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Abstract

The estimation approach to inference emphasizes reporting effect sizes with expressions of uncertainty (interval
estimates). In this perspective we explain the estimation approach and describe how it can help nudge
neuroscientists toward a more productive research cycle by fostering better planning, more thoughtful interpre-

tation, and more balanced evaluation of evidence.
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Significance Statement

The estimation approach to inference emphasizes reporting effect sizes with expressions of uncertainty
(interval estimates). The estimation approach can serve as an adjuvant towards better inference: it pushes
back against over-confident claims from inadequate samples, improves comparisons of results across
contexts, normalizes the publication of negligible effects, and provides a straightforward approach for

planning informative studies.

Estimation for better inference in
neuroscience
Inference is at the heart of the scientific method: we collect
finite datasets and then try to make reasonable generalizations
about how the world works. Today eNeuro announces new
author guidelines for statistical inference, enjoining the use of
estimation along with or in place of hypothesis testing. Specif-
ically, the guidelines ask authors to:
® Pose quantitative research questions and report quan-
titative answers (effect sizes).
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® Countenance uncertainty in all statistical conclusions
by reporting and interpreting the potential for error
(interval estimates).

In some ways, this is a very subtle change in policy. The
estimation approach to inference is based on the same
mathematical foundations as hypothesis testing and still
enables decision-making. Moreover, adopting estimation
does not limit analysis options, as any hypothesis test
(frequentist, Bayesian, bootstrap, etc.) can be re-
expressed in terms of estimation. Why change, then?
Because current norms for statistical inference are often
misguided, leading to research that is wasteful, biased,
and unreliable. The estimation approach can serve as an
adjuvant toward better inference: it pushes back against
over-confident claims from inadequate samples, im-
proves comparisons of results across contexts, normal-
izes the publication of negligible effects, and provides a
straightforward approach for planning informative stud-
ies. Estimation does not cure all ills, but this new policy
can serve a vital role in eNeuro’s forward-looking efforts
to promote strong rigor and reproducibility without sacri-
ficing scientific vitality (Bernard, 2016).

In this commentary we give an overview of the estima-
tion approach. We then give specific examples of how it
can foster better inference. We conclude with some im-
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portant caveats and clarifications and a list of resources
that can help researchers make the transition to the esti-
mation approach. Parts of this commentary are adapted
from our previous work advocating the estimation ap-
proach (Calin-Jageman, 2017; Calin-Jageman and Cum-
ming, 2019).

The estimation approach

Currently most neuroscientists approach inference
through null-hypothesis significance testing. In this ap-
proach, we ask a qualitative question: Does this drug
influence learning? The data collected is then reduced
down to a test statistic and p value, and from these we
make a qualitative conclusion: Yes, this drug influences
learning. Results are often treated as definitive, so there
can be little motivation to conduct replications: Why test
the drug again now that it has been shown to work?
Although this “one-and-done” approach is common, it is
not the way null-hypothesis significance testing was
meant to be used. For example, Fisher argued that “a
scientific fact should be regarded as experimentally es-
tablished only if a properly designed experiment rarely
fails to give this level of significance” (Fisher, 1926 , p. 85).

Although the testing approach now dominates the neu-
rosciences (Szucs and loannidis, 2017a), this was not
always the case. Much of the most enduring and fruitful
research in neuroscience was completed without re-
course to p values (Hodgkin and Huxley, 1952; Olds and
Milner, 1954; Scoville and Milner, 1957; Katz and Miledi,
1968; Bliss and Lomo, 1973; Sherrington et al., 2003). In
fact, hypothesis testing is a special case of a broader and
older statistical tradition: estimation. Estimation is some-
times called the “New Statistics” (Cumming, 2014), be-
cause adopting this approach would be new to the many
scientists who have been trained only in the testing ap-
proach. To be clear, though, estimation is not a new
approach to inference, just a different application of the
same thinking underlying the testing approach.

The estimation approach involves a shift in how re-
search questions are conceptualized and reported.
Rather than a qualitative question, we pose a quantitative
question: How much does this drug influence learning?
This is answered with an effect size, which gives a quan-
titative answer to the research question, and an interval
estimate, which helps express uncertainty: The drug im-
proved memory by 10% with a 95% margin of error of 9%.
The effect size expresses the magnitude of difference
observed in the sample (10%). The interval estimate ex-
presses some of the uncertainty in generalizing to the
population. This can be expressed as an expected mag-
nitude of error (95% margin of error of 9%) or as an
interval around the effect size [95% confidence interval
(1%, 19%)]. Because some effect sizes have asymmetric
expected error, reporting an interval is usually preferred.
Regardless of format, an interval estimate expresses
some of the uncertainty in generalizing to the population.
In this example, the interval estimate indicates a need to
countenance a wide range of possible effect sizes (values
~1% are compatible with the data and so are values
~19%).
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There are different approaches to constructing interval
estimates. Every null-hypothesis test with a p value has a
corresponding confidence interval that can be reported
and interpreted (p values and confidence intervals both
represent what are called frequentist approaches to sta-
tistical inference). In Bayesian statistics uncertainty can
be expressed with a credible interval (Kruschke, 2013) or
support interval (Wagenmakers et al., 2018b). There are
also randomization-based approaches to quantifying un-
certainty, such as bootstrapped intervals (Ho et al., 2018).
Moreover, estimates can be constructed based on spe-
cific assumptions about population distributions (para-
metric) or with very minimal assumptions (nonparametric).
Each approach has strengths and weaknesses; research-
ers should quantify uncertainty in the way that best suits
their research purposes and then take care to provide
interpretations properly grounded in the approach they
have selected.

Although there is diversity within the estimation approach,
the common theme is an emphasis on uncertainty, a key
aspect of good statistical practice (Wasserstein et al., 2019).
Focusing on uncertainty makes salient the tentative na-
ture of any one study and highlights the need for direct
replication. Replications can then be synthesized through
meta-analysis, fostering cumulative science.

Estimation in action

To make the contrast between testing and estimation
concrete, let us summarize the same data with both ap-
proaches (Fig. 1). Consider a recent report in Nature
Neuroscience examining the effect of caffeine on memory
(Borota et al., 2014). Participants studied images of ob-
jects and then received either 200 mg of caffeine (n = 35)
or a placebo (n = 38). The next day, memory was evalu-
ated. In the original report results were summarized using
hypothesis testing, with a t test indicating a statistically
significant enhancement in memory in the 200 mg caf-
feine group relative to the placebo group: f;4) = 2.0, p =
0.049. From this, a qualitative conclusion was drawn:
“caffeine administration enhances memory consolidation
in humans” (Borota et al., 2014, p. 21). Figure 1A depicts
how such data are often presented: a bar graph with error
bars representing SEs and an asterisk to denote a statis-
tically significant difference (in the original paper, data
from each participant was also shown).

The estimation approach provides a different lens for
interpreting the same data. In this approach we would ask
a quantitative question: To what extent does caffeine
improve memory? To answer this question we estimate
the difference between the group means and then quan-
tify uncertainty in this estimate due to expected sampling
error: Caffeine is estimated to improve memory relative to
the placebo group by 31% with a 95% confidence interval
of (0.2%, 62%). Figure 1B graphically represents this in-
formation with an estimation plot that shows the effect
size in the sample and the confidence interval for the
effect. Critically, the confidence interval suggests consid-
erable uncertainty about generalizing from the sample to
the world at large. If the real effect were very large (62%
increase), these data would not be especially surprising.
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Figure 1. Visualizations emphasizing testing versus estimation. Both plots are from the same experiment examining the effect of
caffeine on memory (Borota et al., 2014). A, A traditional bar graph. The bars represent each group mean; the error bars represent
the SEM. The * indicates a statistically significant difference, p = 0.05. B, An estimation plot of the same data. In this plot the small
circles represent the individual participants. The large circles with error bars represent each group mean with their 95% confidence
intervals. Critically, an estimation plot emphasizes the effect size of interest for this design: the difference between the group means.
This is depicted on the “difference axis” on the right. The 0 point of this axis is based on the mean of a reference group (in this case
the placebo group). The filled triangle shows the difference between groups in this sample. The shaded curve shows the entire
distribution of expected sampling error for the difference between the means. The error bar on the triangle indicates the 95%
confidence interval for the difference between means. The confidence interval represents the range of parameter values which remain
compatible with the data; that is, the variety of effect sizes that are not rejected at « = 0.05. The range of compatible values is very
long and includes values that would be impossible to reliably detect with feasible sample sizes. Given this, research conclusions
should be tentative and expectations for replication should be tempered. This difference plot was generated using R. The data from

A and B was extracted from Borota et al. (2014).

Similarly, if the real effect were vanishingly small (0.2%),
these data would not be especially surprising. Moreover,
this wide range of possibilities is optimistic, as it is based
on uncertainty due only to sampling error with the as-
sumption that all other sources of error and bias are
negligible.

Reflecting on this uncertainty makes it clear that al-
though this study is statistically significant the sample
collected is not adequate, yielding poor signal-to-noise
(the margin of error is only fractionally smaller than the
observed effect). In the testing approach this is classified
as low power. A more illuminating label is uninformative;
the study yields too much uncertainty to provide a clear
answer to the research question. The most appropriate
interpretation at this point would be very modest: caffeine
probably does not impair memory consolidation.

This striking reappraisal of the caffeine and memory
study does not come from changing our epistemic stan-
dards or the statistical model used to analyze the data.
The 95% confidence interval for the caffeine and memory
study is just an algebraic re-expression of the t test used
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in the original paper. Specifically, the 95% confidence
interval contains all the parameter values that would not
be rejected using a frequentist hypothesis test at the a =
0.05 level. All values outside of the confidence interval are
parameter values that are rejected at « = 0.05. The
comparison between caffeine and placebo is “statistically
significant” at the 0.05 level because the null hypothesis
of 0 is (just barely) outside of the 95% confidence interval.
Reporting the statistical test tells us that we reject this one
possible parameter value. It seems clear that we can do
better science by thinking critically about the parameter
values that remain compatible with the data. It is this
range of values that should inform our assessment of
practical significance, our theory, and our planning for
subsequent experiments. Thus, the new policy at eNeuro
is to report and interpret interval estimates either in place
of or alongside hypothesis tests.

In making this change, eNeuro joins good company at
the forefront of good statistical practice. In many fields of
medicine there has long been an emphasis on estimation
(International Committee of Medical Journal Editors,
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1997). In the behavioral sciences the American Psycho-
logical Association (2010, p. 34) enjoins researchers to
“base discussion and interpretation of results on point
and interval estimates” (for review, see Fidler, 2010), and
interval estimates are now reported in most papers pub-
lished in top psychology journals (Giofré et al., 2017).

Estimation thinking for an improved

research cycle
Adopting estimation has several advantages (Cumming

and Finch, 2001):

® Focusing on effect sizes dovetails seamlessly with the
development of quantitative theories and computa-
tional models.

e Effect size estimates can be synthesized through meta-
analysis, fostering cumulative science.

e Estimation is easier to understand than testing, which is
really a special case of estimation (Hogben, 1957, p.
320). Teaching estimation first can help trainees better
understand the uses and limits of the testing approach.

® Estimates are a natural choice for dissemination and com-
munication with stakeholders. Modern journalistic standards
specifically emphasize conveying magnitudes and uncer-
tainty (https://www.healthnewsreview.org/).

Realizing these benefits requires more than just a rote
change in how analyses are reported; it requires a differ-
ent way of thinking about data that puts uncertainty at the
forefront. This is critical because current norms for infer-
ence in neuroscience license problematic research prac-
tices. Neuroscience studies are often too small, yielding
noisy results that are relatively uninformative ( aka, low-
power research; Button et al., 2013; Dumas-Mallet et al.,
2017; Szucs and loannidis, 2017b ). Somehow, though,
this is not reflected in the public record: although noisy
studies should rarely be able to detect effects, nearly all
published papers report statistically significant results
(Fanelli, 2012). This implausible “excess of significance”
indicates that many unfavorable results have been dis-
carded to the file drawer (Sterling, 1959; Sterling et al.,
1995) or inappropriately coaxed under the threshold for
statistical significance (Simmons et al., 2011; O’Boyle
et al., 2017). Moreover, when statistical significance is
obtained there is often insufficient attention to uncer-
tainty, so interpretations are too confident and uninforma-
tive sample sizes are then copied forward, unwittingly
perpetuating flawed research strategies. A system that is
noisy and biased cannot be expected to yield reliable
information, and indeed replicability seem to be low where
these problems are prevalent (Boekel et al., 2015).

Here we discuss four key ways that estimation thinking
can improve the neuroscience research cycle: (1) by bet-
ter calibrating research conclusions to uncertainty, (2) by
fostering planning and optimization toward generative
lines of research, (3) by normalizing the use of inference to
both rule in and rule out effects, and (4) by facilitating
accurate comparison of results.

To make this discussion concrete we draw on a recent
hot topic in neuroscience: the effects of intranasal oxyto-
cin on trust and other social behaviors in humans. This
topic of inquiry was initiated by a pair of prominent studies
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published in 2005 (Kosfeld et al., 2005; Zak et al., 2005).
Since then, there has been an explosion of preclinical
research and translational research on oxytocin and hu-
man social behavior. There are now grave concerns, how-
ever, about the way this research has been conducted
and reported (Conlisk, 2011; Nave et al., 2015; Leng and
Ludwig, 2016): studies have been too small, direct repli-
cation has been too rare, and negative results have been
relegated to the file drawer. These concerns are so severe
that a recent review concluded that the entire literature up
to that point should be viewed with “healthy skepticism”
because most published effects are probably spurious
(Walum et al., 2016, p. 251). The tide now seems to be
turning, with larger studies and direct replication helping
to yield more clear and certain insight into how oxytocin
might influence human social behavior (Liu et al., 2019).
Looking back at the problems in this literature, though,
brings into sharp relief fruitful avenues for improving the
research cycle in neuroscience. The shortcomings we
highlight are not atypical; there are several active lines of
neuroscience research where selective reporting of noisy
studies seems prevalent ( research on tDCS, for example;
Horvath et al., 2015; Minarik et al., 2016 ; Medina and
Cason, 2017).

Estimation helps calibrate research

conclusions to uncertainty

The estimation approach helps guide interpretation of
data: an interval estimate that is long relative to the scale
of measurement requires cautious and tentative conclu-
sions, whereas an interval estimate that is short can war-
rant stronger claims. This close calibration between
uncertainty and interpretation is essential: it helps match
research claims to the evidence, makes clear when addi-
tional direct replication is needed, and helps set realistic
expectations for subsequent research. In contrast, re-
searchers using the testing approach often base their
conclusions solely on statistical significance, treating ev-
ery statistically significant result as equally and com-
pletely compelling. The uncertainty blindness that can
occur when p < 0.05 licenses unequivocal claims for
research that should be treated as highly tentative and
generates excessive confidence in the likelihood of repli-
cation (this has been called “the replication delusion”;
Gigerenzer, 2018).

As an example, consider one of the studies that helped
launch research on intranasal oxytocin and human trust
(Kosfeld et al., 2005). In this experiment participants re-
ceived an intranasal dose of oxytocin (n = 29) or placebo
(n = 29) and then played an economic trust game. There
was a statistically significant effect of oxytocin (tse = 1.8,
p = 0.04, one-tailed; Fig. 2A, Trust context; see note at
end on how these data were analyzed). In addition, there
was a nonsignificant effect of oxytocin in a game involving
only risk (p = 0.98; Fig. 2A, Risk context). From these
results researchers made a categorical and unequivocal
claim: “Oxytocin increases trust in humans” (Kosfeld
et al., 2005, p. 673). Although we can all be partial to our
own data, other scientists seem to have agreed with this
sweeping interpretation. The study was published in Na-
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Figure 2. Visualizations emphasizing testing versus estimation. Both plots are from the same experiments examining the effect
of oxytocin on social behavior (Kosfeld et al., 2005). A, A bar graph showing the effect of intranasal oxytocin on the amount
invested in a trust (left) and risk (right) game. Each bar represents group means and error bars represent = 1 SE. There is a
statistically significant effect of oxytocin in the trust game (p = 0.04, on tailed), but not in the risk game. The difference in
statistical significance status can give the impression that oxytocin specifically influences performance in the trust game, but
a formal test for an interaction is not significant (o = 0.23). B, Estimation plots of the same data. The plots compare investment
in the oxytocin and investment condition in the trust (left) and risk (right) games. Small circles represent individual participants.
Large circles with error bars show group means with 90% confidence intervals (90% confidence was selected to match the
stringency of the one-tailed test used in the original paper). The triangles represent the observed difference between groups,
with 90% confidence intervals. The curves indicate the entire range of expected sampling error in estimating the mean
difference. Note the considerable overlap in the estimated oxytocin effects in the trust and risk games. This correctly suggests
that there are many compatible effect sizes in common and that these data do not support strong claims for an interaction. This
figure was adapted with permission from Calin-dageman and Cumming (2019).
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ture and quickly became a citation classic (>3000 cita-
tions as of January 2019, according to Google scholar).
Even from the start, citations portrayed this study as
unequivocal (Coan et al., 2006).

This trajectory from a single significant result to wide-
spread acceptance of a categorical claim is the norm in
our field, and yet it often represents an egregious insen-
sitivity to uncertainty. This can be appreciated by re-
expressing the statistical test used in the oxytocin study
as an estimate: mean trust increased by 17.4%, 90% CI
(0.5%, 34.2%; Fig. 2B, left; a 90% Cl is used to match the
stringency of the one-tailed test used by Kosfeld et al.,
2005). Summarized in this way, it is clear that this study is
uninformative, with a sample size too small to support a
clear answer to the research question. Although the data
are compatible with oxytocin producing large changes in
trust, they are also compatible with oxytocin producing
infinitesimal changes of no practical significance. An ap-
propriately cautious interpretation from these data alone
would be that oxytocin likely does not impair trust in
humans.

Focusing on uncertainty in current results is important
because it helps set realistic expectations for future stud-
ies. Many researchers erroneously believe that statistical
significance means “likely to replicate” (Gigerenzer, 2018).
The estimation approach helps push back against this
misconception, as an interval estimate can also serve as
a prediction interval for what to expect with a direct
replication. For example, a 95% confidence interval for a
mean difference will “capture” the effect size of ~83% of
same-sized replications (Cumming and Maillardet, 2006;
Cumming, 2008). That is, it is expected that 83% of the
time the replication effect size will be within the original
95% confidence interval. Note that the capture rate is not
95% because both studies are subject to sampling error.
Moreover, this expectation is optimistic, as it assumes the
original and replication studies will differ only in terms of
sampling error.

Examining the interval estimate from Kosfeld et al.
(2005) gives a wide range of predicted outcomes for
replication studies, including effect sizes that would be
practically impossible to detect. Specifically, near the
lower bound of the 95% confidence interval are effect
sizes that would require many thousands of participants/
group to regularly detect. Consistent with this prediction,
replications of Kosfeld et al. (2005) have so far obtained
primarily negligible effects. A recent meta-analysis sug-
gests the effect is small, perhaps even exactly 0 [in SD
units: 0.08, 95% CI (—0.12, 0.28); Nave et al., 2015].
Whereas a focus on statistical significance might suggest
this disappointing outcome is surprising (Lai et al., 2012),
a focus on estimation correctly shows that this is actually
an expected possible outcome, one that is within the
interval estimate from the original study [in SD units,
Kosfeld et al. (2005) found an oxytocin effect in the trust
context of 0.49, 90% CI (0.04, 0.93)]. This is perhaps the
most useful aspect of the estimation approach: it can help
properly calibrate our sense of surprise across a series of
results.
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Strong claims from uninformative samples are not
unique to the oxytocin literature. In fact, it is remarkably
common for neuroscientists to unwittingly conduct and
cite research that is actually uninformative ( aka under-
powered; Button et al., 2013; Dumas-Mallet et al., 2017;
Szucs and loannidis, 2017b). This means that much of
what currently passes for “established” should rightly be
construed as highly tentative. Reporting interval estimates
helps makes more clear when a study is too uncertain to
be informative. This does not have to preclude publica-
tion; sometimes an inadequate sample is unavoidable and
we must make do with highly uncertain results. The key,
though, is that reporting and interpreting estimates will
raise needed red flags, ensuring (1) that research conclu-
sions will be appropriately tentative, (2) that the need for
direct replication with larger samples will be clear, and (3)
that expectations for replications will be appropriately
broad.

Estimation fosters thoughtful research
planning and optimization

Estimation is useful not only for interpreting completed
studies but also for thoughtfully planning and optimizing
the next study. First, estimation focuses on effect sizes
and uncertainty, the inputs needed for planning samples.
Second, estimation offers an intuitive approach to
sample-size planning: planning for precision (Goodman,
1994; Kelley et al., 2003; Rothman and Greenland, 2018).
In planning for precision (also known as the “Accuracy in
Parameter Estimation” approach), researchers plan a
sample size to obtain a desired level of precision (a de-
sired margin of error). Unlike planning for power, planning
for precision does not require a priori effect size expec-
tations (though these are still helpful, if available). In ad-
dition, planning for precision plans to characterize the
effect, not just to detect it, which means even if the effect
is negligible the results are still informative and publish-
able. Planning for precision is amenable to sequential
analysis (Kelley et al., 2018), so researchers can efficiently
obtain a desired level of precision even in exploratory
research where there is considerable uncertainty about
variance in the dependent variable. The ease of planning
for precision can help researchers meet their ethical ob-
ligation to avoid collecting both too little and too much
data (ASA, 2016), ensuring research efforts are, to the
extent possible, neither futile nor wasteful.

Forethought before initiating a study can often lead to
sample-size sticker shock: obtaining an informative an-
swer to a research question can require sample sizes that
are not feasible. This is where optimization comes in:
protocols can be tweaked to maximize effect sizes and
minimize noise (Kraemer, 1991; MacKinnon, 2013; Meyvis
and Van Osselaer, 2018). Optimization is a natural step
when a laboratory’s focus is on these critical experimental
outputs. In contrast, p values are generally too erratic
(Cumming, 2008; Halsey et al., 2015) to guide optimiza-
tion efforts.

Better planning is sorely needed in the neurosciences.
Preclinical research seems to regularly proceed without
an a priori sampling plan (Fritz et al., 2013; Tressoldi et al.,
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2013; Baker et al., 2014; Vankov et al., 2014; Tressoldi
and Giofré, 2015). This neglect of best practices seems
driven, in part, by a fundamental misconception that at-
taining statistical significance proves an adequate sample
has been obtained ( Mole, 2017, 2018 ). From this flawed
premise, researchers often feel comfortable setting sam-
ple sizes by following tradition or by chasing significance
(Vankov et al., 2014; Goodhill, 2017). In reality, both of
these approaches are problematic. Given the prevalence
of uninformative research in neuroscience, relying on tra-
dition risks copying forward the mistakes of the past ad
infinitum. Even worse “backing into” a sample size by
iteratively collecting data to obtain statistical significance
provides repeated opportunities to capitalize on chance,
decreasing the reliability of the results obtained
(Anscombe, 1954; Simmons et al., 2011). Both of these
problematic approaches to planning seem common in
preclinical research, and this perpetuates the use of un-
informative samples.

The oxytocin and human social behavior literature pro-
vides an acute illustration of poor planning. The study by
Kosfeld et al. (2005) was one of the first to examine the
effects of intranasal oxytocin on human social behavior. In
this novel context it is not surprising that the sample size
obtained was not well calibrated to the research question.
What is surprising is that this issue was not widely recog-
nized. Because of this, sample sizes from this exploratory
work were copied forward for what should have been
confirmatory work, plaguing the entire field with very poor
signal-to-noise. Specifically, a recent meta-analysis found
that the average published effect of oxytocin on human
social behavior is fairly modest, ~0.28 SD (Walum et al.,
2016). Despite this, median sample size in this field is only
49 total participants, meaning expected sampling error is
much larger (~0.55 SD) than the typical reported effect.
This is like trying to study ion channel structure with a
magnifying glass: it does not mean that all the results are
wrong, just that there is relatively little reason to believe
them. It also means that most of these studies were
launched without reasonable forethought, producing re-
search conducted at considerable time and expense, but
to little purpose.

Estimation can mitigate publication bias

With the estimation approach, an interval can provide
evidence that an effect is meaningful (the whole interval
estimate is in a range of practical significance). An esti-
mate can also provide evidence that an effect is negligible
(the whole interval estimate is in a range that is not
practically significant). Of course, what counts as a mean-
ingful effect size depends on the research context and
requires judgment. What is critical is that with estimation
thinking both outcomes are evaluated similarly: with
thoughtful attention to uncertainty and careful consideration
of factors that could bias the estimate (e.g., insufficient
manipulation, experimenter bias, differential dropout, proce-
dural error, etc.).

This even-handed weighing of evidence is essential to
good science, where our analytic procedures must be
capable of both ruling in and ruling out effects (and of
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reserving judgment due to an uninformative sample). The
testing approach is also suitable for these needs. In prac-
tice, though, null hypothesis testing with p values is often
used as though it can only demonstrate effects. This is
like having a neural network that can only express LTP;
noise will eventually saturate the system. This one-sided
approach to research is due in part to incomplete train-
ing. Current training rarely includes exposure to Bayesian
techniques or equivalence testing, the p value approach
to testing for a negligible effect (Westlake, 1972; Shuir-
mann, 1987; Lakens et al., 2018). Moreover, half-truths
are perpetuated, with trainees strongly cautioned that
nonsignificant results may be too uncertain to interpret or
merely an indicator of researcher incompetency. These
are half-truths because they present a false specificity:
these cautions apply to all research results. That is, sig-
nificant findings can also be too uncertain to interpret
(uninformative), and incompetency can produce spurious
effects just as easily as it can obscure real ones. These
widespread misunderstandings of the testing framework
help fuel publication bias, yielding a distorted published
literature and a “vast graveyard of undead theories” (Fer-
guson and Heene, 2012).

Again, the literature on intranasal oxytocin and human
social behavior provides a cautionary example. Meta-
analysis shows excess significance in the published liter-
ature on this topic (Walum et al., 2016), a sure tell that
many nonsignificant findings have not been published or
have been massaged toward statistical significance. In-
deed, one laboratory has bravely opened its file drawer for
inspection (Lane et al., 2016), reporting that the five sta-
tistically significant results it has published represent just
39% of the 13 different tests the laboratory had con-
ducted. The laboratory had tried to publish the eight
nonsignificant results, but these were “rejected time and
time again” (Lane et al., 2016, p. 38). Thus, the published
output of this laboratory would indicate a strong effect of
oxytocin, but weighing all the data the laboratory has
collected indicates only a negligible effect (ibid). Again,
this is not atypical; excess significance has been detected
across many domains of neuroscience research (Button
et al., 2013), and there is an enormous body of literature
showing that nonsignificant results are far less likely to be
written up, submitted, and/or published than significant
results (Song et al., 2010). A research cycle that sup-
presses unfavorable data cannot rightly be described as
scientific.

Estimation facilitates accurate

comparisons across results

Another important role of inference is in making com-
parisons to other contexts, conditions, or studies; this is
the analysis of interactions. Within the testing approach,
neuroscientists often fail to conduct a formal test for an
interaction but instead rely on comparing statistical sig-
nificance levels (Nieuwenhuis et al., 2011). This is invalid
and frequently leads to spurious conclusions (Gelman and
Stern, 2006). Two results can have the same effect size
but differ in significance (e.g., due to different sample
sizes). In addition, two results can be statistically signifi-
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cant and yet differ radically in effect size. The estimation
approach helps researchers avoid this inferential trap and
fosters accurate comparisons across sets of results.

For example, in the seminal experiment on intranasal
oxytocin and trust (Kosfeld et al., 2005), researchers ex-
amined the effect of oxytocin on a game involving trust
and on a control game involving only risk (Fig. 2A).
Whereas oxytocin had a statistically significant effect on
money transfer in the trust game (p = 0.04, one-tailed) it
did not have a statistically significant effect in the no-trust
game (p = 0.98). This suggests a possible interaction
between oxytocin and trust, but this was not formally
tested. Instead, the researchers relied on the difference in
significance status to conclude that “oxytocin specifically
affects trust in interpersonal interactions” (Kosfeld et al.,
2005, p. 674). This is an invalid conclusion; formally test-
ing for the interaction gives a nonsignificant result: p =
0.23. Within the testing framework, these data do not
provide clear support of a claim for specificity.

When expressed only in terms of statistical signifi-
cance, the analytic error in Kosfeld et al. (2005) is difficult
to detect; it seems to have gone unnoticed by the re-
searchers, reviewers, and numerous readers. In contrast,
summarizing results with estimation makes it easier to
accurately compare sets of results. For the trust experi-
ment, oxytocin increased mean investment by $1.41, 90%
Cl [($0.04, $2.78); Fig. 2B, left]. In the non-trust experi-
ment, oxytocin produced effectively no increase in mean
investment: $0.01, 90%Cl [(—$1.32, $1.35); Fig. 2B, right].
Although in the sample these are markedly different out-
comes, there is substantial overlap in the interval esti-
mates. This makes it clear “by eye” that there are many
compatible effect sizes in common (Cumming and Finch,
2005), giving an intuitive sense that evidence for specific-
ity is weak. To formally test for the interaction, we esti-
mate the “difference in the difference”; the difference
between each simple effect. Specifically, the oxytocin
effect during the trust game ($1.41 increase) is compared
with the oxytocin effect during the non-trust game ($0.01
increase), providing an estimated interaction of $1.40
90% CI (—$.52, $3.31). That is, in the sample a trust
context strongly enhanced the oxytocin effect, but the
data are also compatible with no interaction and even with
a moderate enhancement in the non-trust context.

This analysis of the “difference in the difference” is just
a quantitative way of expressing the interaction term in a
2 X 2 ANOVA. Arguably, though, the estimation approach
is more transparent and easier to interpret. This clarity
would be especially useful for neuroscience. Estimates of
differences in results (interactions) have higher expected
sampling error than estimates of simple effects, meaning
that they are more likely to be uninformative (underpow-
ered). Thus, estimation can help encourage formally cor-
rect comparisons across results in a way that is intuitive
and sensitive to uncertainty.

Some important clarifications and
caveats

Estimation can help improve every aspect of the neu-
roscience research cycle: helping us more carefully plan,

July/August 2019, 6(4) ENEURO.0205-19.2019

Opinion 8 of 11
more thoughtfully interpret, more accurately compare,
and more completely report neuroscience research.

® This new policy does not ban hypothesis testing; these
may be reported alongside interval estimates. The use
of test procedures that allow results to be judged neg-
ligible as well as meaningful are preferred (e.g., Bayes-
ian approaches and equivalence tests; Westlake, 1972;
Shuirmann, 1987; Lakens et al., 2018 ). Note that in
most cases reporting an interval estimate already pro-
vides the information that would be conveyed in a
hypothesis test.

® Estimates should not be used as a surrogate for hy-
pothesis testing (e.g., mindlessly checking whether the
null value is contained inside or outside the interval
estimate; Fidler et al., 2004). Authors should thought-
fully evaluate interval estimates and carefully calibrate
research conclusions with respect to uncertainty.
Where uncertainty is high, make clear the need for
replication studies with greater precision.

e Estimates must be aligned to the research question.
One place to beware is with complex designs. These
are often analyzed with an ANOVA and reported with a
focus on a single omnibus F test with a form of 7 as the
effect size. Omnibus tests rarely correspond to the
research questions of interest, which are typically
tested with a series of planned contrasts. The magni-
tude and uncertainty of these planned contrasts will
usually be of critical interest.

® Estimation is not a panacea. It helps highlight uncer-
tainty but it does not overcome the problems that arise
with selective reporting, flexible analysis, poor model
specification, etc. Moreover, statistical outputs are not
the only factor in generating scientific conclusions; this
also requires careful attention to the design of the
study, quality of the measurement, prior knowledge,
and more (McShane et al., 2019).

® Using estimation does not alter the need to clearly
demarcate planned analyses from exploratory analy-
ses. Preregistration can help make this distinction pub-
licly verifiable.

® Selection of confidence levels (95%), 99%, etc.) should
not be rote, but should be based on an evaluation of the
costs/benefits of making erroneous estimates.

® There is nothing magic about the “ends” of an interval
estimate; these are arbitrary relative to the selected
level of confidence. Be careful not to draw sharp dis-
tinctions between values just inside an interval estimate
versus those just outside: the boundaries are arbitrary
and differences are matters of degree.

® [nterval estimates are optimistic in that they depend
crucially on statistical assumptions, which may not be
perfectly realized. This provides an additional reason
for not treating the boundaries of interval estimates as
definitive.

® Estimation is for everyone and can be conducted within
both the frequentist and Bayesian approaches to infer-
ence (Kruschke and Liddell, 2018). In this commentary,
we focused on frequentist confidence intervals only
because these directly re-express frequentist hypothe-
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sis tests, which are so pervasively used in the neuro-
science literature.

® Just as hypothesis testing can be misunderstood and
misapplied, estimation can be misunderstood and mis-
applied. One common misconception applies to fre-
quentist confidence intervals. Specifically, researchers
often mistakenly apply the confidence level to their
specific result, claiming (erroneously) that there is a
95% probability the interval contains the true value. In
fact, for frequentist confidence intervals each specific
result either contains the true value or does not. The
probability statement applies not to the specific result
but to the procedure of interval construction. This mir-
rors the ambivalence of science, where we can have
confidence in the process but remain anxious about
each individual study. In general, researchers should
strive to make sure they understand the assumptions
underlying the statistical approach they have selected
and to interpret their results accordingly.

Resources for estimation

Learning about estimation

e Kruschke (2014) provides an excellent and comprehen-
sive introduction to Bayesian estimation; this text fo-
cuses on credible intervals. Wagenmakers et al. (2018b)
provide an overview of a different Bayesian approach
using support intervals.

® For those already trained in hypothesis testing with p
values, a text by Cumming (2012) shows how to re-
express standard hypothesis tests in terms of estima-
tion. For those just starting their statistical training,
Cumming and Calin-Jageman (2017) provide a text-
book that teaches estimation from the outset. There are
many other excellent sources on the estimation ap-
proach (Smithson, 2002; Kline, 2004).

® For online learning the Association for Psychological Science
has produced a set of videos on the estimation approach:
https://www.psychologicalscience.org/members/new-
statistics.

® There are many excellent sources for learning about
different effect size measures (Ellis, 2010; Lakens,
2013; Pek and Flora, 2018).

Software for estimation

® ESCI is a free set of Excel modules that enables explo-
ration of frequentist estimation concepts and planning
for precision: https://thenewstatistics.com/itns/esci/.

® JASP (https://jasp-stats.org/; Marsman and Wagen-
makers, 2017; Wagenmakers et al., 2018a ) and jamovi
(https://www.jamovi.org/) are excellent free and open-
source programs for statistical analysis. Both provide
intuitive graphical-user interfaces for Bayesian and fre-
quentist estimation for simple designs. As of version 25,
SPSS has introduced Bayesian estimation for most
simple designs (https://www.ibm.com/analytics/spss-
statistics-software).

® There are many resources for estimation in R. One
standout is the MBESS package (Kelley, 2007), which
provides functions for frequentist estimation for simple
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and complex designs as well as routines for sample-
size planning.

® The DaBest package for R (Ho et al., 2018) provides boot-
strapped estimation for several designs along with outstand-
ing visualizations. DaBest is also available in Python and as
a web-application (http://www.estimationstats.com/#/).

Planning for precision

® |n the planning for precision approach researchers se-
lect a desired margin of error and then plan a sample to
obtain that precision (Goodman, 1994; Rothman and
Greenland, 2018).

® Planning for precision is also known as Accuracy in
Parameter Estimation (AIPE). Kelley and colleagues
have extensively developed concepts and tools related
to this approach (Kelley et al., 2003; Maxwell et al.,
2008), including approaches that allow sequential anal-
ysis to obtain a desired level of precision with maximum
efficiency (Kelley et al., 2018). The MBESS package in R
provides convenient functions for planning for precision
(Kelley, 2007).

Kruschke’s (2014) textbook covers the use of simulations

to plan sample sizes for Bayesian estimation.

® Other notable resources include the ufs package for R
(Peters and Crutzen, 2017), ESCI, and this web appli-
cation from Gerben Mulder for planning experiments
with multiple participants and stimuli: https://the-small-
s-scientist.blogspot.com/2017/04/planning-for-
precision.html.

® Another related approach worth exploring is planning
for stability (Lakens and Evers, 2014).

Notes on analysis of data from Kosfeld
et al. (2005)

Kosfeld et al. (2005) compared group medians with
nonparametric tests. For ease of interpretation we re-
analyzed their data using parametric comparisons of
means. This change in analysis strategy does not change
the conclusions drawn here. Full details on how we ex-
tracted the data from Kosfeld et al. (2005) and analyzed it
are contained in Calin-Jageman and Cumming (2019). In
addition, the extracted data and analysis scripts are
posted to https://osf.io/54n9q/.
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