows for the use of information from several grids, or separate but close-by sEEG leads,

which can convey improved SNR in contrast to using information from individual leads sepa-

rately, as in the case of a fixed referencing scheme. The data-driven approach could also be

helpful in integrating information from several types of electrodes, for instance in hybrid

micro-macro electrode schemes [59].

While strong alpha-oscillations tend to dominate in non-invasive recordings, a more vari-

able set of oscillations, with neighboring peak frequencies, is simultaneously detectable in

iEEG recordings. To improve the detection of these typically smaller amplitude rhythms, spa-

tial filtering might help to separate them from more dominant frequency rhythms, as SSD

attenuates the signal contribution from flanking frequency bands, and therefore the separation

of distinct sources in neighboring frequencies becomes possible with SSD.

Physiological considerations: Spatial spread

Previous work has identified the degree of spatial correlations across invasively acquired field

signals in varying frequency bands [29, 32, 60, 61], with estimates ranging from 400 μm for the

local field potential to several millimeters in the case of ECoG. Modeling work by [62] suggests

that important consideration is the input correlation of the involved neuronal populations,

where spatial spread grows as the degree of input correlations increases. While the spatial

spread is limited for high-frequency signals, for low-frequency rhythms the spatial spread

exceeds the interelectrode distance, which results in the same source contributing to several

electrodes.

We showed examples of spatial spread as estimated from spatial patterns, ranging from

small to large spread (Fig 4). The spread for a specific component and possible neighboring
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signal sources cannot be known a priori and differs across sources and participants. Therefore

spatial mixing will potentially obfuscate temporal dynamics of neighboring sources. Data-

driven spatial filters can help to separate contributions of different sources onto corresponding

electrodes, and spatial pattern coefficients can be used to visualize the composition of electrode

activity as a linear combination of different sources. It would be of interest to evaluate whether

higher-density ECoG grids with a smaller inter-electrode spacing than analyzed here would

result in improved ability to separate rhythms in cortical areas where a large number of inde-

pendent rhythms with different peak frequencies are present, such as along the sensorimotor

strip.

Physiological considerations: Waveform shape

The analysis of rhythms using only oscillatory amplitude and frequency discards a lot of poten-

tially valuable physiological information. Using waveform shape measures can enable a more

refined look on cellular generation mechanisms and functional relevance of rhythms [63, 64],

however the detection of non-sinusoidal features of waveforms requires high SNR, making the

analysis of non-sinusoidal waveforms difficult. Because of this, intracranial recordings are well

suited for investigations of waveform shape. We show that rhythms as detected in ECoG can

be highly non-sinusoidal in a variety of cortical areas. But a potential obstacle is that wave-

forms can be masked due to spatial mixing of several rhythms. We illustrate that neighboring

rhythms, as extracted by spatial filtering, can have different waveform properties that are inter-

mixed at the sensor level (see Fig 6). It would be informative to relate these to measures from

the microscopic scale, e.g., the firing properties of individual neurons in recordings that have

both field recordings and single unit spiking data available [65]. For further analysis of peak

frequencies, time domain analysis can help to disentangle harmonic from non-harmonic

peaks, e.g., a differentiation between non-sinusoidal properties of the sensorimotor mu-

rhythm and genuine beta-bursts, a difference that can be obscured by looking at band-pass fil-

tered signals.

Physiological considerations: Variability of rhythms across participants

In terms of mapping invasive electrophysiological rhythms, the outlined procedure for investi-

gating dominant rhythms in intracranial data focused on the following methodological consid-

erations: first, electrode activity is always a mixture of many different types of rhythmic and

non-rhythmic activity. Therefore, separating putative sources will increase SNR and make it

easier to investigate spectral as well as temporal signatures, with e.g., the improved detection of

spectral peak frequencies. Not separating sources can result in a “low degree of regional speci-

ficity” [5] given that, with a division of channels strictly based on location, volume conduction

can lead to a spread of rhythms across regions. Second, the usage of spectral parametrization

additionally improves methodological validity in analysis of oscillatory activity through separa-

tion from potentially confounding aperiodic activity. Without separation of oscillatory and

aperiodic signal contributions, comparing SNR of oscillations in different frequency bands,

e.g., for neighboring theta- and alpha band rhythms would require for instance signal whiten-

ing, the outcome of which depends on the frequency range used for normalization. By requir-

ing a minimum height of a spectral peak exceeding the aperiodic 1/f-contribution, we ensure

to capture oscillatory dynamics.

Equipped with these considerations, we observed that there is high variability in measurable

rhythms for individual participants, with for instance no or only weak rhythms in the canoni-

cal alpha-frequency range across the sensorimotor cortex, as also observed by [5]. The large

degree of variability puts the spotlight on the common practice of electrode pooling, or
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combining all electrodes from all participants for analysis, which might inflate false positives

due to the contribution of a high number of significant electrodes from a single participant. In

light of the observed variability as well as a variable number of electrodes present for each par-

ticipant, hierarchical models and bootstrapping approaches [66] should be considered in the

analysis of intracranial data, to reduce the risk of only a small fraction of participants showing

the effects in the group average.

Limitations

As a general limitation, the estimation of a backward model will never achieve perfect accuracy

because dozens of electrodes are not enough to capture the thousands of underlying sources of

neuronal activity. One approach for addressing this would be through incorporating simulated

iEEG data, where the ground truth is known, such as the LFPy toolbox [67]. Specific limita-

tions of an approach for estimating spatial filters utilizing eigenvalue decomposition are

detailed below.

First, there is no automatic one-to-one mapping from estimated components onto physio-

logical entities (but neither can this be done from electrode-based activity). In terms of clarify-

ing what these components represent, [68] have proposed a distinction between genuine,

equivalent and representative sources. Within this framework, the components returned by

SSD can be seen as representative sources, not directly reflecting e.g. synaptic activity as in the

case of genuine sources, but rather presenting one possibility of many, similar to source esti-

mates returned by independent component analysis. In the case of distinct, but highly co-

fluctuating neuronal sources, they will not necessarily be separable on the basis of their covari-

ance. An indication of this are spatial patterns that deviate from the spatial pattern expected

for a dipolar source, e.g., by showing several spatially distributed maxima. Approaches based

on statistical properties of the data (including principal component analysis and independent

component analysis) will return as many components as there are electrodes, but not all com-

ponents will be physiology meaningful in the sense of representing a neuronal source in the

frequency band of interest.

In deciding how many components to keep for analysis, the following aspects should be

considered when using SSD: Inspecting the relative SNR with aid of the power spectrum is

crucial and is simplified because the components are ordered according to SNR in the fre-

quency band of interest. Components without a spectral peak in the frequency band of

interest should not be considered when talking about neural oscillations in that specific fre-

quency band [69]. The spatial patterns should be inspected for determining the local focus

of the generating source. In addition, bootstrapping approaches based on surrogate data

have been suggested to estimate the number of components to retain [44]. Regarding the

accuracy of reconstruction for instance in the example in Fig 2, it can be seen that the spatial

focus lies on the edge of the recording electrode grid. In that way, the quality of reconstruc-

tion is limited by not having more electrodes bordering the spatial maxima. In general, opti-

mizing for SNR and then checking for the presence of high SNR bears the risk of circular

analysis. Here, we use a moderate SNR-threshold to retain components. Because our focus

on these results is to highlight the degree of variability in the individual recordings, we did

not perform a bootstrapping analysis. However, if we wanted to quantify whether the com-

ponent structure contains more oscillatory structure than expected when running the analy-

sis using spatially correlated 1/f-activity contributions not containing oscillatory bursts,

bootstrapping would be appropriate. Circular analysis is not of concern when relative con-

trasts within conditions are computed, for instance across trials for one participant, where

the SSD spatial filters were estimated on the whole data segment, because in this case it is
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not the absolute oscillatory power that is crucial, but rather consistent power in- or decreases

across experimental conditions.

Further, the estimated spatial filters are invariant with respect to signal polarity, i.e., the

sign cannot be uniquely determined. Therefore depending on the choice of parameters, the

spatial filter can result in a polarity-inverted signal. For instance, for the participant in Fig 2,

the time series and spatial pattern of the second and third component was manually multiplied

with -1 for visualization. Alignment of spatially filtered signals can for instance be accom-

plished according to the sign of the electrode signals, and is straightforward in the case of radi-

ally orientated components. In the case of tangentially orientated components, with negative

and positive contributions to activity recorded on electrodes, alignment can be made by incor-

porating knowledge about physiology. Features derived from physiology can include wave-

form shape, as in the case of the arc-shaped mu-rhythm, or polarity of evoked responses.

Finally, the underlying assumption here is a linear model, and the estimated spatial filters

are not dependent on time. This assumption might insufficiently capture traveling wave phe-

nomena, for instance. Propagating activity with high velocity will impact very sharp wave-

forms, as for electrodes linearly combined with a slight offset a sharp trough will result in a less

sharp trough for the component due to time-independent linear combination. For instance,

the waveforms in Fig 2 will display a higher peak-trough asymmetry when calculated on high-

SNR segments directly from the electrodes, while SSD component traces will have a slightly

lower asymmetry measure due to the spatial filtered signal being a linear combination of

slightly time-shifted oscillation. It would be of interest for future directions to take wave propa-

gation into account when estimating neuronal oscillatory sources [70, 71].

Conclusion

Invasive electrophysiological recordings allow for high spatial and temporal resolution investi-

gations into the functional role of the diversity of neural oscillations that are present across the

cortex. Different types of oscillations can be seen, showing specific spatial distributions, peak

frequencies, waveform shapes and functional modulation, all of which indicate diverse under-

lying physiology. The spatial and temporal overlap of these rhythms makes the measurement

of these different features difficult when only using data derived from single electrodes.

Here, we argue that the richness of the data can be better explored when applying data-driven

spatial filters, which use multichannel information to specifically enhance the signal-to-noise

ratio of oscillations, and therefore improve our ability to study them. This, in turn, helps

bridge scales between invasive intracranial measurements and noninvasive, macroscale scalp

measurements.

Supporting information

S1 Fig. Example: Four different types of spatial filters. Shown are respectively for rows,

bipolar posterior-anterior referencing, bipolar medial-lateral referencing, common average

referencing and SSD data-driven referencing: A) Power spectral densities for three channels

with the highest SNR in the highlighted band. The gray bar indicates the frequency band

defined as the signal contribution for estimating the SSD spatial filters. The power spectrum

shows a spectral peak, with additional harmonic peaks. B) The corresponding signal in the

time domain showing oscillatory bursts in the alpha-band, amplitudes are normalized for

comparison of time courses. For common-average referencing, the red box marks a time

period in which less pronounced oscillations can be seen in the common average reference sig-

nals, but the oscillatory power of the constituent SSD components is not decreased. C) Elec-

trode grid showing the origin of the electrode signals, for bipolar signals both reference
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electrodes are shown, for the common average reference row the center electrodes are shown.

For SSD spatial patterns and spatial filters see Fig 2.

(TIF)

S2 Fig. SSD spatial filters preserve task-related dynamics. A) Hand-movement trials for the

SSD component with highest SNR, with detected burst in the mu-rhythm frequency range

highlighted. The event-related desynchronization in the post-cue period is high for hand

movements, no desynchronization can be seen for tongue movements, as seen in B). C) The

same dynamic can be seen for common average referenced signal for hand movement trials,

and tongue movment trials in D). The same burst detection criteria were applied for both

referencing methods.

(TIF)
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19. Chintaluri C, Wójcik DK. A novel method for spatial source localization using ECoG and SEEG record-

ings in human epilepsy patients. BMC Neuroscience. 2015; 16(S1):P286. https://doi.org/10.1186/1471-

2202-16-S1-P286

20. Hindriks R, Micheli C, Bosman CA, Oostenveld R, Lewis C, Mantini D, et al. Source-reconstruction of

the sensorimotor network from resting-state macaque electrocorticography. NeuroImage. 2018;

181:347–358. https://doi.org/10.1016/j.neuroimage.2018.06.010 PMID: 29886144

21. Fahimi Hnazaee M, Wittevrongel B, Khachatryan E, Libert A, Carrette E, Dauwe I, et al. Localization of

deep brain activity with scalp and subdural EEG. NeuroImage. 2020; 223:117344. https://doi.org/10.

1016/j.neuroimage.2020.117344 PMID: 32898677

22. Hu S, Stead M, Worrell GA. Automatic Identification and Removal of Scalp Reference Signal for Intra-

cranial EEGs Based on Independent Component Analysis. IEEE Transactions on Biomedical Engineer-

ing. 2007; 54(9):1560–1572. https://doi.org/10.1109/TBME.2007.892929 PMID: 17867348

23. Whitmer D, Worrell G, Stead M, Lee IK, Makeig S. Utility of Independent Component Analysis for Inter-

pretation of Intracranial EEG. Frontiers in Human Neuroscience. 2010; 4. https://doi.org/10.3389/

fnhum.2010.00184 PMID: 21152349

24. Liu Y, Coon WG, Pesters Ad, Brunner P, Schalk G. The effects of spatial filtering and artifacts on elec-

trocorticographic signals. Journal of Neural Engineering. 2015; 12(5):056008. https://doi.org/10.1088/

1741-2560/12/5/056008 PMID: 26268446

25. Li G, Jiang S, Paraskevopoulou SE, Wang M, Xu Y, Wu Z, et al. Optimal referencing for stereo-electro-

encephalographic (SEEG) recordings. NeuroImage. 2018; 183:327–335. https://doi.org/10.1016/j.

neuroimage.2018.08.020 PMID: 30121338

PLOS COMPUTATIONAL BIOLOGY Enhancing oscillations in intracranial EEG recordings with data-driven spatial filters

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009298 August 19, 2021 26 / 29

https://doi.org/10.1093/brain/awy035
http://www.ncbi.nlm.nih.gov/pubmed/29506200
https://doi.org/10.1007/BF01062488
https://doi.org/10.1073/pnas.1913092116
http://www.ncbi.nlm.nih.gov/pubmed/31685634
https://doi.org/10.1038/s41562-019-0678-3
http://www.ncbi.nlm.nih.gov/pubmed/31451738
https://doi.org/10.1093/brain/121.12.2271
http://www.ncbi.nlm.nih.gov/pubmed/9874480
https://doi.org/10.7554/eLife.48065
http://www.ncbi.nlm.nih.gov/pubmed/31596233
https://doi.org/10.1016/j.pneurobio.2008.09.005
https://doi.org/10.1016/j.pneurobio.2008.09.005
http://www.ncbi.nlm.nih.gov/pubmed/18824212
https://doi.org/10.1016/j.tics.2016.12.008
http://www.ncbi.nlm.nih.gov/pubmed/28063662
https://doi.org/10.1016/j.neuroimage.2005.05.032
http://www.ncbi.nlm.nih.gov/pubmed/16084117
https://doi.org/10.3389/fnins.2018.00530
http://www.ncbi.nlm.nih.gov/pubmed/30127712
https://doi.org/10.1016/j.jneumeth.2016.02.012
http://www.ncbi.nlm.nih.gov/pubmed/26891875
https://doi.org/10.1002/hbm.21276
http://www.ncbi.nlm.nih.gov/pubmed/21618659
https://doi.org/10.1097/WNP.0b013e318038fb3e
https://doi.org/10.1097/WNP.0b013e318038fb3e
http://www.ncbi.nlm.nih.gov/pubmed/17414966
https://doi.org/10.1186/1471-2202-16-S1-P286
https://doi.org/10.1186/1471-2202-16-S1-P286
https://doi.org/10.1016/j.neuroimage.2018.06.010
http://www.ncbi.nlm.nih.gov/pubmed/29886144
https://doi.org/10.1016/j.neuroimage.2020.117344
https://doi.org/10.1016/j.neuroimage.2020.117344
http://www.ncbi.nlm.nih.gov/pubmed/32898677
https://doi.org/10.1109/TBME.2007.892929
http://www.ncbi.nlm.nih.gov/pubmed/17867348
https://doi.org/10.3389/fnhum.2010.00184
https://doi.org/10.3389/fnhum.2010.00184
http://www.ncbi.nlm.nih.gov/pubmed/21152349
https://doi.org/10.1088/1741-2560/12/5/056008
https://doi.org/10.1088/1741-2560/12/5/056008
http://www.ncbi.nlm.nih.gov/pubmed/26268446
https://doi.org/10.1016/j.neuroimage.2018.08.020
https://doi.org/10.1016/j.neuroimage.2018.08.020
http://www.ncbi.nlm.nih.gov/pubmed/30121338
https://doi.org/10.1371/journal.pcbi.1009298


26. Arnulfo G, Hirvonen J, Nobili L, Palva S, Palva JM. Phase and amplitude correlations in resting-state

activity in human stereotactical EEG recordings. NeuroImage. 2015; 112:114–127. https://doi.org/10.

1016/j.neuroimage.2015.02.031 PMID: 25721426

27. Shirhatti V, Borthakur A, Ray S. Effect of Reference Scheme on Power and Phase of the Local Field Poten-

tial. Neural Computation. 2016; 28(5):882–913. https://doi.org/10.1162/NECO_a_00827 PMID: 26942748

28. Gray H. Antomy of the human body. Annals of surgery. 1918; 68(5):564–566. https://doi.org/10.1097/

00000658-191811000-00012

29. Dubey A, Ray S. Cortical Electrocorticogram (ECoG) Is a Local Signal. The Journal of Neuroscience.

2019; 39(22):4299–4311. https://doi.org/10.1523/JNEUROSCI.2917-18.2019 PMID: 30914446

30. Crone NE, Miglioretti DL, Gordon B, Lesser RP. Functional mapping of human sensorimotor cortex with

electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain.

1998; 121(12):2301–2315. PMID: 9874481

31. Flinker A, Chang EF, Barbaro NM, Berger MS, Knight RT. Sub-centimeter language organization in the

human temporal lobe. Brain and Language. 2011; 117(3):103–109. https://doi.org/10.1016/j.bandl.

2010.09.009 PMID: 20961611

32. Muller L, Hamilton LS, Edwards E, Bouchard KE, Chang EF. Spatial resolution dependence on spectral

frequency in human speech cortex electrocorticography. Journal of Neural Engineering. 2016; 13

(5):056013. https://doi.org/10.1088/1741-2560/13/5/056013 PMID: 27578414

33. Michelmann S, Treder MS, Griffiths B, Kerrén C, Roux F, Wimber M, et al. Data-driven re-referencing of

intracranial EEG based on independent component analysis (ICA). Journal of Neuroscience Methods.

2018; 307:125–137. https://doi.org/10.1016/j.jneumeth.2018.06.021 PMID: 29960028

34. Nikulin VV, Nolte G, Curio G. A novel method for reliable and fast extraction of neuronal EEG/MEG

oscillations on the basis of spatio-spectral decomposition. NeuroImage. 2011; 55(4):1528–1535.

https://doi.org/10.1016/j.neuroimage.2011.01.057 PMID: 21276858

35. Haufe S, Meinecke F, Görgen K, Dähne S, Haynes JD, Blankertz B, et al. On the interpretation of weight

vectors of linear models in multivariate neuroimaging. NeuroImage. 2014; 87:96–110. https://doi.org/

10.1016/j.neuroimage.2013.10.067 PMID: 24239590

36. Miller KJ, Sorensen LB, Ojemann JG, den Nijs M. Power-Law Scaling in the Brain Surface Electric

Potential. PLoS Computational Biology. 2009; 5(12):e1000609. https://doi.org/10.1371/journal.pcbi.

1000609 PMID: 20019800

37. Miller KJ, Schalk G, Hermes D, Ojemann JG, Rao RPN. Spontaneous Decoding of the Timing and Con-

tent of Human Object Perception from Cortical Surface Recordings Reveals Complementary Informa-

tion in the Event-Related Potential and Broadband Spectral Change. PLOS Computational Biology.

2016; 12(1):e1004660. https://doi.org/10.1371/journal.pcbi.1004660 PMID: 26820899

38. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, et al. MEG and EEG data

analysis with MNE-Python. Frontiers in Neuroscience. 2013; 7. https://doi.org/10.3389/fnins.2013.

00267 PMID: 24431986

39. Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, et al. Parameterizing neural power

spectra into periodic and aperiodic components. Nature Neuroscience. 2020; 23(12):1655–1665.

https://doi.org/10.1038/s41593-020-00744-x PMID: 33230329

40. Schaworonkow N, Triesch J, Ziemann U, Zrenner C. EEG-triggered TMS reveals stronger brain state-

dependent modulation of motor evoked potentials at weaker stimulation intensities. Brain Stimulation.

2019; 12(1):110–118. https://doi.org/10.1016/j.brs.2018.09.009 PMID: 30268710

41. Cole S, Voytek B. Cycle-by-cycle analysis of neural oscillations. Journal of Neurophysiology. 2019; 122

(2):849–861. https://doi.org/10.1152/jn.00273.2019 PMID: 31268801

42. Schaworonkow N, Nikulin VV. Spatial neuronal synchronization and the waveform of oscillations: Impli-

cations for EEG and MEG. PLOS Computational Biology. 2019; 15(5):e1007055. https://doi.org/10.

1371/journal.pcbi.1007055 PMID: 31086368

43. Haufe S, Dähne S, Nikulin VV. Dimensionality reduction for the analysis of brain oscillations. Neuro-

Image. 2014; 101:583–97. https://doi.org/10.1016/j.neuroimage.2014.06.073 PMID: 25003816

44. Zuure MB, Hinkley LBN, Tiesinga PHE, Nagarajan SS, Cohen MX. Multiple midfrontal thetas revealed

by source separation of simultaneous MEG and EEG. Journal of Neuroscience. 2020; 40(40):7702–

7713. https://doi.org/10.1523/JNEUROSCI.0321-20.2020 PMID: 32900834

45. Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. Large-scale cortical correlation structure of

spontaneous oscillatory activity. Nature Neuroscience. 2012; 15(6):884–890. https://doi.org/10.1038/

nn.3101 PMID: 22561454

46. Bollimunta A, Chen Y, Schroeder CE, Ding M. Neuronal Mechanisms of Cortical Alpha Oscillations in

Awake-Behaving Macaques. Journal of Neuroscience. 2008; 28(40):9976–9988. https://doi.org/10.

1523/JNEUROSCI.2699-08.2008 PMID: 18829955

PLOS COMPUTATIONAL BIOLOGY Enhancing oscillations in intracranial EEG recordings with data-driven spatial filters

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009298 August 19, 2021 27 / 29

https://doi.org/10.1016/j.neuroimage.2015.02.031
https://doi.org/10.1016/j.neuroimage.2015.02.031
http://www.ncbi.nlm.nih.gov/pubmed/25721426
https://doi.org/10.1162/NECO_a_00827
http://www.ncbi.nlm.nih.gov/pubmed/26942748
https://doi.org/10.1097/00000658-191811000-00012
https://doi.org/10.1097/00000658-191811000-00012
https://doi.org/10.1523/JNEUROSCI.2917-18.2019
http://www.ncbi.nlm.nih.gov/pubmed/30914446
http://www.ncbi.nlm.nih.gov/pubmed/9874481
https://doi.org/10.1016/j.bandl.2010.09.009
https://doi.org/10.1016/j.bandl.2010.09.009
http://www.ncbi.nlm.nih.gov/pubmed/20961611
https://doi.org/10.1088/1741-2560/13/5/056013
http://www.ncbi.nlm.nih.gov/pubmed/27578414
https://doi.org/10.1016/j.jneumeth.2018.06.021
http://www.ncbi.nlm.nih.gov/pubmed/29960028
https://doi.org/10.1016/j.neuroimage.2011.01.057
http://www.ncbi.nlm.nih.gov/pubmed/21276858
https://doi.org/10.1016/j.neuroimage.2013.10.067
https://doi.org/10.1016/j.neuroimage.2013.10.067
http://www.ncbi.nlm.nih.gov/pubmed/24239590
https://doi.org/10.1371/journal.pcbi.1000609
https://doi.org/10.1371/journal.pcbi.1000609
http://www.ncbi.nlm.nih.gov/pubmed/20019800
https://doi.org/10.1371/journal.pcbi.1004660
http://www.ncbi.nlm.nih.gov/pubmed/26820899
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.3389/fnins.2013.00267
http://www.ncbi.nlm.nih.gov/pubmed/24431986
https://doi.org/10.1038/s41593-020-00744-x
http://www.ncbi.nlm.nih.gov/pubmed/33230329
https://doi.org/10.1016/j.brs.2018.09.009
http://www.ncbi.nlm.nih.gov/pubmed/30268710
https://doi.org/10.1152/jn.00273.2019
http://www.ncbi.nlm.nih.gov/pubmed/31268801
https://doi.org/10.1371/journal.pcbi.1007055
https://doi.org/10.1371/journal.pcbi.1007055
http://www.ncbi.nlm.nih.gov/pubmed/31086368
https://doi.org/10.1016/j.neuroimage.2014.06.073
http://www.ncbi.nlm.nih.gov/pubmed/25003816
https://doi.org/10.1523/JNEUROSCI.0321-20.2020
http://www.ncbi.nlm.nih.gov/pubmed/32900834
https://doi.org/10.1038/nn.3101
https://doi.org/10.1038/nn.3101
http://www.ncbi.nlm.nih.gov/pubmed/22561454
https://doi.org/10.1523/JNEUROSCI.2699-08.2008
https://doi.org/10.1523/JNEUROSCI.2699-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18829955
https://doi.org/10.1371/journal.pcbi.1009298
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sient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys,

and mice. Proceedings of the National Academy of Sciences. 2016; 113(33):E4885–E4894. https://doi.

org/10.1073/pnas.1604135113 PMID: 27469163

64. Krishnakumaran R, Raees M, Ray S. Shape analysis of gamma rhythm supports a superlinear inhibitory

regime in an inhibition-stabilized network. Neuroscience; 2021.

65. Cole S, Voytek B. Hippocampal theta bursting and waveform shape reflect CA1 spiking patterns. Neuro-

science; 2018.

66. Saravanan V, Berman GJ, Sober SJ. Application of the hierarchical bootstrap to multi-level data in neu-

roscience; 2020.

67. Hagen E, Næss S, Ness TV, Einevoll GT. Multimodal Modeling of Neural Network Activity: Computing

LFP, ECoG, EEG, and MEG Signals With LFPy 2.0. Frontiers in Neuroinformatics. 2018; 12:92. https://

doi.org/10.3389/fninf.2018.00092 PMID: 30618697

68. Nunez PL, Nunez MD, Srinivasan R. Multi-Scale Neural Sources of EEG: Genuine, Equivalent, and

Representative. A Tutorial Review. Brain Topography. 2019; 32(2):193–214. https://doi.org/10.1007/

s10548-019-00701-3 PMID: 30684161

PLOS COMPUTATIONAL BIOLOGY Enhancing oscillations in intracranial EEG recordings with data-driven spatial filters

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009298 August 19, 2021 28 / 29

https://doi.org/10.1016/j.neuron.2018.12.009
https://doi.org/10.1016/j.neuron.2018.12.009
http://www.ncbi.nlm.nih.gov/pubmed/30635232
https://doi.org/10.1016/j.neuroscience.2005.10.031
https://doi.org/10.1016/j.neuroscience.2005.10.031
http://www.ncbi.nlm.nih.gov/pubmed/16338092
https://doi.org/10.1523/JNEUROSCI.2208-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28416595
https://doi.org/10.1016/j.neuroimage.2019.116356
http://www.ncbi.nlm.nih.gov/pubmed/31786167
https://doi.org/10.1088/1741-2560/12/6/066020
http://www.ncbi.nlm.nih.gov/pubmed/26501393
https://doi.org/10.1016/j.neuroimage.2014.05.068
http://www.ncbi.nlm.nih.gov/pubmed/24990357
https://doi.org/10.1016/j.jneumeth.2016.12.016
http://www.ncbi.nlm.nih.gov/pubmed/28034726
https://doi.org/10.1016/0013-4694(91)90163-X
https://doi.org/10.1016/0013-4694(91)90163-X
http://www.ncbi.nlm.nih.gov/pubmed/1721571
https://doi.org/10.1016/j.neuroimage.2014.03.075
https://doi.org/10.1016/j.neuroimage.2014.03.075
http://www.ncbi.nlm.nih.gov/pubmed/24721331
https://doi.org/10.1016/j.neuroimage.2020.116599
http://www.ncbi.nlm.nih.gov/pubmed/32035185
https://doi.org/10.1016/j.neuroimage.2017.02.076
https://doi.org/10.1016/j.neuroimage.2017.02.076
http://www.ncbi.nlm.nih.gov/pubmed/28300640
https://doi.org/10.1088/1741-2560/8/4/044002
https://doi.org/10.1088/1741-2560/8/4/044002
http://www.ncbi.nlm.nih.gov/pubmed/21654039
https://doi.org/10.1093/braincomms/fcaa082
https://doi.org/10.1093/braincomms/fcaa082
http://www.ncbi.nlm.nih.gov/pubmed/32954332
https://doi.org/10.1016/j.neuron.2011.09.029
http://www.ncbi.nlm.nih.gov/pubmed/22153379
https://doi.org/10.1016/j.neuron.2008.11.016
http://www.ncbi.nlm.nih.gov/pubmed/19146811
https://doi.org/10.1016/j.neuron.2011.11.006
http://www.ncbi.nlm.nih.gov/pubmed/22153380
https://doi.org/10.1073/pnas.1604135113
https://doi.org/10.1073/pnas.1604135113
http://www.ncbi.nlm.nih.gov/pubmed/27469163
https://doi.org/10.3389/fninf.2018.00092
https://doi.org/10.3389/fninf.2018.00092
http://www.ncbi.nlm.nih.gov/pubmed/30618697
https://doi.org/10.1007/s10548-019-00701-3
https://doi.org/10.1007/s10548-019-00701-3
http://www.ncbi.nlm.nih.gov/pubmed/30684161
https://doi.org/10.1371/journal.pcbi.1009298


69. Donoghue T, Schaworonkow N, Voytek B. Methodological Considerations for Studying Neural Oscilla-

tions; 2021. Available from: psyarxiv.com/hvd67.

70. Kuznetsova A, Lebedev M, Ossadtchi A. Local propagation dynamics of MEG interictal spikes: source

reconstruction with traveling wave priors. Neuroscience; 2020.

71. Hindriks R. A methodological framework for inverse-modeling of propagating cortical activity using

MEG/EEG. NeuroImage. 2020; 223:117345. https://doi.org/10.1016/j.neuroimage.2020.117345 PMID:

32896634

PLOS COMPUTATIONAL BIOLOGY Enhancing oscillations in intracranial EEG recordings with data-driven spatial filters

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009298 August 19, 2021 29 / 29

https://doi.org/10.1016/j.neuroimage.2020.117345
http://www.ncbi.nlm.nih.gov/pubmed/32896634
https://doi.org/10.1371/journal.pcbi.1009298

