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Abstract: This study aims to develop highly durable, mineral carbonation-based, resource-recycling,
secondary cement products based on supercritical carbon dioxide (CO2) curing as part of carbon
capture utilization technology that permanently fixes captured CO2. To investigate the basic charac-
teristics of secondary cement products containing concrete sludge waste (CSW) as the main materials
after supercritical CO2 curing, the compressive strengths of the paste and mortar (fabricated by using
CSW as the main binder), ordinary Portland cement, blast furnace slag powder, and fly ash as admix-
tures were evaluated to derive the optimal mixture for secondary products. The carbonation curing
method that can promote the surface densification (intensive CaCO3 formation) of the hardened body
within a short period of time using supercritical CO2 curing was defined as “Lean Carbonation”.
The optimal curing conditions were derived by evaluating the compressive strength and durability
improvement effects of applying Lean Carbonation to secondary product specimens. As a result of
the experiment, for specimens subjected to Lean Carbonation, compressive strength increased by up
to 12%, and the carbonation penetration resistance also increased by more than 50%. The optimal
conditions for Lean Carbonation used to improve compressive strength and durability were found to
be 35 ◦C, 80 bar, and 1 min.

Keywords: concrete sludge waste; supercritical CO2 curing; secondary cement product

1. Introduction

The demand for concrete is increasing considerably, owing to industrial development
and population growth. For cement, the core material of concrete, CO2 emissions attributed
to the decarboxylation (CaCO3→ CaO + CO2) of limestone (the main raw material) during
the high-temperature firing process at ≥1450 ◦C account for approximately 60% of the total,
and CO2 emissions owing to the combustion of fossil fuel during equipment operations
account for the remaining 40% [1,2]. CO2 emissions based on the cement firing process
represent approximately 8% of the global CO2 emissions [3]. Thus, the cement industry is
classified as an industry associated with considerable carbon emissions [4].

In recent years, various efforts have been expended to reduce greenhouse gas (GHG)
emissions worldwide to prevent sudden changes in climate owing to global warming.
However, carbon emissions in South Korea are increasing every year. The 2030 GHG
reduction target was set to 37% compared with the Business-As-Usual at the time of the
Paris Climate Agreement but was recently increased to 40% compared with emissions
in 2018, based on considerations of the international GHG reduction trend [5]. Despite
this policy change, CO2 emissions from the cement industry are increasing every year.
As a result, there is an urgent requirement to develop carbon capture utilization (CCU)
technology that utilizes captured CO2 as a resource through permanent fixation to realize
carbon neutrality in accordance with the current global trend.
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In general, the carbonation of concrete causes the corrosion of steel reinforcement by
lowering the alkalinity of the concrete cover as shown in Equation (1), and in the long-term,
as represented in Equation (2), carbonation causes decomposition of C–S–H structures, thus
degrading the concrete durability [6].

Ca(OH)2 + CO2 → CaCO3 + H2O (1)

(CaO)x(SiO2)(H2O) + xCO2 → xCaCO3 + SiO2(H2O)t + (z − t)H2O (2)

However, in a previous study of Groves et al. [7], experiments on cement paste
carbonation were conducted using pastes of C3S to examine and measure the rate of
carbonation reaction of portlandite and C–S–H, which are the main hydration products of
a cement-hardened body. As a result, it was reported that in the initial stage of carbonation
reaction, portlandite showed a fast reaction rate but over time, microcrystalline CaCO3
layers of relatively high density were formed on the surface of the portlandite crystals,
leading to a decrease in reaction rate, and after the completion of the reaction of portlandite,
the carbonation reaction rate of C–S–H increased. Houst and Wittmann [8] reported that
the carbonized Portland cement paste samples showed a decrease in water absorption rate
compared to that of the non-carbonated samples.

As discussed above, recent studies have reported that CaCO3 formed by the reaction
between Ca(OH)2 and CO2 is expected to improve the mechanical properties and durability
by filling the pores in concrete [9–13]. Considering that the carbonation reactivity of typical
CO2 is low, subject to the typical atmospheric temperature and pressure conditions, the
studies using supercritical CO2 above the critical point (31.1 ◦C and 73.8 bar) to maximize
the carbonation reaction have recently increased [14–18].

Meanwhile, the shipment of ready-mixed concrete is also increasing every year, owing
to the increased demand for concrete, with concrete slurry water inevitably generated dur-
ing the concrete production process. Considering that concrete slurry water is composed of
supernatant water and concrete sludge waste (CSW), containing a large amount of unhy-
drated cement particles, the research efforts expended to recycle CSW as a cementitious
material have been increasing during the past few years [19–22]. The results of previous
studies on the effective use of CSW can be mainly divided into dry and dehydrated CSW
depending on the pretreatment method. For dry CSW, the strength and durability are
lowered by the needle-type ettringite formed by the accelerated hydration reaction of unhy-
drated cement particles owing to the high-temperature drying process [23,24]. Conversely,
in the case of dehydrated CSW, using dehydrated CSW immediately after the collection
of concrete slurry water is appropriate because additional hydration reactions cannot be
expected, with the moisture content increasing, owing to the hydration of unhydrated
cement particles as the retention period in concrete slurry water increases [25,26]. Therefore,
for CSW dehydrated immediately after collection, the development of strength is possible,
owing to unhydrated cement particles, and improvements in mechanical properties, as
well as CO2 fixation, can be expected to be achieved by carbonation curing [27,28].

As such, in this study, the reaction that can promote the surface densification of the
hardened body within a short period of time using supercritical CO2 curing was defined
as “Lean Carbonation”, and the mechanical properties of mortar that used CSW as the
main material, as well as the durability improvement effect (carbonation and chloride
penetration resistance) of Lean Carbonation, were examined for the development of highly
durable, resource-recycling secondary cement products. Figure 1 shows the research flow
of this study.
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2. Derivation of the Optimal Mixture for Resource-recycling of Secondary
Cement Products
2.1. Experimental Plan and Method
2.1.1. Analysis of CSW Moisture Content Based on Pressurized Dehydration

In this study, pressurized dehydration equipment, identical to that used in the filter
press method, was fabricated to use dehydrated CSW, as shown in Figure 2, with a pressure
gauge installed to quantify the applied pressure.
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Figure 2. Pressurized dehydration equipment: (a) conceptual diagram and (b) installation example.

Before the main experiment, the optimal pressurized dehydration conditions (400 bar,
5 min, and 3 times) were derived based on a preliminary experiment. The moisture content
tendency of dehydrated CSW was evaluated according to the retention period in concrete
slurry water.

2.1.2. Materials Used and Mixture Proportions

The CSW used in this study was collected from the ready-mixed concrete factory of
company Y located in Gyeonggi-do, Korea, and was produced on the same day. Recovered
sand was used as fine aggregate and supernatant water as mixing water. Tables 1 and 2 list
the chemical compositions of supernatant water and CSW.
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Table 1. Chemical composition of supernatant water (obtained by ICP spectroscopy).

pH
Chemical Composition (mg/L)

Ca Mg Na Fe K

12.5 812 0 242 0 711

Table 2. Chemical composition of concrete slurry waste (obtained by XRF spectroscopy).

Chemical Composition (wt.%)

CaO SiO2 Al2O3 Fe2O3 SO3 MgO K2O TiO2 Na2O3 P2O5

34.32 26.24 8.27 3.12 2.37 2.10 1.05 0.47 0.37 0.23

To derive the optimal mixture (mix) for resource-recycling secondary cement products,
the CSW subjected to pressurized dehydration immediately after collection (moisture
content: 40%, specific gravity: 2.69) was used as the main binder; ordinary Portland cement
(OPC), blast furnace slag (BS) powder, and fly ash (FA) were added as admixtures based on
the CSW weight in the experiment. As for the dehydration process of CSW, Figure 3 shows
the image of CSW immediately after dehydration. To secure fluidity as the property of
unhardened mortar, mortar mixing was performed by setting the slump flow of all mixtures
to be equal to 150 ± 15 mm. The compressive strengths of resource-recycling paste and
mortar were evaluated to derive the optimal mix proportions. The experimental factors
and levels are listed in Table 3, and the mix proportions of paste are listed in Table 4. In the
case of mortar, the ratios of binder and sand were set to 1:1, 1:2, and 1:3, with the mixtures
named Mortar 1:1, Mortar 1:2, and Mortar 1:3, respectively and the mix proportions of
mortar are listed in Tables 5–7.
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Figure 3. Concrete sludge waste (CSW) immediately after dehydration with moisture content of 40%.

Table 3. Factors and levels.

Factors Levels Notes

W/B 0.4

Specimen

CSW 100
Paste

Mortar 1:1
Mortar 1:2
Mortar 1:3

OPC 20
BS 20, 40
FA 20, 40

BS:FA 30:20

Curing Steam curing KS L 4004

Mechanical properties Compressive strength KS F 5105
KS L 4004
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Table 4. Mixture proportion—paste.

Specimens W/B
Unit Weight (kg/m3)

W CSW OPC BS FA Sand

CSW

0.4

518.3 1295.8 - - -

-

OPC20 478.9 1197.3 239.5 - -
BS20 475.8 1189.5 - 237.9 -
BS40 439.7 1099.3 - 439.7 -
FA20 464.1 1160.3 - - 232.1
FA40 420.2 1050.5 - - 420.2

BS30FA20 414.4 1036.0 - 310.8 207.2

Table 5. Mixture proportion—mortar 1:1.

Specimens W/B
Unit Weight (kg/m3)

W CSW OPC BS FA Sand

CSW

0.4

345.5 863.7 - - - 863.7
OPC20 308.0 770.1 154.0 - - 924.1
BS20 306.7 766.9 - 153.4 - 920.2
BS40 275.8 689.6 - 275.8 - 965.4
FA20 301.9 754.6 - - 150.9 905.6
FA40 268.0 670.0 - - 268.0 938.0

BS30FA20 259.0 647.5 - 194.2 129.5 971.2

Table 6. Mixture proportion—mortar 1:2.

Specimens W/B
Unit Weight (kg/m3)

W CSW OPC BS FA Sand

CSW

0.4

259.0 647.6 - - - 1295.3
OPC20 227.0 567.5 113.5 - - 1362.1
BS20 226.3 565.8 - 113.2 - 1358.0
BS40 200.9 502.3 - 200.9 - 1406.5
FA20 223.7 559.1 - - 111.8 1341.9
FA40 196.8 491.9 - - 196.8 1377.3

BS30FA20 188.4 470.9 - 141.3 94.2 1412.7

Table 7. Mixture proportion—mortar 1:3.

Specimens W/B
Unit Weight (kg/m3)

W CSW OPC BS FA Sand

CSW

0.4

207.2 518.1 - - - 1554.4
OPC20 179.8 449.4 89.9 - - 1617.8
BS20 179.3 448.3 - 89.7 - 1613.9
BS40 158.0 395.1 - 158.0 - 1659.2
FA20 177.6 444.1 - - 88.8 1598.7
FA40 155.4 388.6 - - 155.4 1632.0

BS30FA20 148.0 370.0 - 111.0 74.0 1665.0

2.1.3. Compressive Strength

For compressive strength tests and measurements, cubic specimens were prepared
(50 × 50 × 50 mm3) in accordance with the KS L 5105 standard (compressive strength
test method for hydraulic cement mortar). Considering the curing method, steam curing
was performed at an accumulated temperature of 500 ◦C·h with pre-curing (20 ◦C and
3 h), temperature rise (20 ◦C/h and 2 h), and isothermal curing (60 ◦C and 6 h) settings in
accordance with KS L 4004 (concrete block), as shown in Figure 4. Compressive strength
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was measured for specimens subjected to a climatic chamber at constant temperature and
relative humidity (20 ◦C, 60% RH) after steam curing; for all mixtures, the average value
of the compressive strength of the three tested specimens was measured to determine the
compressive strength.
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2.2. Experiment Results and Analysis
2.2.1. CSW Moisture Content Measurement Results Based on Pressurized Dehydration

Figure 5 shows the moisture content according to the retention period in concrete
slurry water. Immediately after collection, the moisture content of CSW was measured
to be approximately equal to 40%. The moisture content increased to approximately 67%
after 1 d and to 82% after 6 d, confirming that the moisture content rapidly increased at the
beginning but gradually converged to a value as the retention period increased, consistent
with the results of previous studies in which the moisture content increased alongside the
increase in the hydration products of cement [23–25]. Therefore, in the case of CSW used for
resource-recycling secondary cement products, it is deemed appropriate to dehydrate and
use the CSW collected on the same day because it is rich in unhydrated cement particles.
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2.2.2. Compressive Strength Measurement Results

Figure 6 shows the compressive strength measurement results. Regardless of the type
and content of admixture, Mortar 1:2 exhibited the highest compressive strength (21 MPa)
on average followed by Mortar 1:1 (18 MPa), paste (16 MPa), and Mortar 1:3 (11 MPa).
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Considering the average compressive strength by admixture, BS40 yielded the highest
value (22.9 MPa) followed by OPC20 (21.2 MPa), BS20 (17.3 MPa), BS30FA20 (16.9 MPa),
CSW (16.7 MPa), FA20 (12.6 MPa), and FA40 (10.7 MPa). In the case of the mixture with
CSW alone, compressive strength was measured to be lower than the mixture containing
BS powder or OPC as admixtures, but the strength was higher than the mixture with
fly ash. The result is possibly attributed to the dehydrated CSW with a large amount of
unhydrated cement particles contributing to the development of compressive strength [24].
In the case of the BS mixtures, it appears that the compressive strength was measured
to be high as a result of the hydration reaction because a sufficient amount of an alkali
activator [Ca(OH)2] was contained in the components of CSW to destroy the glass structure
of BS [29]. Conversely, in the case of the FA mixtures, the lowest compressive strength
occurred because the amount of Ca(OH)2 used for the pozzolanic reaction was not sufficient.
According to Papadakis [30], FA lowers the compressive strength when its content exceeds
the optimal content (25% compared with cement when the calcium content of FA is low). A
similar tendency was observed in this study.

The comprehensive evaluation of compressive strength showed that the optimal mix
that satisfies the KS F 4004 (concrete brick) criteria (13 MPa or higher for type 1 bricks and
8 MPa or higher for type 2 bricks) is Mortar 1:2, with the highest compressive strength. The
mix that used CSW as a single binder also satisfied the compressive strength criterion for
type 1 bricks in the KS standard, confirming that the compressive strength was improved
when cement and BS powder were added as admixtures.
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3. Derivation of the Optimal Conditions for Lean Carbonation
3.1. Concept of Lean Carbonation

While accelerated carbonation requires a long reaction time—owing to the diffusion-
controlled reaction during which CO2 gas penetrates the pore structure, dissolves in pore
water, and reacts with Ca(OH)2—the carbonation reaction through supercritical CO2 does
not decrease the reaction rate owing to its high permeability, possibly increasing the carbon-
ation reaction rate compared with gaseous CO2 [31]. Figure 7 shows the difference between
Lean Carbonation (defined in this study) and the gaseous CO2 carbonation mechanism.
The expected durability (carbonation and chloride penetration resistance) improvement
effect of Lean Carbonation is shown in Figure 8.
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3.2. Experimental Method Used to Derive Optimal Conditions for Lean Carbonation
3.2.1. Supercritical CO2 Curing Equipment

In this study, supercritical CO2 curing equipment was fabricated to perform Lean
Carbonation, as shown in Figure 9. The equipment consists of a reactor (4 L) and a
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pressurization device, with a thermocouple and pressure gauge installed in the reactor (4 L)
to control the temperature and pressure.
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3.2.2. Supercritical CO2 Curing Conditions

To derive the optimal curing conditions for Lean Carbonation, Φ100 × 100 mm3

specimens (Mortar 1:2 and the mix that used CSW as a single binder) were prepared
in accordance with the KS F 2584 standard (test method for accelerated carbonation of
concrete). Epoxy was applied to the top and bottom surfaces of the specimens for the
unidirectional penetration of CO2 after seven days of steam curing. In the process used
for quantifying the supercritical CO2 curing reaction time, the specimens were placed in
the reactor (4 L) and the target temperature inside the reactor was reached by heating
the heating plate. Pure CO2 gas (99.9%) was then injected under pressurized conditions
through a gas booster until the target pressure was reached. During the determined reaction
time, specimens were undergoing Lean Carbonation. Most studies on mineral carbonation
based on supercritical CO2 were conducted in the ranges of 30–50 ◦C and 80–100 bar [32].
Based on these conditions, in this study, the temperature and pressure conditions were
set to 35 ◦C and 80 bar and 40 ◦C and 100 bar, close to the supercritical CO2 critical point
(31.1 ◦C and 73.8 bar); the carbonation depth was measured by varying the curing time
from 1 to 5, 10, 30, and 60 min.

3.2.3. Evaluation of the Optimal Conditions for Lean Carbonation

The specimens were split after supercritical CO2 curing, and a 1% phenolphthalein
solution was sprayed onto the cross-section to derive the optimal curing conditions for
Lean Carbonation. The optimal supercritical CO2 curing conditions were then selected by
measuring the carbonation depth of the area, where discoloration did not occur.

3.3. Derivation of the Optimal Condition Outcomes for Lean Carbonation

Figure 10 shows the carbonation depth results after supercritical CO2 curing. The
carbonation depth increased as the temperature, pressure, and curing time increased.
However, the interface was nonlinear because carbonation did not occur uniformly from
the surface.

According to Rimmele et al. [33], cement paste was composed of the carbonated zone,
carbonation front, and inner part of the sample in supercritical CO2 exposure conditions,
with the densest structure formed at the carbonation front. In the case of Lean Carbonation,
the optimal supercritical CO2 curing conditions used to improve durability by causing
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surface densification through the formation of CaCO3 were evaluated to be 35 ◦C, 80 bar,
and 1 min.
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Figure 10. Carbonation depth measurement results after supercritical CO2 curing.

4. Evaluation of Mechanical Properties and Durability Based on Lean Carbonation
4.1. Experimental Plan and Method for Lean Carbonation

Lean Carbonation (35 ◦C, 80 bar, 1 min) was performed for the specimens of CSW,
OPC20, BS20, and FA20 mixtures based on Mortar 1:2, and was considered the most suitable
for resource-recycling secondary cement products. The specimens were subjected to steam
curing and air-dry curing for 7 days before Lean Carbonation. The Lean Carbonation depth
was examined for each mixture, and compressive strength and durability (carbonation
resistance and chloride penetration resistance) were compared and evaluated depending
on whether Lean Carbonation was applied. The curing conditions are listed in Table 8, and
the experimental factors and levels in Table 9.

Table 8. Specimen curing conditions.

Curing Method Conditions

Steam curing Steam curing (accumulated temperature of 500 ◦C·h and 11 h)→ air-dry
curing (20 ± 1 ◦C, 60 ± 1% relative humidity (RH), and up to 7 days of age)

Lean Carbonation
Steam curing (accumulated temperature of 500 ◦C·h and 11 h)
→ air-dry curing (20 ± 1 ◦C, 60 ± 1% RH, and up to 7 days of age)

→ Lean Carbonation (35 ◦C, 80 bar, 1 min)

Table 9. Experimental factors and levels.

Factors Levels Notes

Mix conditions CSW, OPC, BS20, and FA20 Mortar 1:2

Curing conditions Steam curing
Lean Carbonation

Lean Carbonation
(35 ◦C-80 bar-1 min)

Lean Carbonation depth Carbonation depth KS F 2584

Mechanical property Compressive strength KS F 5105
KS L 4004
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Table 9. Cont.

Factors Levels Notes

Durability

Carbonation resistance
(4 and 8 weeks) KS F 2584

Chloride penetration
resistance NT Build 492

Microstructure analysis Scanning electron microscopy
Steam curing

Lean Carbonation
Accelerated carbonation (4 weeks)

4.1.1. Carbonation Depth at Different Mixtures

The carbonation depth was measured in different mixtures in the same way as when
the optimal conditions for Lean Carbonation were derived.

4.1.2. Compressive Strength

Compressive strength specimens were prepared (50 × 50 × 50 mm3), and the com-
pressive strengths before and after Lean Carbonation were compared and evaluated.

4.1.3. Carbonation Resistance

Carbonation resistance was evaluated in accordance with the KS F 2584 standard
(test method for accelerated carbonation of concrete) after preparing Φ100 × 100 mm3

specimens. The steam curing specimens were cured for 4 weeks in constant temperature
and humidity conditions (20 ± 1 ◦C and 60 ± 1% RH) and subjected to the accelerated car-
bonation test (20 ± 1 ◦C, 60 ± 1% RH, and CO2 concentration of 5%) for 4 and 8 weeks. For
the Lean Carbonation specimens, the accelerated carbonation test (20 ± 1 ◦C, 60 ± 1% RH,
and CO2 concentration of 5%) was conducted for 4 and 8 weeks immediately after super-
critical CO2 curing. The carbonation resistance was compared and evaluated by measuring
the carbonation depth after splitting the specimens after spraying a 1% phenolphthalein
solution upon the completion of the accelerated carbonation test. Figure 11 shows the
evaluation method.
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4.1.4. Chloride Penetration Resistance

For the chloride penetration resistance, the chloride diffusion test was conducted on the
specimens before and after performing Lean Carbonation based on the NT Build 492 standard,
and the calculated chloride diffusion coefficients were compared and evaluated.
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4.1.5. Microstructural Analysis

For microstructural analysis, 5 mm specimens were collected from the interface of
the carbonated zone for the specimens subjected to steam curing, Lean Carbonation, and
accelerated carbonation for 4 weeks. The collected specimens were subjected to D-dry,
and their microstructures were compared and evaluated by scanning electron microscopy
(SEM) imaging.

4.2. Lean Carbonation Experimental Results and Analysis
4.2.1. Lean Carbonation Depth by Mixture

After Lean Carbonation, FA20 yielded the largest carbonation depth (35.5 mm), fol-
lowed by BS20 (16.8 mm), CSW (16.6 mm), and OPC20 (14.2 mm). The FA20 mixture
exhibited a significantly larger carbonation depth than the other mixtures, possibly because
the carbonation resistance was lowered as Ca(OH)2 was rapidly consumed by the poz-
zolanic reaction and strength development was not sufficient [29]. Figures 12 and 13 show
the Lean Carbonation depth as a function of mixture.
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4.2.2. Compressive Strength Measurement Results

Figure 14 shows the compressive strength change before and after Lean Carbonation.
After Lean Carbonation, the compressive strength increased for all mixtures. OPC20
exhibited the highest compressive strength increase rate (approximately 13.4%), followed
by BS20 (11.0%), CSW (2.2%), and FA20 (2.0%). The compressive strength appears to have



Materials 2022, 15, 4581 13 of 19

increased because the pore structure inside the specimens became denser owing to Lean
Carbonation [27].
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4.2.3. Carbonation Resistance Evaluation Results

Figures 15 and 16 show the carbonation resistance evaluation results. The specimens
subjected to steam curing and accelerated carbonation were marked with the symbol A.C,
while those subjected to Lean Carbonation and then accelerated carbonation were marked
with the symbol L.C.
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When the carbonation depth was measured by conducting the accelerated carbon-
ation test after Lean Carbonation, carbonation progressed through the epoxy coating
applied to the top and bottom surfaces of the specimens, owing to the high permeability of
supercritical CO2.

For the specimens subjected to the accelerated carbonation test after steam curing,
FA20 exhibited the largest carbonation depth, followed by BS20, CSW, and OPC20. The
carbonation depths were 44.4, 28.9, 21.0, and 17.1 mm after 4 weeks and 50, 50, 31.2, and
25.5 mm after 8 weeks, respectively. It appears that the mixtures containing BS powder
and FA yielded relatively larger carbonation depths because their carbonation resistances
decreased, owing to the temporary increase in pore volume. This was caused by incomplete
hydration when Ca(OH)2 was consumed by latent hydraulic properties and pozzolanic
reactions during the hydration reaction, but sufficient wet curing was not performed at the
beginning of curing [34].

For the specimens subjected to the accelerated carbonation test after Lean Carbonation,
FA20 yielded the largest carbonation depth followed by BS20, CSW, and OPC20. The
carbonation depths were 46.9, 32.5, 24.6, and 17.8 mm after 4 weeks and 50, 50, 34.1, and
23 mm after 8 weeks, respectively.

After Lean Carbonation, the carbonation depth increased for most of the specimens.
However, OPC20 exhibited a reduction in carbonation depth when the accelerated carbona-
tion test was performed for 8 weeks after Lean Carbonation, compared with the case in
which the accelerated carbonation was performed after steam curing. Conversely, in the
case of CSW, the carbonation depth was larger when the accelerated carbonation test was
conducted for 8 weeks after Lean Carbonation compared with the case in which Lean Car-
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bonation was not performed at all. Nevertheless, the rate of change of carbonation depth
from 4 to 8 weeks decreased by approximately 10%, thus indicating that the carbonation
depth of a specimen subjected to Lean Carbonation is expected to decrease if carbonation
curing is performed for a longer time.

4.2.4. Chloride Penetration Resistance Evaluation Results

Figure 17 shows the chloride diffusion coefficient measurement results. When Lean
Carbonation was not performed, OPC20 yielded the highest chloride diffusion coefficient
(53.1 × 10−12 m2/s) followed by FA20 (47.7 × 10−12 m2/s), CSW (32.7 × 10−12 m2/s), and
BS20 (14.6× 10−12 m2/s). It appears that the BS20 mix yielded the lowest chloride diffusion
coefficient because it had high chloride penetration resistance as Friedel’s salt was formed
through the reaction between C3A and chloride ions when BS powder was added [35].
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Figure 17. Chloride diffusion coefficient measurements.

When the chloride diffusion coefficient was measured after Lean Carbonation, FA20
yielded the highest value (22.1 × 10−12 m2/s) followed by OPC20 (23.3 × 10−12 m2/s),
CSW (21.1 × 10−12 m2/s), and BS20 (20.7 × 10−12 m2/s). For all the mixtures (except for
BS20), the chloride diffusion coefficient decreased, thus confirming the same tendency as in
a previous study [36], i.e., ensuring that the diffusion of chlorides was inhibited by the den-
sification of the pore structure caused by the formation of carbonate. However, the chloride
diffusion coefficient of BS20 appeared to have increased after Lean Carbonation because
the ability to fix chloride ions was lowered by the carbonation of C3A and monosulfate,
required for the formation of Friedel’s salt. However, BS20 yielded the highest chloride
penetration resistance among all mixtures despite the increase in diffusion coefficient after
Lean Carbonation, possibly attributed to the densest microstructure despite the lowered
ability to fix chloride ions.

4.2.5. Microstructural Analysis Results

Figure 18 lists the SEM measurement results of the various mixtures after steam curing,
accelerated carbonation (4 weeks), and Lean Carbonation was performed.

In the case of the specimens subjected to accelerated carbonation and Lean Carbona-
tion, as can be seen in Figure 19, microcrystals were generated, and the structure became
denser, and in particular, more active formation of microcrystals was shown in the speci-
men subjected to Lean Carbonation. García-González et al. comparatively evaluated the
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accelerated carbonation and supercritical carbonation for OPC pastes. In their results, it
was reported that the microstructure became denser, and the total pore volume decreased
through the carbonation reaction. It was reported that in the case of carbonation with
supercritical carbon dioxide, the effect of refinement and densification of the microstruc-
ture was observed in a few hours [35,36]. Similarly, in this study, it is considered that
through accelerated and Lean Carbonation, CaCO3 crystals were densely formed inside
the hardened body, resulting in a more dense microstructure and improved mechanical
properties [37,38].
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5. Conclusions

In this study, the optimal mixture was derived for resource-recycling secondary cement
products comprising CSW from concrete slurry water as the main material. Additionally, its
mechanical properties and durability were compared and evaluated depending on whether
Lean Carbonation was applied for zero-emission of construction industry waste, and the
realization of CCU technology was based on this condition. The experimental results are
summarized as follows.

- As the retention period in concrete slurry water increased, the moisture content of CSW
tended to increase. The moisture content of the CSW subjected to pressurized dehydra-
tion immediately after the collection of concrete slurry water was approximately 40%.

- Regardless of the type and content of admixture, the Mortar 1:2 mix yielded the
highest strength and improved compared with the CSW mix, except for the mixtures
which contained FA as an admixture.

- The compressive strength increased after Lean Carbonation, and the OPC20 mix
yielded the highest strength improvement effect followed by the mixtures BS20, CSW,
and FA20.

- When the carbonation resistance was evaluated by conducting the accelerated car-
bonation test for 8 weeks after Lean Carbonation, the carbonation depth increased,
compared with the specimens not subjected to Lean Carbonation; however, the car-
bonation resistance increased after Lean Carbonation because the carbonation depth
increase rate decreased.

- For the specimens subjected to steam curing, FA20 exhibited the highest chloride
diffusion coefficient followed by OPC20, CSW, and BS20. It was confirmed that the
mixture that contained BS powder had the highest chloride penetration resistance
by fixing chlorides through the formation of Friedel’s salt. Meanwhile, after Lean
Carbonation, the chloride diffusion coefficient decreased in all mixtures, except for
BS20. It appears that chloride penetration resistance increased, owing to the dense
pore structure.

- SEM analysis results revealed that the structure became denser, owing to the forma-
tion of CaCO3 microcrystals in micropores after accelerated and Lean Carbonation.
However, in the case of Lean Carbonation, a sufficient reaction proportion occurred
within shorter times compared with accelerated carbonation.

A comprehensive analysis confirmed the durability improvement effect of Lean Car-
bonation based on the densification of the structure. The optimal supercritical CO2 curing
conditions were determined to be 35 ◦C, 80 bar, and 1 min, leading to surface carbonation.
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