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Real‑time robust generalized 
dynamic inversion based 
optimization control for coupled 
twin rotor MIMO system
Nadir Abbas1, Xuejun Pan1, Abdur Raheem2, Rabia Shakoor2, Zeeshan Ahmad Arfeen2, 
Muhammad Rashid2, Farhana Umer2, Nouman Safdar3 & Xiaodong Liu1*

This work is used to design a novel robust optimization control law augmented with Robust 
Generalized Dynamic Inversion (RGDI) for continuous varying perturbations in the Twin Rotor MIMO 
System (TRMS). The perturbations like coupling effect, un‑known states, gyroscopic disturbance 
torque, parametric uncertainties and parametric disturbances are considered as unwanted signal 
which should be optimized by an efficient controller. The variable structured systems like the TRMS 
(prototype) have great focus due to its high computational cost with a higher order non‑linear 
behavior. The RGDI based controller designed to remove nonlinear dynamics as well as to avoid 
singularity issue with the augmentation of stability based mathematical operations (lyapunov stability 
analysis, controllability and observability matrices ) in the presence of considered perturbations during 
implementation. In this paper, we develop estimation of state deviation calculation between control 
angles and desired angles known as Euclidean error norm. The next step was to design RGDI based 
controller [Sliding Mode Control (SMC) and H∞ optimization] to minimize considered perturbations 
as well as the computational cost. The sharp (rapid) chattering phenomena in RGDI based SMC 
reduce the actuators performance that goes towards the failure of actuators. While the RGDI based 
H∞ optimization overcome the computational cost and minimizes H∞ norm that’s guaranteeing the 
robust stability as well as robust performance. The robustness of the optimization control technique 
validated by taking its worst case via MATLAB‑Simulation. A real‑time implementation applied to 
evaluate the worth of novel dynamic approach.

The control engineers always have focused the Variable Structure System (VSS) due to their highly nonlinear 
behavior, time-varying dynamics, coupling effect and sensitive towards perturbations during optimization con-
trol. The Unmanned Aerial Vehicle (UAV) is an extremely difficult task to control in the presence of all internal 
and external disturbances. Such systems are focused due to their extending applications in a narrow environ-
ment for civil security and military  operations1,2. Twin Rotor MIMO System (TRMS) is a type of UAVs. Their 
ability to tilt their angle of flight, hovering, take-off and landing in irregular locations provide special interest 
to  researchers3,4. A prototype of the TRMS resembles to a helicopter which can be served as an effective tool for 
experiments in a real-time  environment5. The highly-coupled, a higher degree of nonlinear dynamics, uncertain-
ties and gyroscopic torque needs to be tackled by efficient robust dynamic controller. The control researchers are 
attracted towards such problems i.e., TRMS, due to its ongoing expanding applications. The linear, nonlinear and 
intelligent control strategies are discussed to understand the behavior of TRMS as well as considered disturbances 
effect. Proportional integral derivative, Particle swarm optimization based Proportional integral  derivative6,7, 
and the Linear Quadratic Regulator with output feedback control are linear strategies implemented in Refs.8,9. 
The backstepping control strategy also implemented to understand the behavior of the prototype in the presence 
of parametric  uncertainties10. Sliding Mode  Control11, Integral sliding mode control and second-order sliding 
mode control are implemented explained in Refs.12,13 with brief introduction. Integral sliding mode control 
combined with the linear quadratic regulator is discussed as a comparison technique to understand the worth 
of applied  strategy14. The Model Predictive Control evaluation calculated in Ref.15, against a MIMO system. 
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Further, a learning-based adaptive MPC has been developed by a researcher in Refs.16,17. The adaptive neural 
networks backstepping control in Ref.18, elaborated and the adaptive fuzzy backstepping control discussed in 
Ref.19. Adaptive type-2 fuzzy backstepping control for the fractional-order nonlinear system also studied in Ref.20, 
to understand the worth of upcoming hot research in control. The combined design of a nonlinear control and a 
classical control represented  in21,22. The main reason of the cross-coupling between the pitch and yaw dynamics 
is the rapid change in rotors speed. Some un-known states of the MIMO system during mathematical modeling, 
make its structure more complex for the mathematician. The Nonlinear Dynamic Inversion (NDI) is a feedback 
linearization tool for the TRMS, used to reduce the complexity of the mathematical  model23. The nonlinearities 
are cancelled at any stability point by feedback linearization. The draw-back of this method is that there may 
ignore some important nonlinearities, singularity, square matrix inversion. The large systems always required 
an efficient modelling as well as numerical singularity avoidance. These limitations are tackled by Generalized 
Dynamic Inversion (GDI) and inverse problem solved by the non-square  inversion24. The left inversion type 
method is used to define the linear differential equations and inverted by the method Moore–Penrose Generalized 
Inverse (MPGI) based on Greville  Method25. The major task behind this mechanism is to overcome inversion 
issues as well as avoiding from blind cancellation of important non-linear terms. The RGDI based control-
lers are implemented in different aerospace applications and robotics as  well26. The stability analysis based on 
controllability and observability matrix provided to ensure effective controller stability. The Lyapunov function 
provides a platform to verify the asymptotic stability of the nonlinear system. The designed controller strategy 
based on the Ordinary Differential Equations (ODEs)27. The weighted function (tuning parameter) is used to 
reject the disturbance at output and track the desired response, and gives the robust stability to the model addi-
tive perturbation. For the multiplicative model uncertainty, smooth response (robust response) obtained by the 
function S /T. The Contribution of the paper is,

• We proposed here a new dynamic efficient control strategy implementation for the coupled system to get 
optimized results as compared to present control schemes.

• In this paper, we develop the estimation of state deviation calculation between control angles and desired 
angles known as Euclidean error norm.

• The proposed strategy, provide efficient robust response via MATLAB/simulink in the presence of considered 
varying perturbations.

• Verify that the RGDI based sliding mode control strategy can never be suitable to get efficient response due 
to chattering phenomena, which cause a serious problems for actuators.

• Real-time implementation under worse conditions (noise and parametric variation provided to both rotors 
simultaneously with disturbance torque) validate the worth of novelty of the optimization.

• Some important suggestions for control engineers are provided on the basis of experimental validation, to 
understand nature of control design as well as system behavior.

The remaining of this paper have following sections as the mathematical modelling in “Twin Rotor MIMO 
System (TRMS)”, while NDI and RGDI control design for the singularity avoidance based on stability analysis 
provided in “Nonlinear dynamic inversion” and “RGDI control design for singularity issue”. The sliding mode 
control strategy applied with their simulation results provided in “Design of SMC and simulations” and “RGDI 
based H∞ optimization and simulations”, elaborate the optimization. The experimental set-up in “Experimental 
setup and system connections” and conclusion based on validated results presented in “Conclusion”.

Twin Rotor MIMO System (TRMS)
Before understanding the mathematical modelling, we have to understand all varying parameters and controlling 
outputs of the TRMS. The TRMS is a lab apparatus provide the understanding of the flight control of  helicopters5. 
The considered system has two rotors as shown in Fig. 1 and their design is most important because different 
forces are affecting the movement of propellers. These forces are gravitational force, propulsive force, centrifugal 
force, frictional force and disturbance torque. To overcome the effects of these forces we provide control input 
through motors. Understanding the mathematical assumptions, which are taken to understand and simplify the 
mathematical model. All non-linear squared terms in mathematical equations are linearized by NDI process. 
Two degree of freedom for the TRMS is allowed directions to tackle it. These two free movements are horizontal 
plane and azimuthal plane which are derived in the model:

Similar momentum equations are also obtained according to the principle of momentum conservation for 
the rotor. Differential equations for both rotors derived here respectively as:

For tail motor:

(1)
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=
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where k1 and k2 are the motor gain, T10 , T11 and T20,T22 are the motor parameters. τ1, τ2 are rotors momentum, 
uθ , uφ are control actions of vertical plane and horizontal plane respectively. All specific values of parameters 
are explained with their units in a Table 1.

(4)τ̇2 =
T20

T21
τ2 +

k2

T21
u2,

Table 1.  Nomenclature.

Expression Description Expression Description

θ Pitch (elevation) angle φ Yaw (azimuth) angle

τ1 Momentum of main rotor τ2 Momentum of tail rotor

I1 Main rotor inertia I2 Tail rotor inertia

x ∈ R (real number) of states u ∈ R input signal

ρ Euclidean error norm D Diagonal matrix

Y Control vector P Projection matrix

a1 Constant b1 Constant

a2 Constant b2 Constant

Mg Gravitational momentum B1θ Frictional parameter

B2θ Frictional parameter B1ϕ Frictional parameter

B2ϕ Frictional parameter kgy Gyroscopic parameter

k1 Gain of main motor k2 Gain of tail motor

T11 Denominator constant of main motor T10 Denominator constant of tail motor

T21 Denominator constant of main motor T20 Denominator constant of tail motor

uh Horizontal axis control input uv Vertical axis control input

Iv Inertial momentum of main rotor Ih Inertial momentum of tail rotor

ez(t) Tracking of pitch and yaw angles 2DOF Two degree of freedom

kHh
, kHv Velocity gains kfh , kfv Frictional momentum

RV Returned torque of rotors Gd Disturbance of plant

Gu Transfer matrix of control signal Ky Feedback matrix functions

Kr Transfer function matrix of pre-filter r, d Reference input, input disturbance

�F Fictitious perturbation So Output sensitivity matrix

Figure 1.  Basic schematic sketch of  TRMS13.
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Nonlinear dynamic inversion
The feedback linearization control is also known as the NDI control which establishes a supporting platform 
for the linear control. Basic idea to embed this strategy is the cancellation of nonlinear terms as well as having a 
simplified mathematical model. The state vectors are given by:

here x ∈ R (real number) of states, u ∈ R represents the input signal and y ∈ R measured output. The state vec-
tors of the TRMS given below as:

where θ is Pitch (elevation) angle, φ is yaw (azimuth) angle, τ1 is momentum of main rotor and τ2 represents the 
momentum of tail rotor. NDI used to simplify the system by taking some simple mathematical operations. States 
of system linearized at origin, x(t) = x(0):

Some mathematical operations applied to get simplified matrices at origin (0, 0, 0) shown as,

The block diagram of the TRMS with coupling effect representation is given in Fig. 2. There are two output 
states called pitch angle and yaw angle. The coupling effect of main rotor on tail rotor also provided via diagram.

The NDI control strategy has some important limitations which may provide complexities during the real-
time implementation of any strategy like singularity, important terms cancellation and large control tasks. Block 
diagram of TRMS represented in Fig. 2 and parametric values with units mentioned in Table 2.

RGDI control design for singularity issue
To design control law for variable structure system, equations of TRMS are rearranged as:

here xz = [x1, x3] and xr = [x2, x4] , which are dynamic states having pitch angle and yaw angle. 
u =

[

uθ (wθ ) , uϕ
(

wϕ

)]

 and w =
[

wθ wϕ

]

 are angular motion (speed) of main rotor and tail rotor respectively. 
The euclidean distance of a vector from origin is called euclidean norm of a linear time invariant system. In other 
words, magnitude of error = (true value − approximate value). In this paper, we develop estimation of state devia-
tion calculation between control angles and desired angles known as Euclidean error norm. The attitude state 
deviation function ρ can be defined in term of Euclidean error norm by mathematical expression given below:

(5)ẋ(t) = Ax(t)+ Bu(t),

(6)y(t) = Cx(t),
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(13)ẋz = xr ,

(14)ẋr = A(xr , t)+ Bu,

(15)ρ = ||ez ||
2
w = r1e

2
1 + r2e

2
2 = eTz D(r1, r2)ez ,
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where e1 = x1 − x1d , e2 = x3 − x2d and ez = [e1, e2] . Note that the constants r1 & r2 are positive definite integers 
which will never be negative and ‘D’ is a diagonal matrix having r1, r2 as diagonal elements. The resulting equa-
tion as having the same order of differential equation and deviation function is:

where c1 and c2 considered being tuning parameters to obtain asymptotic convergence of system  dynamics28. The 
time derivatives of constraint dynamics are computed as:

here 
..
xd =

[ ..
x1d ,

..
x2d

]

.
By putting derivatives in Eq. (14) and dynamic constraints of a system can be transformed as:

(16)ρ̇ + c1(t)ρ̇ + c2(t)ρ = 0,

(17)ρ̇ = 2eTz D(r1, r2)ėz ,

(18)
..
ρ = 2eTz D(r1, r2)

{

A(xr , t)+ BU −
..
xd
}

+ 2ėTz D(r1, r2)ėz ,

(19)A(xz , xr , t)U = B(xz , xr , t).

Table 2.  The parameters of TRMS.

Variable notation Parametric value Unit

I1 Main rotor inertia 6.8× 10−2 kg m 2

I2 Tail rotor inertia 2× 10−2 kg m 2

a1 Constant 0.0135

b1 Constant 0.0924

a2 Constant 0.02

b2 Constant 0.9

Mg Gravitational momentum 0.32 Nm

B1θ Frictional parameter 6× 10−3 Nm s 2/rad2

B2θ Frictional parameter 1× 10−3 Nm s 2/rad2

B1ϕ Frictional parameter 1× 10−1 Nm s/rad

B2ϕ Frictional parameter 1× 10−2 Nm s 2/rad

kg y Gyroscopic parameter 0.05 rad/s

k1 Gain of main motor 1.1

k2 Gain of tail motor 0.8

T11 Denominator constant of main motor 1.1

T10 Denominator constant of tail motor 1

T21 Denominator constant of main motor 1

T20 Denominator constant of tail motor 1

kc Coupling reaction gain 2

Figure 2.  Block diagram of system.
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The control function is given as:

According to mathematical Eq. (17), system solutions are infinite which can be parameterized through a 
famous method known as Goreville method. By using this method:

where Y represents the control vector while P reports about projection matrix. A+ is MPGI, represented as:

The inverse of singular matrix cannot exist because determinant of such matrix is zero. Such kind of issue in 
dynamic inversion considered as singularity issue. During dynamic inversion of the system matrix, it may face 
singularity issue with change in rank of matrix. Such condition produces discontinuity in generalized matrix 
function. This discontinuity becomes reason of unbounded value of matrix elements. The RGDI controller can 
be affected by the singularity, during the inversion process. The rank of the system matrix may be changed that 
generates a discontinuous behavior in the MPGI. Such kind of drawbacks can be covered by augmentation of 
scaling factor to expression discussed in Ref.29 and elaborated as:

where ez(t) = [e1(t), e2(t)] . Asymptotic stability confined through the above expression and modified form of 
system equation of matrix is given below as a function:

The extended condition of controller input as:

DSGI expression is given as:

All the elements of A(xz , xr , v, t) are bounded for t ≥ 030. As we have discussed the reduction of system 
matrix rank produce discontinuity, now to elaborate the rank of the system matrix is not going to be reduced 
by calculating its controllability and observability matrix to understand the stability analysis. The system under 
consideration is being checked by a calculation process such as controllability and observability. The controlla-
bility property of the system, coupling within the state’s and the input, involve the system matrices A and B. The 
Cc matrix is a linear system said to be in controllable form if it is possible to find the some input u(t), and this 
input will transform the state’s x(to) to the origin at finite time. If there exist some input u(t1) and gives x(t) = 0 , 
admitted for all initial times and state’s, then it is verified for  controller31. The controllability elaborated as: 

 (i) (A, B) is controllable,
 (ii) The controllability matrix can be found as: 

where α is positive integer which depends on the order of system matrix A and order of matrix in above equa-
tion is, α = 6 . System will be considered as controllable if it’s determinant is non-zero. Matrix show the full rank 
property so, system is controllable. The full rank of the matrix as mentioned above, provide strong validation 
towards the proof of the controllable system. The calculated controllability matrix is,

The excellent validation of full rank system can be viewed from the above matrix which shows a full rank 
matrix. A system having full rank property can be verified by finding the determinant of system matrix which 
should not equal to zero. All states of the system converge to origin validates the system observability. The 
observability of the system can be verified as, 

(i)  (A, C) is observable,
(ii)  The observability matrix can be found here: 

(20)B = −2ėTz D(r1, r2)ėz − 2c1e
T
z D(r1, r2)ėz − c2e

T
z D(r1, r2)ez − 2eTz D(r1, r2)A

+ − 2eTz D(r1, r2)
..
xd .

(21)U = A+(xz , xr , t) B(xz , xr , t)+ P(xz , xr , t)Y ,

(22)A+ = AT (xz , xr , t)
{

A(xz , xr , t)A
T (xz , xr , t)

}−1
.

(23)v̇(t) = −v(t)+
γ

||ez(t)||2
, v(0) > 0,

(24)A(xz , xr , v, t) = AT (xz , xr , t)
{

A(xz , xr , t)A
T (xz , xr , t)+ v(t)

}−1
.

(25)U∗ = A(xz , xr , v, t) B(xz , xr , t)+ P(xz , xr , t)Y .

(26)ẋr = A∗(xr , t)+ BA(xz , xr , v, t)B(xz , xr , t)+ P(xz , xr , t)Y .

(27)Cc = [B AB A2B A3B A4B . . . Aα−1
B],

(28)Cc =


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
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
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0 0 0 0 0.0014 0 −0.0014 0 −0.0052 0
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0 0 −0.0016 0.0036 0.0096 0.0216 0.0491 0.1116 0.2468 0.5616
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0 0.8 0 0.0008 0 0.0008 0 0.0008 0 0.0008
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 where α represents the order of system matrix A and value in above equation is, α = 6 . The system will be 
considered as control able if it’s determinant is non-zero. The matrix show the full rank property so, system is 
observable. The calculated observability matrix is given below:

Full rank property can be verified from the above matrix and ensure the observability of the system. Stability 
analysis provides a strong platform to design a suitable controller. Next section elaborates the controller con-
straints according to system dynamics.

Design of SMC and simulations
The concept of SMC is based on VSS control theory and work on the principle that controller structure will 
change continuously with variation in the state variables to keep the system states in sliding mode.

The SMC tends to modify the system dynamics by applying switching control of high frequency. The basic 
design of SMC can be elaborated in two steps. First we have to choose the sliding surface according to the order 
of considered system.

1st Step
The sliding manifold (surface) for this system can be selected as:

where S(t) represents the sliding surface with respect to time and e(t) is tracking output.
2nd Step
When the sliding surface is selected, we must focus on the control law. The control law drives the controlled 

variables to its reference value. The mathematical expression for control law can be defined as:

while

here ueq represent equivalent controller and k1 constant. The controlled system trajectory slide along the manifold 
by the action of multiple control structures and will follow the switching condition. In this way, the controlled 
system ultimate follow the trajectory towards convergence as shown in Fig. 3. It has been observed that during 
SMC, the system structure is defined by switching functions (x), where x is either a scalar or vector. The switching 
surface represented by s(x) = 0 , is a line on the phase plane. The lyapunov function is a platform to analyze the 
stability of the nonlinear system based on ordinary differential equations (ODE) theory. The ODE class theory 
validates the stability of the system by calculation of system Lyapunov function that must be negative definite. 
This sufficient condition ensures the asymptotic stability of the nonlinear system. We don’t have the proper 
strategy to construct function for  ODEs27. In practice, it has been observed that the sliding motion exists in the 
area around the sliding surface just like switching phenomena of frequency.The nonlinear behavior of the system 
will try to deviate from the sliding surface but the controller will enforce to follow line till system converged at 
the origin, known as the boundary layer. The SMC simulation results show the satisfactory convergence for pitch 
angle and yaw angle. The pitch angle must be converged to zero or stabilized before the yaw angle in Fig. 4. The 
SMC chattering pattern for such kind of systems can never be suitable because it will be dangerous for actuators as 
in Fig. 5. The rapid and sudden changes in voltage pattern required highly optimized power supplier. The TRMS 
output required smooth convergence with regular voltage pattern can be optimized by the optimization method.

RGDI based H∞ optimization and simulations
Some important symbolic representation is being addressed here to make reader friendly. Now, overall system 
represented by “ G =

[

Gd Gu

]

 ” while Gd represents the disturbance of plant as matrix and Gu shows the transfer 
matrix of control signal. The specification design for the control system is tracking of the desired signal. The 
output of the designed control system should follow the preselected signal. The un-certain plant has some basic 
requirements in the presence of perturbations like internal and external disturbance as shown in Fig. 6. We 
represent weighting functions Wp and Wu , which are reflecting the trade-off among characteristics of and/or 

(29)OO = [C CACA2 CA3 CA4......CAα−1
]T

(30)OO =


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


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
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
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22.1089 0.8294 0 0 −8.6574 0
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(31)S(t) =

(

d

dt
+ �

)n

∫t0 e(t) dt ,

(32)u = ueq + udis ,

(33)udis = −k1sign(S),
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for signals.The output required control task with performance and stability requirements represented via math-
ematical equation given below:

(34)u =
[

Kr Ky

][

r −yc
]T

= Krr − Kyyc ,

Figure 3.  Chattering phenomena.

Figure 4.  Pitch and Yaw Angle of TRMS using SMC.
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where Ky represents the feedback matrix function and Kr is transfer function matrix of pre-filter. The closed-loop 
model (uncertain TRMS) shown in Fig. 7, represents the controller feedback response, performance requirement 
and disturbance matrix of noise function. Different variables like r, d and n represents the reference input, input 
disturbance and noise respectively. The output angles as yaw angle αh and pitch angle αv are required to control 
(measure) under all kind of perturbations (noise, parametric). The output tracking control signals ey and eu are 
error tracking signals. The output feedback vector yc = y +Wnn , is vector matrix having measured noise n and 
Wn filter for noise shaping. The following weighted system required error tracking output (ey and eu) equation 
must satisfy the condition:

while Si = (I + KyGu)− 1 and So = (I + GuKy)− 1 shows input, output sensitivity matrix function respectively.
The performance criterion requires the transfer function matrix from the exogenous input signals r, d and n to 

the output signals ey and eu to be small , for all possible uncertain plant model G. The transfer function matrices 

(35)
[

ey
eu

]

=

[

Wp(SoGuKr −M) WpSoGd −WpSoGuKyWn

WuSiKr −WuSiKyGd −WuSiKyWn

]

[

r
d
n

]

,

Figure 5.  Chattering in control input for Pitch and Yaw Angle.

Figure 6.  Closed-loop system with performance requirements.
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Wp and Wu are used to reflect the relative importance of different frequency ranges for which the performance 
requirements should be fulfilled. The six transfer function matrices which constitute the transfer function matrix 
between the inputs and outputs of the extended system are described in Table 3. The controller design task is to 
regulate required output:

That must elaborate and satisfied the enlisted properties under perturbations. The robust stability under per-
turbations must meet the required response by satisfying closed loop nominal performance and robust response 
conditions. The condition for nominal performance:

The condition for robust performance:

Above conditions must be satisfied for G. The specification design for the control system is tracking of the 
desired signal. The output of the designed control system should follow the preselected signal. According to the 
behavior of the nonlinear system, we must have a 2DOF H∞ controller rather than other controllers as discussed 
in Ref.32. By this technique, two controllers are designed, one for the robust stability, the internal stability and the 
rejection of disturbance, while the other controller design for the minimization of error between the reference 
signal and the actual response of the model.

The functions Kr and Ky are transfer function of system matrix which can be easily obtained. The system is 
described as:

(36)K =
[

Kr Ky

]

.

(37)
[

Wp

(

So,nomGu,nomKr −M
)

WpSo,nomGd,nom −WpSo,nomGu,nomKyWn

WuSi,nomKr −WuSi,nomKyGd,nom −WuSi,nomKyWn

]

∞

< 1.

(38)
[

Wp(SoGuKr −M) WpSoGd −WpSoGuKyWn

WuSiKr −WuSiKyGd −WuSiKyWn

]

∞

< 1.

Table 3.  Weighting function.

Functions Description

Wp(SoGuKr −M) Weighting difference

WpSoGd Weighted sensitivity to disturbance

WpSoGuKyWn Weighted sensitivity to noise

WuSiKr Weighted control action due to reference

WuSiKyGd Weighted control action due to disturbance

WuSiKyWn Weighted control action due to noise

Figure 7.  Block diagram of H-infinity control.
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The closed loop system transfer function can be obtained as:

The task is to minimize the cost function value (H∞norm) of Tzw and get stable gain. The weighting func-
tions are selected to regulate system required output response as, the weighting function matrix chooses are 
given below:

This is a model matrix for ideal model.

This is a matrix for performances.

This is a matrix for control action.

This is a matrix for sensor noise. We aim to minimize the error between the output and the desired signal, to 
obtain the good robustness performance and the stability performance. The controller design flowchart given 
in Fig. 8. The procedure for the controller is given below:

• Create the uncertain parameters of the system.
• Create the open-loop model by “sysic”.
• Design the weighting matrices by several iterations.
• Create the closed-loop plant including the weighting matrices.
• the stability and robustness performance against the weighting matrices. Conditions
• Lower bound > 1 than system ensure robust stability against uncertainties.
• If the upper bound < 1 than the system will not ensure the robust stability against uncertainties.
• If the lower bound < 1 and upper bound > 1 it would be an impossible case to conclude decision about the 

robust response.

Let the lower bound is 1 and upper bound is 1.3, it means that the system gives stability and the robustness 
performance against the parametric and model uncertainties. Check the gamma values if the value less than one 
than the nominal performance can be achieved. Then design the H∞ controller for the system and the check the 
closed-loop transient responses. To design the open loop model we use five functions of “sysic” for main rotor, 
pitch angle, tail rotor, azimuth angle and last for the system interconnections.

systemnames = main rotor pitch angle tail rotor azimuth angle;
inputvar = [dist2; control2]
outputvar = [main rotor; pitch angle; tail rotor; azimuth angle]
input to main rotor = [control(1)]
input to pitch angle = [dist(1);main rotor; control(2)]
input to tail rotor = [control(2)]
input to azimuth angle = [dist(2);main rotor; tail rotor; control(1)]
G = sysic
The closed-loop plant interconnections of the model including the weighting matrix can be created as and 

the singular value plot shown in simulation result. Gamma values achieved using H∞ controller. γ = 0.1006 , 
this value is less than one so, the stability and robustness performance can be achieved. The range of gamma 
iteration considered from 0.1 to 10 with tolerance 0.001, the result shows that for which values of gamma are 
accepted and which are not. The noise weight function and obtained model frequency response of TRMS shows 
in Fig. 9a,b respectively.

The simulations are carried out to test the robustness of implemented techniques concerning the matched 
and mismatched perturbations. The perturbed model of the TRMS is used to carry out simulations. The robust 
stability and robust performance represented via simulation results in Fig. 10a,b respectively.

(39)


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
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(40)Tzw =

[

Wp(SoGuKr −M) WpSo
WuSiKr WpKySo

]

.

(41)wm =

[

wm11 wm12

wm21 wm22

]

.

(42)wp =

[

wp11 wp12
wp21 wp22

]

.

(43)wu =

[

wu1 0
0 wu2

]

.

(44)wn =

[

wn1 0
0 wn2

]

.
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The simulation results in the presence of disturbance signal provide a validation towards the robust response 
of optimization strategy. A sinusoidal signal is provided as input signal to ensure the tracking performance of 
the optimization method which is being subjected by some nonlinear disturbances. The pitch angle and yaw 
angle tracking performance of the desired output can be examined from Fig. 11a,b. The red curves represent the 
reference input of both angles (pitch and yaw)and blue curve shows the tracking output of the pitch and yaw 
angles of the TRMS. The conditions for robust stability and robust performance already explained in controller 
design section. The control action response can also be visualized from results in Fig. 11c,d, which represents 
the smooth convergence of the system towards stability.

Figure 8.  Flow chart of optimization design steps.

Figure 9.  Sensor noise and model frequency response.
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Experimental setup and system connections
In this section, we elaborate concept of real-time implementation and system interconnections through system 
integrated circuits. A brief discussion is also provided concerning the response of the valid output results. The 
internal structure of the system is also labeled with ports, to understand implementation more precisely for the 
reader.The schematic diagram of the closed-loop system with important variables description elaborated in 
Fig. 12 and the number of input–output ports also provided to understand internal structure easily.

The real time implementation of the prototype can be viewed in Fig. 13. The laboratory setup with computer 
and power supply are three main components of experimental apparatus.

The RGDI based H∞ optimization is done for the several performances weighting matrix (tuning factor). The 
control action for both rotors via optimization control elaborated through simulation response. The application 
of the controller allows the unwanted signals to reject perturbations like parametric measurements, disturbance 

Figure 10.  Robust stability and robust performance.

Figure 11.  Angles response with control input response under sine wave.
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torque, thrust, and external uncertainty. To validate the excellent robust performance, the model being disturbed 
through 10percent parametric uncertainty with disturbance noise signals on both rotors would be a worse case 
of robustness in real-time implementation.

Disturbance (1) = 0.2 and disturbance (2) = 0.2, white noise (1) = 0.1 and the noise matrix as 

Wn =

[

wn(s) 0
0 wn(s)

]

 and transfer function is wn = 10−2 s
s+1 with unit radian. All mentioned perturbations 

(disturbances) are applied separately to each rotor of highly coupled system to verify the worth of simulation 
results. The real-time implementation with the help of a robust designed controller validates the controller worth 
under disturbances (noise signal, un-modeled states, parametric, coupling effect).

The experimental processing of the TRMS with all required steps is mentioned in the Fig. 14 to understand 
the implementation. The limited varying speed provided to validate the system robust response with stabil-
ity credibility of the controller. The experimental output response of the pitch angle with their control action 
shown in Fig. 15a,b that validates the system’s sharp response towards convergence within limited variationgh 
attenuation during tracking is the coupling effect generated by the main rotor as we in the range of input control 
voltage. The small attenuation in the amplitude response as compared to yaw angle response is due to highly 
nonlinear behavior and perturbations (noise, parametric). Comparatively yaw angle shows more overshoot in its 
amplitude response. Similarly, a sharp variation in the control action of the yaw angle can be observed. A high 
level of noise (disturbance), causes a serious problem with the actuators and input control signal as an error. To 
get actual actuator input the first-order filter is based on the butterworth filter used.

Figure 12.  System internal structure of closed loop TRMS.

Figure 13.  Experimental apparatus (Prototype).
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Conclusion
This work is an attempt to understand the design of robust optimization technique based on generalized dynamic 
inversion for a highly nonlinear, cross-coupled MIMO system. In the optimization strategy, time-varying dynamic 
constraints are designed and output states are being tracked by the reference trajectories. Sinusoidal reference 
tracking of states ensures robustness and stability validation against considered uncertainties. The behavior of 
the system demonstrates a challenging task during control law implementation, due to high coupling and dis-
turbance torque. Some states of the system during modelling are unavailable, cause parametric uncertainty for 

Figure 14.  Flow chart TRMS laboratory setup implementation.

Figure 15.  Pitch and yaw angle experimental response.
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measurements. Therefore, some assumptions have been made while deriving its mathematical model. Nonlinear 
Dynamic Inversion (NDI) provides a simplified model of TRMS and RGDI remove some limitations of NDI as 
well as the singularity issue. The design and stability analysis verified through the controllability and the observ-
ability matrix. The SMC and H∞ strategies based on RGDI shows satisfactory convergence against considered 
uncertainties. The chattering phenomena reduces the performance of actuators and it may damage the actuators 
of the system due to fast fluctuations in control input voltage in real-time implementation. In RGDI based robust 
optimization control method, the weights have been selected iteratively in such a way that high gains have been 
achieved for the low frequency and low gain achieved for the high frequency. The weights have been selected 
iteratively via stability and robustness performance based analysis. Ability to reject both noise signal and external 
disturbance, H∞ optimization strategy meet the requirements of robust stability performance and validated by 
numerical simulations with tracking. Accurate fast-tracking and error convergence performance in worse case of 
perturbations (noise matrix, parametric disturbance) was the goal of this robust optimization. Some suggestions 
for control engineers are also evaluated from the experimental results given below.

• The experimental validation of robust control optimization shows that the TRMS behavior in real-time imple-
mentation is very sensitive depending on the exact tuning, selected weighting functions (tuning parameters).

• The controller report verifies the robust stability as well as robust performance to the modeled perturbations 
(uncertainty). The maximum tolerance ability against perturbation is more than 550.

• The noise signal with high amplitude causes serious contamination for the input actuators and high range 
frequency.

Data availability
All data generated or analysed during this study are included in this published article.
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