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Abstract
To fight against the devastating coronavirus disease 2019 (COVID-19), identifying robust anti-SARS-CoV-2 therapeutics 
from all possible directions is necessary. To contribute to this effort, we selected a human metabolites database containing 
waters and lipid-soluble metabolites to screen against the 3-chymotrypsin-like proteases (3CLpro) protein of SARS-CoV-2. 
The top 8 hits from virtual screening displayed a docking score varying between ~ − 11 and ~ − 14 kcal/mol. Molecular 
dynamics simulations complement the virtual screening study in conjunction with the molecular mechanics generalized 
Born surface area (MM/GBSA) scheme. Our analyses revealed that (HMDB0132640) has the best glide docking score, − 
14.06 kcal/mol, and MM-GBSA binding free energy, − 18.08 kcal/mol. The other three lead molecules are also selected 
along with the top molecule through a critical inspection of their pharmacokinetic properties. HMDB0132640 displayed 
a better binding affinity than the other three compounds (HMDB0127868, HMDB0134119, and HMDB0125821) due to 
increased favorable contributions from the intermolecular electrostatic and van der Waals interactions. Further, we have 
investigated the ligand-induced structural dynamics of the main protease. Overall, we have identified new compounds that 
can serve as potential leads for developing novel antiviral drugs against SARS-CoV-2 and elucidated molecular mechanisms 
of their binding to the main protease.

Graphical abstract
Identification of probable hits from human metabolites against SARS-CoV-2 using integrated computational approaches-
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Introduction

In China, a very contagious and severe viral disease was 
reported at the end of 2019 [1, 2]. This causative agent was 
later detected as a novel coronavirus (SARS-CoV-2). The 
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disease was subsequently referred to as coronavirus disease 
2019 (COVID-19) [3, 4]. This COVID-19 threatened human 
life and the economy across the globe and affected the lives 
of millions of people, including more than 6.4 million deaths 
as of August 5, 2022. It emerged as an epidemic and eventu-
ally became a pandemic. As a result, the current COVID-19 
pandemic has triggered a medical emergency that is unprec-
edented in recent global history. There is an urgent need to 
discover effective therapeutics for treating COVID-19 and 
find some right immune booster supplements to stay healthy 
and safe [5].

Novel coronaviruses (SARS-CoV-2) are non-segmented, 
enveloped, positive-sense RNA, single-stranded viruses and 
are widely distributed in mammals, including humans [6]. 
Once the cell is infected with SARS-CoV-2, the host cell’s 
ongoing molecular mechanisms are taken over by the virus 
to translate its RNA into long protein chains and generate 
more viral replicas. These viral polyproteins (PP1A) are 
activated when cut into smaller individual functional com-
ponents by protease (3-chymotrypsin-like cysteine protease, 
3CLpro) [7–9]. Thus, viral proteases (3CLpro) are essential 
in SARS-CoV-2 virus propagation. Consequently, 3CLpro is 
regarded as a principal druggable target for SARS-CoV-2. 
3CLpro is a heart-shaped protein also known as the main 
protease (3CLpro). It contains 13 β-strands and nine α-helices 
and is divided into three domains [10, 11], domain I (resi-
dues 8–101), domain II (residues 102–184), a long loop (res-
idues 185–200), and domain III (residues 201–306), shown 
in Fig. 1. Domain I and II contain primary substrate-binding 
catalytic dyads, His41 and Cys145, respectively. The C-ter-
minal domain III is mainly involved in the main protease’s 
dimerization [12]. Several recent computational studies have 
identified possible small molecules [13–16], plant-derived 
polyphenols [17, 18], and natural substances [19] to reduce 
COVID-19 infections by targeting several structural and 
non-structural proteins of SARS-CoV-2.

In recent investigations, metabolomics has been shown 
to be a promising technique for preventing viral diseases 
[20, 21]. Metabolomics studies different metabolites in liv-
ing systems such as bio-fluids, cells, tissues, organisms, etc., 
which can be small molecules, drug metabolites, protein 
fragments, intermediates of any processes, etc. Metabo-
lomics is an emerging technology, and very soon, it will be 
an essential part of precision medicine [22]. The Human 
Metabolome Database (HMDB) is a freely downloadable 
human metabolite database and contains various details 
about different metabolites found in the human body [23]. 
The HMDB contains 114,214 metabolite entries, includ-
ing lipid-soluble and water-soluble metabolites [24]. Sev-
eral medications, such as omeprazole, clopidogrel, cyclo-
phosphamide, and diazepam, are present in the market 
and may become real pharmaceuticals following metabo-
lism. Thus, metabolites can be an important lead for drug 

development, for example; (i) 6-Mercaptopurine (HMDB 
ID-HMDB0015167), azathioprine metabolite, which is an 
FDA-approved drug used to treat cancer and autoimmune; 
(ii) Oxazepam (HMDB ID-HMDB0014980), a benzodiaz-
epine derivative which is used to treat anxiety; and (iii) Can-
renone (HMDB ID- HMDB0003033), an important active 
metabolite of spironolactone, which is used as a diuretic 
agent and treatment of hirsutism [25].

Herein, we have screened the HMDB molecules against 
SARS-CoV-2 3CLpro to find some potential small molecules 
that might be useful to combat such deadly diseases. This 
study may be the first to use in-silico investigations to give 
an idea of the blocking function of 3CLpro using human 
metabolites. Finally, we reported promising human metab-
olites against 3CLpro, which may be further developed as a 
therapeutic agent against COVID-19 based on their molecu-
lar mechanics generalized Born surface area (MM-GBSA) 
results.

Materials and methods

Preparation of protein

The primary atomic coordinates of 3CLpro (PDB ID- 6LU7, 
resolution ~ 2.16 Å) [7] were downloaded from the protein 
data bank and prepared using the protein preparation wizard 
of the Schrödinger suite [26]. The water molecules and co-
factors were removed before minimization, while only the 
co-crystalized ligand was kept for final energy minimization. 
The energy minimization was restricted to an RMSD cut-off 
value of 0.3 Ǻ with the original structure under the OPLS3 
force field [27]. The prepared protein was then used for the 
grid box generation, and a 20 Ǻ box was created, keeping 
the crystallized ligand in the center. The same gird was used 
for our entire virtual screening protocol.

Ligand selection, preparation, and virtual screening 
protocol

We downloaded metabolites from the HMDB database 
(HMDB 4.0, accessed in May 2021) [24] and converted 
them to 3D structures using the Schrödinger software. 
HMDB contains various metabolites such as small mol-
ecules, peptides, triglycerides, etc. For curating potential 
leads from the metabolites, we selected compounds with 
molecular weights between 70 and 600 Da (~ 26,000 mol-
ecules). Since we are interested in studying all the metab-
olites in this range, we did not filter this database further 
using Lipinski’s and related filters. Next, we performed the 
ligand preparation using the LigPrep module of the same 
suit, which resulted in ~ 36,801 entries. This module helps 
assign each ligand molecule’s protonation and ionization 
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states. Several structures from each ligand were generated 
with different ionization states, tautomers, stereochemical 
information, and ring conformations. Finally, ligands were 
optimized, yielding low-energy isomers.

The virtual screening was done against 3CLpro with 
the help of the virtual screening workflow (VSW) of the 
GLIDE module of Schrödinger [28–30]. The three tiers of 
virtual screening protocol, namely HTVS (high through-
put virtual screening), SP (standard precision), and extra 
precision (XP), were sequentially employed to obtain 

potential lead molecules. To reduce the size of the data-
base, we selected the top 30% of the docked complexes 
obtained from HTVS and used them for screening via 
Glide-SP. Finally, the top 20% of the SP docking results 
were considered for the Glide-XP (extra precision) dock-
ing. Moreover, the final compound selection was based 
on a visual inspection of the docking poses and the cor-
responding XP-docking scores, resulting in 17 unique 
molecules that were subjected to further analyses and 

Fig. 1   Ribbon representation of COVID-19 3CLpro complexed with 
the inhibitor, shown in ball and stick representation. The different part 
of 3CLpro is shown in different color, i.e., Green: Domain I, Cyan: 

Domain II, Blue: Domain III, Brown: Inter-domain connecting loop, 
and Red: Ligand molecules. The top 8 molecules which are screened 
by the virtual screening workflow are shown in 2D illustration
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investigations. A similar protocol for the virtual screen-
ing study was used in our previous work on COVID-19 
3CLpro [15].

Molecular dynamics (MD) simulation

Selected docked structures obtained from the virtual screen-
ing were used as an input to the LEaP module of Amber-
Tools19 [31] to generate the input structure for MD simula-
tions. The TIP3P [32] water model was used to solvate the 
structure in an octahedron water box with a 10 Å buffer 
region from all directions. An adequate number of ions were 
also added to neutralize the system. All the complexes were 
simulated using the Amber ff14SB forcefield [33] for protein 
and generalized Amber force field (GAFF2) [34] for ligand 
molecules. A 10 Å cut-off was fixed for calculating the long-
range interaction with the help of the particle-mesh Ewald 
(PME) scheme [35]. The SHAKE [36] algorithm involved 
the bond length having hydrogen atoms to keep its motion 
constant. All the systems were simulated at a constant tem-
perature of 300 K, which was maintained using a Langevin 
thermostat with a collision frequency of 2 ps−1. A detailed 
description of the simulation protocol was discussed in our 
previous studies on COVID-19 [11, 37]. All complex struc-
tures were subjected to 3 × 100 ns production runs under the 
NPT ensemble. Trajectories were analyzed using the cpptraj 
module of AmberTools19, and the last 50 ns trajectories 
were used for the binding free energy calculation.

Protein–ligand‑binding free energy calculation

The molecular mechanics Poisson–Boltzmann (generalized 
Born) surface area (MM-PB(GB)SA) scheme [38–42] is 
widely used to determine the binding free energy between 
protein-inhibitor [14, 43], protein-nucleic acid [44–46] 
as well as protein-carbohydrate [47, 48] complexes. The 
total binding free energy (ΔGbind)(ΔGbind) comprises inter-
nal energy (ΔEinternal), (ΔEinternal), desolvation free energy 
(ΔGsolv)(ΔGsolv) , and configurational entropy (TΔS)(TΔS) 
which are related by the following equation [16, 49–53],

To estimate the binding free energy, 2500 frames were 
selected uniformly from the last 50 ns trajectories, and cal-
culation was done with the help of the MMPBSA.py script 
available on AmberTools19. The entropic contribution was 
estimated using the normal mode analysis, and the MM-
GBSA pair-wise decomposition scheme also assessed the 
contribution from each amino acid.

(1)ΔG
bind

= ΔH − TΔS ≈ ΔE
internal

+ ΔG
solv

− TΔS

ADMET studies of top ligands

To compute the top lead molecules’ absorption, distribution, 
metabolism, and excretion properties, the QikProp module 
of the Schrödinger suite was used. Thirty-five significant 
pharmaceutical properties were monitored, such as CNS 
activity, % of human oral absorption, blood–brain barrier 
prediction, cell permeability, Lipinski rule, etc. The toxicity-
related parameters, such as hepatotoxicity, carcinogenicity, 
mutagenicity, and cytotoxicity, were calculated using the 
ProTox-II web server [54].

Results and discussions

Virtual screening of metabolites against 3CLpro

To conduct the virtual screening of the human metabolite 
database, we started with ~ 36,801 entries out of 114,214 
HMDB metabolites, which have been further screened using 
HTVS, Glide-SP, and Glide-XP protocol to get the top 17 
lead compounds. These compounds were ranked according 
to their glide score, and the top 8 ligands were selected by 
keeping a cut-off value of − 11 kcal/mol. To verify the dock-
ing poses, the top 8 ligand molecules were re-docked using 
Autodock Vina [55] and Glide-XP separately. Superimposi-
tion of the docked structures using both methods suggested 
similar binding poses, as shown in Supporting Information 
Fig. S1. We also investigated similarities of our principal 
metabolites by estimating the Tanimoto coefficient.

Further, this estimation was also carried out for five 
FDA-approved drugs: Remdesivir, Ritonavir, Favipiravir, 
Indinavir, and Beclabuvir, as shown in Supporting Infor-
mation, Table S1). Most of the metabolites are chemically 
distinct except Ligand5 and Ligand8. All other combinations 
showed a very low similarity like 0.14 (Ligand3 vs. Ligand4) 
to moderate similarity like 0.58 (Ligand4 vs. Ligand7). On 
the other hand, FDA-approved drugs showed significantly 
less similarity, ranging from 0.06 to 0.15. So, this suggests 
our metabolites are very much exclusive from the commonly 
used drugs showing a good binding.

The best lead molecule results in a Glide score of 
− 14 kcal/mol, indicating a promising candidate for drug 
design. The docking score of the top 8 lead compounds 
is shown in Table 1. We provided the SMILES of all top 
8 ligands in Supporting Information Table S2. One of 
the best hits in the present study is HMDB0132640, i.e., 
Ligand1, which is a predicted metabolite of 1-(2,4,6-trihy-
droxy-3-(3-methyl-2-en-1-yl)phenyl)-3-(2,4,5-trihydroxy 
phenyl)propan-1-one, a non-cyclic derivative of 2-phe-
nylchromen-4-one flavonoids. It belongs to the class of 
organic compounds known as flavonoid o-glycosides. It 
can also be classified as 2′-hydroxy-dihydrochalcones, 
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which is biosynthesized by reducing α,β-unsaturated 
ketone (chalcone) in the Human gut and is considered to 
be a flavonoid type of molecule. This type of flavonoid is 
present in many plants and has shown antiviral proper-
ties. The flavonoids have been reported to have a comple-
mentary therapeutical role in the treatment of COVID-19 
[56]. Ligand1 is one of the predicted metabolites of Isoba-
vachalcone, which is obtained from the seeds of Psoralea 
corylifolia. Isobavachalcone has proven effective against 
papain-like protease (PLpro) of SARS-CoV [57]. Isoba-
vachalcone has also been found active against 3C-like 
protease/main protease (3CLpro/Mpro) of the Middle East 
respiratory syndrome coronavirus (MERS-CoV) [58]. 
Thus, HMDB0132640 can be a potential compound for 
interventional therapy for COVID-19.

Another hit from HMDB is HMDB0127868 (Ligand6) 
which belongs to the 5,7-Dihydroxy flavonoid class. It is 
a predicted metabolite of 2-(4-ethyl-3-hydroxyphenyl)-
3,4-dihydro-2 h-1-benzopyran-3,5,7-triol. It is a polyphe-
nolic compound and can have a potential antiviral prop-
erty. Its binding energy and docking score are also good 
(− 10.33 kcal/mol, − 11.134, respectively). HMDB0134119 
(Ligand7) is our next hit and is a stilbene glycoside. It is 
a predicted metabolite of (E)-4-(3,5-dihydroxystyryl)
benzene-1,3-diol. Some studies support the potential use 
of stilbene derivatives in treating SARC-COV infection 
[19, 59]. Its binding energy and docking score are good 
(− 9.53 kcal/mol, − 11.119, respectively). Another hit 
(HMDB0125821/Ligand8) belongs to the 1-benzopyran 
class of compounds and are polyphenolic compounds. 
It is a predicted metabolite of 2,2-dimethyl-3,4-dihy-
dro-2 h-1-benzopyran-4,5,7-triol. These benzopyran com-
pounds are found in mushrooms and are the biomarker for 
consuming these foods. Its binding energy and docking 
score are good (− 10.28 kcal/mol, − 11.05, respectively).

Structural stability and flexibility of complexes

Overall 3CLpro structure

About eight human metabolites were found to be potential 
after the virtual screening competition. These compounds 
were identified as interacting with the binding cavity and 
catalytic dyads of the SARS-CoV-2 major protease. To 
further validate the thermodynamics stability and flexibil-
ity of the complexes, 100 ns molecular dynamics simula-
tions were carried out, and we monitored each system’s 
structural and energetic properties during the production 
simulations.

To verify the convergence of simulations, we calculate 
the time evolution of our system’s receptor backbone atoms 
root mean square deviation (RMSD) concerning their cor-
responding initial coordinates. The temporal distribution 
of RMSD of each system is shown in Fig. 2A, B, and their 
average values for the last 50 ns are listed in Table 2. We 
also ran two more replicas for all eight complexes, and 
the RMSD profile of the other two replica runs is shown 
in Supporting Information Fig. S2. It is evident from Fig. 
S2 that the overall RMSD profile was the same in all rep-
lica runs, suggesting a converged simulation for all but 
complex3. In the case of complex3, relatively large fluc-
tuations were observed compared to other complexes. The 
other seven complex simulations attained stability in the 
last 50 ns.

Figure 2A, B shows that each system reached a good 
equilibrium state after 50 ns and maintained it through-
out the last 50 ns of production simulations. The average 
RMSD value was found to vary between (1.5 ± 0.2) Å and 
(3.0 ± 0.1) Å for all cases. The highest average RMSD value 
(3.0 ± 0.1) Å was obtained for complex1 and the lowest value 
(1.5 ± 0.2 Å) for complex4. For the comparison purpose, we 

Table 1   Different components 
of docking scores obtained from 
the Glide-XP-docking scheme

a Glide score (kcal/mol)
b Lipophilic term derived from hydrophobic grid potential
c Hydrogen bonding term in GlideScore
d Van der Waals energy

Lead molecule Molecular weight G-scorea Glide-lipob Glide-hbondc Glide-evdwd

Ligand1
(HMDB0132640)

568.657 − 14.060 − 4.160 0.000 − 39.543

Ligand2 (HMDB0030665) 622.706 − 12.399 − 2.859 − 0.339 − 61.108
Ligand3 (HMDB0128347) 573.59 − 12.151 − 2.359 − 0.800 − 48.830
Ligand4 (HMDB0134117) 598.64 − 11.724 − 2.228 − 0.769 − 36.536
Ligand5 (HMDB0125819) 424.444 − 11.534 − 3.702 − 0.160 − 47.989
Ligand6 (HMDB0127868) 492.564 − 11.134 − 2.904 − 0.887 − 29.007
Ligand7 (HMDB0134119) 598.64 − 11.119 − 3.060 − 0.430 − 40.603
Ligand8 (HMDB0125821) 394.418 − 11.051 − 3.369 − 0.480 − 44.484
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also estimated the RMSD of the apo structure from our pre-
vious work, which was simulated under the same condition 
and shown in Supporting Information (Fig. S3A). The aver-
age RMSD for the apo form was 2.0 ± 0.01 Å, comparable 
to the RMSD value of complexes.

We extended our residual fluctuation study, and the root 
means square fluctuations (RMSFs) of Cα atoms in each 
protein complex were explored throughout the simula-
tions and displayed in Fig. 2C, D. Figure 2C, D shows 
that all complexes’ overall atomic fluctuations pattern is 
the same. Due to the inhibitor binding, we observed lower 
fluctuations for domain I (residues 8–101) and domain II 

(residues 102–184). On the other hand, domain III (resi-
dues 201–306) showed relatively higher fluctuations than 
domains I and II. RMSF values rarely crossed 2 Å for most 
of the Cα atoms, except terminal residues, which is a usual 
phenomenon. Further, it is evident from Fig. 2C, D that 
the ligand-binding sites, including Leu27, His41, Cys145, 
His163, His164, Met165, Glu166, and Pro168, displayed 
the lowest fluctuation. It can further be observed from 
Fig. 2C, D that the off-binding site residues like Ser46, 
Glu47, Leu50, and Pro52 from domain I; Asn151, Ile152, 
Asp153, Tyr154, and Asp155 from domain II; Met276, 
Asn277, Gly278, Arg279, Thr280, and Gly302 from 
domain II showed higher fluctuations compared to other 
residues. However, our previous study on SARS-CoV-2 
3CLpro [60] suggested that the apo 3CLpro protein structure 
had less atomic fluctuations than the ligand-bound pro-
tease, indicating that the apo 3CLpro is less flexible (see 
Fig. S3B).

Ligand dynamics and binding pocket stability

After investigating the overall 3CLpro structure, we also 
explored the conformation of all the ligands and the respec-
tive binding pocket stability in terms of its heavy atoms and 
backbone atoms RMSD, respectively, as shown in Fig. 3. 
As shown in Fig. 3A, B, the ligand RMSD values fluctu-
ated within 3 Å, and the average RMSD values ranged from 

Fig. 2   A, B The time evolution of root means square deviation (RMSD) of backbone atoms of 3CLpro-complex relative to their respective initial 
coordinates. C, D The root mean square fluctuations (RMSFs) of Cα atoms for all eight 3CLpro-ligand complexes

Table 2   The average backbone RMSD, the radius of gyration (RoG), 
and solvent-accessible surface area (SASA) for all eight complexes

The data are reported as average ± standard error of the mean (SEM)

System RMSD (Å) RoG (Å) SASA (nm2)

Complex1 3.0 ± 0.1 21.9 ± 0.1 141.9 ± 2.6
Complex2 2.1 ± 0.2 22.0 ± 0.1 143.9 ± 2.5
Complex3 2.1 ± 0.4 22.1 ± 0.1 144.1 ± 2.7
Complex4 1.5 ± 0.2 22.0 ± 0.1 140.8 ± 2.3
Complex5 1.8 ± 0.2 21.9 ± 0.1 141.6 ± 2.4
Complex6 2.6 ± 0.1 21.8 ± 0.1 137.1 ± 2.3
Complex7 2.1 ± 0.3 22.0 ± 0.1 142.1 ± 3.0
Complex8 2.8 ± 0.2 21.8 ± 0.1 138.2 ± 2.4
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1.1 to 2.5 Å. Initially, all ligand RMSDs except for ligand3 
increased up to 30 ns and stabilized afterward. In the case of 
ligand3, we observed more fluctuations than other ligands 
bound to 3CLpro, suggesting that it may make unstable inter-
actions with the binding pocket of 3CLpro. This may weaken 
its affinity toward 3CLpro. Overall, the flexibility observed 
from the ligand RMSD profile is evident as these are small 
molecules. We also estimated the ligand stability by calcu-
lating the ligand–protein distance, which is discussed in the 
subsequent section. However, in the last 30 ns, all ligand 
RMSDs attain a steady state, which signifies a continuous 
binding.

Similarly, in Fig. 3C, D, we explore the time evolution 
of backbone atoms deviation at residues of 5 Å around 
each ligand. As the RMSD plot suggests, the fluctuations 
of all system’s ligand-binding pockets are lower. The aver-
age RMSD values range from 1.0 to 2.0 Å. If we see the 
fluctuation pattern, all the complexes except (complex1 and 
complex4) reached stability after 20 ns. The pocket RMSD 
of complex1 and complex4 revealed the two complexes have 
almost similar behavior during the entire production simu-
lation and achieved structural stabilities during the initial 
80 ns and the final 15 ns. These results suggest that the bind-
ing pocket of 3CLpro bound to human metabolites is rela-
tively rigid and compact, which is suitable for better affinity.

Protein compactness and solvent exposure of binding sites

The residual compactness of the protein–ligand structure 
during molecular dynamics simulation is best described by 
the radius of gyration (RoG) and the solvent exposure meas-
ure in terms of solvent-accessible surface area (SASA). We 
computed RoG for all the complexes, shown in supporting 
information, Fig S4A, B, and the last 50 ns trajectories’ aver-
age values are listed in Table 2. It is evident from Fig. S4A, 
B that all the complexes were stable and compact throughout 
the 100 ns simulations, and the average RoG values range 
from 21.8 to 22.1 Å for all cases. The initial RoG value 
for all is high compared to the last 50 ns trajectory. It may 
indicate that all complexes become more compact due to the 
binding of human metabolites.

In order to know the solvent exposure of the 3CLpro bind-
ing cavity for all the eight simulated systems, we estimated 
the solvent-accessible surface area (SASA) of protein struc-
tures as shown in Fig. S4C, D. The average SASA values of 
the last 50 ns simulations are listed in Table 2. The initial 
surface area occupied by each complex is relatively high 
compared to the final 50 ns. It is evident from Table 2 that 
SASA values vary between 137.1 nm2 and 144.1 nm2 for 
all systems. On the other hand, the SASA value for the apo 
3CLpro was estimated as 146.5 nm2 [60]. The lower SASA 
value signifies strong ligand-binding inside the cavity, sug-
gesting the water molecule’s displacement from it. A similar 
observation was found in earlier studies [61–63].

Fig. 3   A, B Time evolution of inhibitors’ heavy atoms root mean square deviations (RMSDs) concerning initial conformations. C, D temporal 
RMSD variations of backbone atoms around the 5 Å of each ligand (binding pocket)
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Human metabolites and 3CLpro domains distance analysis

The 3CLpro has divided into three different domains, see 
Fig. 1. If we talk about the binding of any small molecules 
on the 3CLpro, then domain I and domain II are mainly 
responsible for that, and domain III is involved in the dimeri-
zation of 3CLpro. Therefore, to explore the structural dis-
placement of the binding pocket and ligand behavior inside 
the binding cavity, we calculate the center of mass (CoM) 
distance among human metabolites (ligands) and domains 
(mainly domain I and domain II) see Fig. 4. As suggested 
in Fig. 4, except for complex3, complex4, and complex5, 
the rest have shown no change in their distance plots. It 
is evident from Fig. 4D that the distance between ligand 

and domains initially decreases up to 37 ns; afterward, it 
increases up to 80 ns and finally reaches stable equilibrium 
and fluctuates around 20 Å for the last 20 ns of simulations. 
Similarly, we also see some drifting in the distance plot of 
complex3 and complex5. The binding of human metabolites 
to 3CLpro is directly affected by these distance deflections.

Energetics of human metabolites affinity

To further elucidate the recognition, binding affinity, and 
specificity of human metabolites against SARS-CoV-2 
main protease 3CLpro, we have estimated the total bind-
ing affinity (ΔGbind)(ΔGbind) and energetic components 
using molecular mechanics generalized Born surface area 

Fig. 4   The time evolution of distance between ligand and domain I (in red), ligand and domain II (in violet), ligand and domain I & II (in green). 
A complex1, B complex2, C complex3, D complex4, E complex5, F complex6, G complex7 and H complex8, respectively
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(MM-GBSA) approach. A summary of the binding affin-
ity and its components are shown in Supporting Infor-
mation Fig. S5 and Table 3. As suggested in Fig. S5, 
the polar solvation (ΔGpol)(ΔGpol) and configurational 
entropic (TΔS)(TΔS) components disfavor the binding 
of human metabolites while the rest of the components 
(  ΔEvdWΔEvdW  ,  ΔEelec and ΔGnpΔEelec and ΔGnp  )  a r e 
favorable toward the protein–ligand complexation. More-
over, Table 3 reveals that the calculated binding affinity 
of complex1 is the highest (− 18.08 ± 0.87 kcal/mol) fol-
lowed by complex6 (− 10.33 ± 0.46 kcal/mol), complex8 
(− 10.28 ± 0.58 kcal/mol), complex7 (− 9.53 ± 0.85 kcal/
mol), complex5 (− 8.75 ± 0.58 kcal/mol) and complex2 
(− 5.34 ± 0.68 kcal/mol). On the other hand, the worst 
binding affinity (due to their high configurational 
entropic contributions, − TΔSΔS ) of complex3 and com-
plex4 suggest that these complexes’ human metabolites 
are not good binder against 3CLpro. However, the static 
docking results are promising. It is worth noting that 
ligand3 displayed an increased configurational entropic 
contribution as it experienced more fluctuations than 
other ligands (see Fig. 3A). These results indicate that 
the complex1’s human metabolite has the strongest bind-
ing affinity with 3CLpro.

Han et al. computationally explored the binding affin-
ity of some clinically approved drugs (Chloroquine, 
Hydroxychloroquine, Remdesivir, Ritonavir, Favipira-
vir, Beclabuvir, and Indinavir) and recently designed 
α-ketoamide (13b) inhibitor against SARS-CoV-2 
3CLpro [64]. Han et al. suggested that α-ketoamide (13b) 
is a highly potent inhibitor, and the binding affinity 
is − 17.75 kcal/mol. Overall, our estimations indicate 

that human metabolites could be more potent than 
α-ketoamide (13b), as we get better affinity (− 18.08 kcal/
mol) against 3CLpro due to its low value of configuration 
entropy (28.43 kcal/mol).

Critical residues involved in human metabolites 
binding with 3CLpro

To gain insights into the contribution of each amino acid to 
the binding, we decomposed the total binding free energy 
at the residual level using the molecular mechanics gener-
alized Born surface area (MM-GBSA) approach. The pro-
tein–ligand interactions spectra are shown in Fig. 5. The 
binding hotspot residues whose contributions are more 
than − 1.5 kcal/mol are listed in Supporting Information 
Table S3. It is clear from Fig. 5 that the favorable bind-
ing residues are Met165, His41, Cys145, Glu166, Gln189, 
Asn142, Leu141, and Met49, and the interaction spectra 
for all are the same. This agrees with other computational 
studies [65, 66]. Our RMSF analysis also shows that these 
binding site residues display low fluctuations due to strong 
interactions with human metabolites (see Fig. 2C, D). Fig-
ure 5 and some recent studies suggest domains I and II are 
involved favorably in human metabolites like small mole-
cules, and catalytic dyads His41 and Cys145 play an essen-
tial role. Moreover, for all cases, the assistance from the 
backbone and side-chain atoms are also favorable toward 
the binding, which is a good thing for an inhibitor’s stronger 
affinity.

As Table S3 suggested that in the case of complex1, 
Gln189 (− 2.68  kcal/mol), Met165 (− 2.51  kcal/mol), 
Glu166 (− 2.10 kcal/mol), and Thr190 (− 1.51 kcal/mol) 

Table 3   Energetic components of the binding free energy for 3CLpro of SARS-CoV-2 complexed with human metabolites, estimated using the 
MM/GBSA (kcal/mol) method

Standard errors of the mean (SEM) are provided in parentheses
a ΔEvdW + ΔEelec
b ΔGpol+ ΔGnp
c ΔEvdW + ΔEelec + ΔGpol+ ΔGnp
d ΔEvdW + ΔEelec + ΔGpol+ ΔGnp − TΔS

Systems ΔEvdW ΔEelec ΔGpol ΔGnp ΔEMM
a ΔGsolv

b ΔHc − TΔS ΔGbind
d

Complex1 − 52.91 (0.10) − 57.22 (0.35) 70.40 (0.30) − 6.79 (0.01) − 110.13 
(0.39)

63.61 (0.29) − 46.51 (0.11) 28.43 (0.86) − 18.08 (0.87)

Complex2 − 44.26 (0.11) − 45.62 (0.30) 62.87 (0.22) − 6.34 (0.01) − 89.88 (0.32) 56.53 (0.21) − 33.35 (0.14) 28.01 (0.67) − 5.34 (0.68)
Complex3 − 32.39 (0.10) − 79.24 (0.32) 87.79 (0.29) − 5.40 (0.01) − 111.64 

(0.35)
82.79 (0.29) − 29.25 (0.10) 30.43 (0.70) 1.18 (0.71)

Complex4 − 29.93 (0.09) − 23.86 (0.20) 38.44 (0.16) − 4.46 (0.01) − 53.80 (0.23) 33.98 (0.15) − 19.82 (0.11) 23.99 (0.61) 4.17 (0.62)
Complex5 − 37.50 (0.11) − 20.02 (0.30) 33.29 (0.26) − 4.59 (0.01) − 57.52 (0.34) 28.70 (0.25) − 28.82 (0.13) 20.07 (0.57) − 8.75 (0.58)
Complex6 − 48.53 (0.05) − 27.72 (0.10) 48.09 (0.07) − 5.89 (0.00) − 76.25 (0.10) 42.20 (0.07) − 34.05 (0.05) 23.67 (0.46) − 10.33 (0.46)
Complex7 − 44.14 (0.11) − 32.75 (0.22) 47.63 (0.16) − 5.95 (0.01) − 76.89 (0.28) 41.68 (0.15) − 35.21 (0.16) 25.68 (0.84) − 9.53 (0.85)
Complex8 − 33.95 (0.06) − 17.63 (0.17) 28.26 (0.15) − 4.18 (0.01) − 51.58 (0.17) 24.09 (0.15) − 27.49 (0.06) 17.21 (0.58) − 10.28 (0.58)
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are the hotspot residues. The van der Waals interactions with 
these residues have essential contributions to the overall 
binding affinity of the metabolite. This result implies that 
the human metabolite in complex1 depicted a tendency to 
develop hydrophobic interactions with most of these bind-
ing site residues. This interaction is thought to reduce bind-
ing site residues’ flexibility, as seen in the RMSF analy-
sis (Fig. 2C, D). Similarly, residue Gln189 in complex4 
(− 1.99 kcal/mol), complex5 (− 2.80 kcal/mol), complex6 
(− 3.06 kcal/mol), complex7 (− 3.20 kcal/mol), and com-
plex8 (− 3.35 kcal/mol) contributed more favorably than the 
catalytic dyads.

Hydrogen bonds and hydrophobic interactions 
stability analysis

To complement the energetic analysis and understand the 
complex stability, we determined the time evolution of the 
center of the mass distance between the 3CLpro and eight 
human metabolites into their respective complex, shown in 
Fig. 6A, B. As suggested in Fig. 6A, B, the CoM distance 
of these complexes is at a stable equilibrium. Although we 
see some deflection in complex4 up to 80 ns, after that, it 
fluctuated around 23 Å.

Next, we estimated the temporal evolution of the number 
of hydrogen bonds between 3CLpro and metabolites through-
out the simulation (see Fig. 6C, D). Detailed profiling of the 
prominent hydrogen bonds is listed in Supporting Informa-
tion Table S4. It is evident from Fig. 6C, D that complex3 

Fig. 5   Per-residue decomposi-
tion of the binding free energy 
for A complex1, B complex2, C 
complex3, D complex4, E com-
plex5, F complex6, G complex7 
and H complex8, respectively. 
The energy contribution ≥ − 
1.5 kcal/mol is shown in each 
plot
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shows the highest number of hydrogen bonds compared 
to the rest of the complexes. This high number of hydro-
gen bonds increases the electrostatic interactions between 
3CLpro and human metabolites. However, in complex3, this 
electrostatic interaction is compensated by polar solvation 
energy, which is the highest among all complexes. Thus, the 
number of hydrogen bonds alone is insufficient for obtaining 
high affinity, as also shown in an earlier study [67]. How-
ever, ligand1 has very stable hydrogen between Gln192 and 
the oxygen (O3) atom (80.39%), which is missing in the 
case of complex3. The complex2, complex4, complex6, and 
complex8 have less than two hydrogen bonds in the 100 ns 
simulation. These results suggest that non-polar solvation 
and hydrophobic van der Waals interactions are the primary 
binding force.

Furthermore, we supplemented the above findings for the 
top four molecules by exploring various hydrogen bonding 
and hydrophobic interaction profile between the main pro-
tease, 3CLpro, and human metabolites for the final produc-
tion simulation structure, as shown in Fig. 7. The interaction 
profiles for complex2, complex3, complex4, and complex5 
are shown in Supplementary Information, Fig. S6. The 3D 
conformation of ligands in the binding site shows the possi-
ble orientation of the different ring structures, which leads to 
the possible set hydrogen bonding pattern (Fig. 7A–D). The 
detailed interaction profiles were estimated using Ligplot+ 
(Fig.  7E–H) [68]. For the complex1, Fig.  7E displayed 

ten hydrophobic interactions with Cys44, Gly143, Tyr54, 
Gln189, Met49, Asp187, Glu166, Met165, Glm192, and 
Leu167. These extensive hydrophobic interactions account 
for the high affinity and stability of human metabolites in 
complex1. Similarly, residues, including Thr26, His41, 
Arg188, and Thr190, form strong hydrogen bonding with 
metabolites. In complex6, seven hydrophobic interactions 
with residues His163, Arg188, His41, His164, Asp187, 
Met165, and Gln189 were found, as revealed by Fig. 7F. 
Figure 7G, H shows that Ala191, Arg188, Met165, Gln189, 
His41, Met49, and Asn142 are strongly involved in hydro-
phobic interactions. His164, Gln189, Gln166, and Gln192 
participate in the hydrogen bonding interactions for com-
plex7 and complex8. Due to extensive hydrophobic interac-
tions and strong hydrogen bonding, complex1 may be more 
potent against SARS-CoV-2 3CLpro.

Prediction of pharmacological and toxicological 
properties

Different physicochemical properties like CNS, Molecular 
weight, acceptor and donor hydrogen bond cut-off, octanol/
water partition coefficient, brain–blood barrier coefficient, 
and others were calculated and listed in Supporting Infor-
mation (Table S5). Ligand8 is the least violated Lipinski’s 
rule among all other top leads. The best lead ligand obtained 
from the MD simulation studies shows poor druggability 

Fig. 6   The time evolution of the center of the mass distance (A, B) and the number of hydrogen bonds between 3CLpro and human metabolites 
(C, D). In figure legend, the complex is termed as com in all cases
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as it has the highest number of rule violations. However, 
recently, it has been found that many drugs do not follow 
Lipinski’s rule and are presently found on the FDA-approved 

drug list [69]. Instead of being employed as a therapeutic 
candidate, these compounds will be used as lead molecules.

Fig. 7   The main protease, 
3CLpro, and human metabolites 
interaction profiles (affinity 
more than − 9 kcal/mol). 3D 
interaction profile for selected 
ligands where key residues are 
shown ball and stick model 
A Ligand1, B Ligand6, C 
Ligand7, and D Ligand8. 2D 
interaction plots are generated 
by using Ligplot+, E Ligand1, 
F Ligand6, G Ligand7, and H 
Ligand8. Pink spike semicircles 
show the residues involved in 
the hydrophobic interactions, 
and hydrogen bonds are shown 
as green dotted lines



Molecular Diversity	

1 3

Ligand6 and Ligand8 have less than 500 Dalton molecu-
lar weights, indicating a promising lead molecule for drug 
design. Only in the case of human oral absorption, all four 
ligands were out of the acceptable ranges. Compared with 
all the parameters, Ligand8 stands out to be the best choice 
for a lead molecule. Toxicity profiling is one of the criti-
cal parameters for successful drug development, which was 
done in our lead molecules and shown in Supporting Infor-
mation, Table S6. Ligand1 and Ligand7 were estimated as 
toxicity group 4, whereas Ligand6 and Ligand8 were esti-
mated as group 5 on a scale of 1 to 5 (higher the number, 
lower the toxicity). All four lead ligands were evaluated as 
non-hepatotoxic, non-carcinogen, non-mutagenic, and non-
cytotoxic. In comparison to Ligand1, which has the highest 
binding free energy of all the molecules, Ligand8 exhibits 
several interesting features.

Conclusion

This study concludes that the natural compounds and 
their metabolites can play a promising role in managing 
the SARS-COV-2 infection. The current study is a refer-
ence model in which we recommend adjusting the body’s 
metabolites or eating enough food to develop appropriate 
metabolites to combat viral infections. We screened the 
human metabolite database and selected the top 8 lead mol-
ecules for further validation. The chosen molecules were fur-
ther screened using 3 × 100 ns long conventional molecular 
dynamics simulations and the free energy calculation using 
the MM/GBSA scheme. Based on our computational study, 
we identified top four lead compounds to become possible 
drug candidates. We found that one of the metabolites of 
isobavachalcone (Ligand1: HMDB0132640) binds very well 
(− 18.08 kcal/mol) to 3CLpro of SARS-COV-2. Although it 
does not follow all the druggability rules, it is worth trying 
a molecule that can bind very well to 3CLpro and may serve 
as the best lead for this target. On the other hand, Ligand8 
is another suitable candidate based on suitable ADMET 
properties. Therefore, despite some deviations from drug-
likeness, four of the eight hits can be taken further as they 
have ideal interactions with 3CLpro, excellent binding free 
energy, and good pharmacokinetic properties. Overall, these 
metabolites have a good chance of being developed as pos-
sible COVID-19 protease inhibitors.
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