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Abstract: The use of ordered mesoporous matrices, and in particular carbon-based mesoporous
nanoparticles has shown great potential towards enhancing the bioavailability of orally administered
drugs. Nevertheless, elucidation of the in vivo absorption, distribution, and excretion of such carriers
is essential for understanding their behaviour, and radiolabelling provides a very useful way to track
their occurrence inside the body. In this work, uniform spherical CMK-1-type ordered mesoporous
carbon nanoparticles have been radiolabelled with Technetium-99m (99mTc) and traced after oral
administration to mice. Ex vivo biodistribution studies showed that the radiolabelled nanoparticles
accumulated almost exclusively in the gastrointestinal tract; complete elimination of the radiotracer
was observed within 24 h after administration, with practically no uptake into other main organs.
These findings along with the results from in vitro stability studies indicate that the spherical carbon
nanoparticles examined could be safely used as drug carriers with minimal side effects, but also
support the great value of radiolabelling methods for monitoring the particles’ behaviour in vivo.

Keywords: CMK-1; mesoporous carbon nanoparticles; radiolabelling; Technetium-99m; oral admin-
istration; biodegradation; biodistribution

1. Introduction

Oral drug delivery [1] constitutes the most widely used, cost-effective, non-invasive
administration strategy for treating patients with comfort and simplicity [2]. However, the
majority of commonly used medicines demonstrate a defective oral absorption profile, re-
sulting from either their low aqueous solubility (that is essential for oral bioavailability [3]),
or their poor stability in the harsh gastric environment [4]. Such limitations highlight
the need for moving towards more efficient oral dosage forms for poorly water-soluble
compounds [5–7]. At the same time, there has been a steadily growing interest in new
multifunctional nanoparticles that could incorporate active agents for both therapeutic
and diagnostic applications. A great variety of such nanomaterials has been explored
so far (e.g., silicas and bioactive glasses, metals and metal oxides, polymers and lipids,
quantum dots and carbon-based nanoparticles) [8,9]. In particular, mesoporous materials
(pore widths between 2–50 nm) with tailorable pore properties have emerged as one of
the most promising and advantageous biomolecule hosts that could also bear different
functionalities useful not only for drug delivery, but also for targeting purposes [10]. Most
of these mesoporous drug carriers, apart from the advantages of nano-confinement (drug
amorphisation, stabilisation, and protection), have additional useful properties including
(a) tunable texture (suitable pore size, surface area, pore volume) that allows significantly
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higher drug loadings [11], (b) chemical inertness, and (c) ease of functionalisation that may
facilitate the encapsulation of several bioactive agents [12], but also impart specific respon-
sive function upon endogenous and external stimuli (e.g., pH, redox, temperature changes
and light) [13–15]. The most widely studied porous nanomatrices are silica-based mate-
rials [16–19], which however possess some important disadvantages (e.g., hydrothermal
instability [20], potential toxicity [21] etc.), raising concerns about their safe and effective
use as drug nanocarriers [22].

Mesoporous carbon nanoparticles (MCNs) [23], on the other hand, offer a non-toxic
(as shown by several in vitro studies [14,24–26]) and structurally robust alternative with
high thermal and mechanical stability [27]. Nevertheless, the potential of MCNs as drug
delivery systems has not been fully explored yet, and in contrast to the massive work
on mesoporous silica nanoparticles (MSNs) [28] they have only recently started to gain
attention as components of therapeutic formulations [29]. Indeed over the past few years, a
number of reports [30] have confirmed that mesoporous carbon materials can effectively en-
capsulate various poorly water-soluble drugs (e.g., ibuprofen [11,31,32], indomethacin [24],
fenofibrate [33], simvastatin [34], carvedilol [35,36], itraconazole [37] etc.) but also en-
hance their dissolution and bioavailability. In addition to their great efficiency in terms of
drug loading and controlled release, some MCNs also exhibit significant optoelectronic,
photothermal-conversion and photoacoustic-generation properties, due to sp2 hybridiza-
tion, while their surface can carry stimuli-responsive, fluorescent or targeting agents also
through π-π stacking [38–45]. All these advantages make MCNs a promising, adjustable
nanomedicine platform for real-time imaging, targeting and therapy.

Absorption of orally administered drugs is by itself a complex procedure [7] and a
strong effort has been devoted to elucidating the interactions between drug formulations
and the gastrointestinal track (GIT) [46]. The use of nano-vehicles complicates the process
even further. A first step towards understanding the respective pharmacokinetics and a
critical point for the development of effective drug delivery systems is monitoring the
transport and biodistribution of the carriers in animal models [47–49]; however, biodistri-
bution studies for MCNs are still lacking. Relevant investigations are so far limited to (0D)
quantum dots [50–52] or to carbon nanostructures such as (1D) carbon nanotubes [53,54]
and (2D) graphene [55]; 3D carbon particles (e.g., hollow core–mesoporous shell nanocap-
sules and CMK-type nanospheres) have been seldom studied, although they have shown
high loading capacities and controlled release capabilities [11,14,27,32].

Radiolabelling represents an ideal tool for investigating the biodistribution of drug
vehicles after their oral administration, while in vitro studies in the presence of simu-
lated gastric and intestinal fluids, can provide information on both the degradation of the
carriers and the release of the radiolabel [48,49]. A broad variety of radionuclides with
half-lives ranging from a few minutes to several days are at the disposal of the radiochemist
wishing to investigate the initial biodistribution and pharmacokinetics of a novel nanocon-
struct/drug carrier. One of the radionuclides of choice for short-term assessment of the
biokinetics of nanomaterials is the gamma-emitter Technetium-99m (99mTc), due to its low
energy gamma-photon emission (140 keV), suitable half-life (6 h), and availability from
99Mo/99mTc generators [56–58]. 99mTc is suitable for direct (chelator-free) radiolabelling of
many nanoparticles (NPs), among which MCNs, as it bonds to surface groups at a neutral
pH [59–62]. Padmanabhan et al. were the first to present a study of mouse gastrointestinal
(GI) transit time, by using technetium-labelled activated charcoal diethylenetriainepen-
taacetic acid ([99mTc]Tc-Ch-DTPA), which demonstrated that the total GI transit time is
about 6 h in mice [47].

The present work aspires to provide significant insights into the transit, in vivo distri-
bution, and excretion of spherical MCNs of CMK-1-type, after their oral administration.
This is based on the effective radiolabelling of the MCNs, using radionuclides the decay of
which can address several time-scales, as well as the assessment of the MCNs biodistribu-
tion at different time-points after their oral administration to healthy mice. To the best of
our knowledge, this is the first study providing information on the in vivo kinetics and fate



Nanomaterials 2021, 11, 3260 3 of 14

of MCNs with radiolabelling techniques using 99mTc [63]. The obtained results combined
with the in vitro stability studies are of high importance for the validation of the respec-
tive drug delivery systems, thus helping showcase their suitability for real therapeutic
applications.

2. Materials and Methods
2.1. Materials

Warning! The 99mTc isotope emits gamma radiation and presents serious health
threats, thus it requires special radioprotective precautions during handling to reduce
the risk of harm. Part of this research was conducted in a licensed radiochemical facility,
which has all the necessary infrastructure and expertise to safely conduct experiments with
radionuclides.

All reagents and solvents were purchased from Sigma-Aldrich (St. Louis, MO, USA)
and used as received in the analytical grade. For preparation of the silica hard template
(required for developing the ordered mesoporous carbon by nanocasting) cetyltrimethy-
lammonium bromide (CTAB), triblock copolymer EO106PO70EO106 (Pluronic F127) and
tetraethyl orthosilicate (TEOS 98%) were used, while sucrose (≥99.5%) was utilized as
the carbon source. Technetium-99m, as Na[99mTc]TcO4, was eluted from a commercial
99Mo/99mTc generator (Mallinckrodt Medical B.V.). Radioactivity of the Na[99mTc]TcO4
eluent and of all the radiolabelled species, was measured using a dose calibrator (Cap-
intec, Ramsey, NJ). Thin-layer chromatography (TLC) silica gel 60 sheets (5 cm × 10 cm)
were purchased from Merck (Darmstadt, Germany) and along with a Radio-TLC Scanner
(Scan-Ram, LabLogic, Sheffield, UK) were used for the determination of radiolabelling
yield/purity. Water was deionized to 18 MΩ·cm using an EASYpure® water purifica-
tion system (Barnstead International, Dubuque, Iowa). A gamma scintillation counter
(Packard Cobra II, Canberra, Packard, Downers Grove, IL, USA), was used to measure the
radioactivity of each organ and blood samples in the ex vivo biodistribution studies.

Synthesis of Ordered Mesoporous CMK-1 Carbon Spheres

The cubic periodic MCM-48 silica spheres were prepared via a modified Stöber
method [64] by employing two different surfactants (cationic CTAB as the pore forming
agent and nonionic Pluronic F127 as the grain size modulator) in a mixture of ethanol–
aqueous ammonia solution and TEOS, as described elsewhere [14,16,32,65].

CMK-1 carbon spheres were obtained after double infiltration of the calcined MCM-
48 template with acidic sucrose solution, followed by a two-step thermopolymerisation
procedure, carbonisation at elevated temperature under inert atmosphere and finally
dissolution of the silica “mould” with HF [14,32,65].

2.2. Characterisation

The morphology of the CMK-1 carbon spheres was investigated through Scanning
Electron Microscopy (SEM) using a JEOL, JSM 7401F Field Emission (JEOL Ltd., Tokyo,
Japan) Microscope equipped with a Gentle Beam mode. Dynamic Light Scattering (DLS)
measurements were performed using an AXIOS-150/EX (Triton Hellas, Thessaloniki,
Greece) (Triton Hellas) apparatus with a 30 mW laser source, and an Avalanche photodiode
detector at a 90◦ angle, after dispersing the samples in aqueous medium. The pore structure
periodicity of the mesoporous carbon was studied using Small Angle X-ray Scattering
(SAXS) in transmission mode on a Rigaku, SmartLab X-ray diffraction system equipped
with SAXS optics (λ = 1.54 Å). The scans were obtained from 0.06 to 8 degrees, with a speed
of 20 s/step and a step of 0.02 degrees. The pore properties of the CMK-1 particles were
evaluated by N2 adsorption–desorption measurements at 77 K performed on an Autosorb-
1-MP, Quantachrome volumetric gas adsorption analyser. Prior to analysis, approximately
30 mg of the sample were appropriately outgassed for 24 h under high vacuum (10−6

mbar). The Brunauer–Emmett–Teller (BET) area value was calculated following the BET
consistency criteria (ISO 9277:2010). The micropore volume was assumed to be the QSDFT
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(Quenched Solid Density Functional Theory) derived cumulative volume for pores smaller
than 2 nm. The total (micro- and meso-) pore volume (TPV) was estimated at p/p0 = 0.90
(for pores with diameters <~20 nm), whereas the pore size distribution was deduced by
using the N2-carbon QSDFT kernel for slit–cylindrical pores on the adsorption branch of
the isotherm.

2.3. Radiolabeling of Carbon Nanoparticles

The radiolabelling procedure of CMK-1 was performed with 99mTc via a direct method
using SnCl2 as the reducing agent. Briefly, 200 µL of a phosphate buffer saline (PBS,
pH = 10) was added in an Eppendorf and then 20 µL of CMK-1 (8 mg/mL dispersed in
water) were also added to it. After the addition of 50 µL of a SnCl2 solution (8 mg in
250 µL HCl 30%, diluted to 5 mL after the addition of Millipore H2O) the pH of the mixture
reached 2. The pH was thereafter adjusted to 6.5 by the addition of 300 µL PBS pH 10.
Freshly-eluted Na[99mTc]TcO4 was added (100 µL, ~1 mCi) and the reaction mixture was
incubated at 60 ◦C for 60 min. The total radioactivity of the prepared sample was measured
using a dose calibrator, while quality control of the radiolabelled CMK-1 (designated as
[99mTc]Tc-CMK-1) was performed with ascending ITLC-SG analysis using two different
mobile phases, acetone and sodium citrate 0.1M, pH 5. A drop of the reaction solution
(~5 µL) was applied at 1 cm from the bottom of a strip of ITLC-SG paper (1 cm × 12 cm) and
allowed to dry. The strip was then placed in a beaker, which contained the mobile phase
and was allowed to develop to 10 cm from the point of application. The strip was then
removed from the beaker, allowed to dry, and was scanned on a Radio-TLC detector. Using
acetone as the mobile phase, free [99mTc]TcO4

- migrates to the front, while the radiolabelled
CMK-1 and the potentially formed hydrolysed 99mTc in the form of colloids ([99mTc]TcO2)
remain at the origin of the chromatogram. When developing the chromatogram in sodium
citrate, [99mTc]Tc-CMK-1 and free [99mTc]TcO4

- are expected to move with the solvent front
(Rf = 0.8–1.0), whereas [99mTc]TcO2 remained at the origin (Rf = 0.0–0.2) [56,59,66]. By com-
bining the results derived from the two developing systems (estimation of %[99mTc]TcO4

-

and %[99mTc]TcO2), radiochemical purity (RCP) of [99mTc]Tc-CMK-1 was calculated accord-
ing to the following formula:

%RCP [99mTc]Tc-CMK-1 = 100 − (%[99mTc]TcO4
− + %[99mTc]TcO2)

2.4. In Vitro Stability Studies

Stability of [99mTc]Tc-CMK-1 was assessed in the presence of Simulated Gastric Fluid
(SGF) and Simulated Intestinal Fluid (SIF) at 37 ◦C and Phosphate Buffered Saline (PBS,
pH = 7.4) at room temperature. SGF was made by adding 3 g of NaCl in 1450 mL deionised
H20, while adjusting the pH to 1.2 with diluted HCl. For SIF (0.05 M, pH = 6.8), 0.34 g
of Potassium Phosphate monobasic were diluted in 50 mL Millipore H20 and the pH
was adjusted with diluted NaOH. PBS (0.01 M, pH = 7.4) was prepared from PBS Tablets
(Fisher BioReagents) diluted in Millipore H20. For all stability tests, a sample of 10 µL
of [99mTc]Tc-CMK-1 was incubated with 40 µL of either SGF, SIF or PBS. Aliquots were
taken from the mixtures at 1, 3 and 24 h and analysed by ITLC-SG analysis, as described
above. All experiments were performed in triplicate, from three independent radiolabelling
procedures. In order to investigate the non-labelled particle stability in the acidic gastric
fluid, 50 mg of pristine CMK-1 were immersed into 200 mL of SGF and incubated under
stirring at 37 ◦C for 24 h. The sample (CMK-1_SGF) was thoroughly washed and dried at
40 ◦C and characterized with SEM, SAXS and N2 sorption measurements.

2.5. Biodistribution Studies

Animals used for the biodistribution studies were obtained from the breeding facil-
ities of the Institute of Biosciences and Applications, NCSR “Demokritos”. Our experi-
mental animal facility is registered according to the Greek Presidential Decree 56/2013
(Reg. Number: EL 25 BIO 022) in accordance with the European Directive 2010/63, which
is harmonized with national legislation, on the protection of animals used for scientific
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purposes. All applicable national guidelines for the care and use of animals were followed.
The study protocol was approved by the Department of Agriculture and Veterinary Service
of the Prefecture of Athens (Protocol Number: 1607/11-04-2018). The animals were housed
in air-conditioned rooms in an IVC unit (Tecniplast S.p.A., Buguggiate, Italy), under a 12 h
light/dark cycle and allowed free access to food and water.

The in vivo behaviour of the radiolabelled CMK-1 was studied in normal Carworth
Farms White (CFW) Swiss Webster mice (n = 3 mice per time-point, average animal weight
35 g). [99mTc]Tc-CMK-1 was administered orally via a plastic gavage microapparatus
(200 µL, ~70 µCi). For the ex vivo biodistribution experiment, the animals were euthanized
at 1, 3, 6 and 24 h post-administration, and the organs and tissues of interest (blood, liver,
heart, kidneys, stomach, intestines, spleen, muscle, lung, bone, pancreas, brain) were
removed, weighed, and measured in an automatic gamma counter. The radioactivity
remaining in the tail, as well as the background counts, were subtracted, while the radioac-
tivity decay was auto corrected by the counter. A standard dose of the injected solution was
used in all calculations. The uptake of the radiolabelled carbon NPs in each organ/tissue
was expressed as the mean percentage of injected dose per gram of tissue ± standard
deviation (%ID/gr ± SD).

3. Results and Discussion
3.1. Morphological Properties

As revealed from the SEM images in Figure 1 (top), the pristine CMK-1 sample
comprises uniform spherical mono-dispersed nanoparticles, with an average size of
100–120 nm. No morphological variation was observed after treatment with the acidic
SGF (pH = 1.2), as shown in Figure 1 (bottom). DLS (intensity weighted) measurements
revealed a mean hydrodynamic diameter of ~240 nm for both pristine and SGF treated
samples.
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Figure 1. SEM images of the CMK-1 carbon spheres before (top) and after incubation with SGF (bottom).

3.2. Structural Properties

The SAXS diffractogram of the as-produced carbon particles exhibited the typical
structure of the CMK-1-type ordered mesoporous carbon, thus confirming its successful
synthesis. More specifically, as presented in Figure 2, the pattern of CMK-1 particles,
shows two clear peaks attributed to the (110) and (211) reflections of the 3D tetragonal
structure with I41/a symmetry [65,67–69]. As also shown in Figure 2, there was no practical
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difference in the structure of the pristine particles (black line) after incubation with the
acidic SGF (red line).
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Figure 2. SAXS pattern of the CMK-1 carbon spheres before and after incubation with SGF.

3.3. Pore Properties

The pore properties of CMK-1 and CMK-1_SGF particles were assessed by N2 adsorption–
desorption measurements at 77 K. Figure 3 shows the obtained isotherms along with the
corresponding pore size distributions (inset). In accordance with SEM and SAXS results,
both samples showed practically identical results, confirming the stability of the carbon
particles in SGF. The isotherms are of type IVb, based on the International Union of Pure
and Applied Chemistry (IUPAC) classification [70,71], i.e., typical of ordered mesoporous
materials with pore sizes smaller than ~4 nm. In addition to the stepwise behaviour
with no hysteresis loop (indicative of uniform narrow mesopores), the increased nitrogen
adsorption at low relative pressures (p/p0 < 0.01) also suggests the presence of a significant
amount of microporosity. A large external surface area and a considerable secondary pore
volume (i.e., >0.5 cm3/g for pores with diameters between 20–160 nm) are also evident at
high relative pressures due to the carbon spheres’ packing.
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The pore properties of the CMK-1 and CMK-1_SGF samples are summarised in Table 1. It
can be seen that they exhibit a high BET area of about 1500 m2/g, a large total pore volume
of 1.0 cm3/g (at p/p0 = 0.90) for pores smaller than 20 nm (diameter) and uniform mesopores
with a mean size of approximately 3.2 nm, (Figure 3, inset). The total pore volume (at
p/p0 = 0.99) including meso- to macro- pore volume (20–160 nm) was estimated to be
around 1.55 cm3/g, thus indicating considerable additional volume due to the interparticle
voids formed by the agglomerated carbon spheres.

Table 1. Pore properties of the CMK-1 carbon spheres before and after incubation with SGF
(pH = 1.2).

Sample SBET (m2/g) TPV (cm3/g)
at p/p0 = 0.90

Vmicro
(cm3/g)

Vmeso
(cm3/g)

Pore Width
(nm)

CMK-1 1513 1.03 0.22 0.81 3.20

CMK-1_SGF 1506 1.01 0.21 0.80 3.20
SBET: BET area, TPV: total pore volume (pores < 20nm), Vmicro: micropore volume, Vmeso: mesopore volume
(=TPV − Vmicro) and Pore Width: mean pore diameter obtained by QSDFT analysis.

3.4. Radiolabeling of CMK-1 and In Vitro Stability Assessment

In order to develop an efficient drug delivery system, the respective pharmacokinetic
and biodistribution profiles need to be thoroughly investigated. The radiolabelling of CMK-
1 nanoparticles with 99mTc provided us with the means to assess their in vivo behaviour
at pre-determined time-points after their oral administration to healthy CFW mice. To
our knowledge, this is the first time that mesoporous carbon NPs were radiolabelled and
investigated as described above. Quantification of radiolabelled nanoparticles relies on the
fact that the tracer is always associated with the NPs. In our study, we need to investigate
whether or not the radionuclide remains bound to the NPs during its transit through the
GI tract. Then, we can accurately reach a conclusion with regard to the in vivo kinetics of
the CMK-1 nanoparticles.

Technetium-99m is eluted from a 99Mo/99mTc generator as a pertechnetate anion
([99mTc]TcO4

-), the chemical reactivity of which is negligible, thus synthesis of 99mTc-
radiolabeled compounds requires its reduction to lower oxidation states, with reducing
agents such as stannous chloride. Excess amounts of stannous chloride lead to undesirable
radiocolloid formation and subsequent accumulation in the organs of the reticuloendothe-
lial system (RES) due to macrophage uptake. On the other hand, concentration of stannous
chloride below the optimum level for reducing pertechnetate leads to its incomplete reduc-
tion from the heptavalent state. After meticulous investigation of radiolabelling conditions,
we have achieved excellent radiolabelling yields (>95%) with negligible colloid formation,
confirming that stannous chloride concentration used was appropriate.

Direct radiolabelling of CMK-1 with 99mTc relies on the interaction between deproto-
nated hydroxyl groups present on the carbon surface and the Tc(V) ions [56,72,73]. Stable
labelling is thus achieved without the use of chelators, which may be detached from CMK-1
in vivo. Various labelling conditions were tested, with respect to time and temperature.
The highest radiolabelling yields were achieved after 60 min incubation at 60 ◦C (pH ~7).
The radiochemical purity was evaluated by ITLC-SG and was found to be ~96%. Further
assessment of [99mTc]Tc-CMK-1 at 3 h and 24 h post-preparation showed that there was only
a slight release of the radioisotope (<2% free 99mTc at 24 h). Nanoparticles radiolabelled
with 99mTc via the direct labelling approach have demonstrated high stability, as shown
by the low degree of transchelation of the isotope in the presence of PBS [59,74,75]. The
in vitro stability of [99mTc]Tc-CMK-1 was assessed by incubation in PBS for 1, 3 and 24 h,
at RT, and showed that the 99mTc-MCNs were stably labelled, exhibiting a low degree of
99mTc release up to 24 h post-incubation (~90% intact [99mTc]Tc-CMK-1) (Figure 4).
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Figure 4. Radiochemical stability of [99mTc]Tc-CMK-1 in the presence of PBS pH 7.4 up to 24 h
post-incubation (p.i.).

When evaluating an orally administered formulation, its stability must be assessed in
the presence of gastric and intestinal fluids. These stability studies are mandatory, as they
demonstrate the degree of attachment of the radiolabel to the nanoconstruct. Incubation
of [99mTc]Tc-CMK-1 in SGF (pH 1.2) showed a release of ~30% of the radiolabel in the
forms of pertechnetate and [99mTc]TcO2·nH2O at 1 h post-incubation. This may be due
to the fact that a certain number of surface functional (hydroxyl) donor groups are in
protonated form, leading to partial desorption of the 99mTc species and hydrolysis to
insoluble [99mTc]TcO2 [76]. Further release of the radiolabel (~40% intact [99mTc]Tc-CMK-1)
was observed at 24 h post-incubation. On the contrary, [99mTc]Tc-CMK-1 is quite stable
up to 24 h post-incubation in the presence of SIF (~84% intact [99mTc]Tc-CMK-1 at 24 h
post-incubation) (Figure 5). The observed radiolabel release in SGF could not be attributed
to in vivo degradation of the CMK NPs, as these were found to be unaltered in acidic
media (Figures 1–3). In the presence of SGF, radiolabelling integrity is affected and 99mTc
is released from the nanostructure. The radioactivity uptake in the stomach can thus be
attributed to both the radiolabelled CMK-1 as well as the pertechnetate and [99mTc]TcO2
species formed at low pH.
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Figure 5. Radiochemical stability of [99mTc]Tc-CMK-1 in the presence of: (a) simulated gastric fluid
and (b) simulated intestinal fluid at 1, 3 and 24 h post-incubation (p.i.).

3.5. Biodistribution Studies

Ex vivo biodistribution studies for the determination of the in vivo characteristics of
the radiolabelled CMK-1 were carried out in healthy female CFW mice, after their oral
administration. After oral administration of [99mTc]Tc-CMK-1, the mice were euthanized
by isoflurane inhalation at 1, 3, 6 and 24 h post-administration and their blood, major
organs and tissues were studied simultaneously (in order to refer to the same degree of
radioactive decay); in all cases no sign of toxicity was observed. As shown in Figure 6 and
Table 2, [99mTc]Tc-CMK-1 was almost exclusively distributed in the stomach and intestines.
At 1 h post-administration, the radiotracer was mainly found in the stomach (39.49 ±
2.97% ID/g), while intestinal uptake slowly increased in time (0.42 ± 0.24% ID/g vs.
8.34 ± 3.01% ID/g at 1 and 6 h post-administration, respectively). By 24 h post-administration,
complete elimination of the radiotracer was observed. Throughout the duration of the
biodistribution study, practically no uptake was observed in the other major organs, thus
we expect any possible side effects from drug administration via loading of the developed
MCNs to be minimal. Similar results were shown by other groups investigating the in vivo
kinetics of drug nanocarriers with radiolabelling or fluorescent-labelling techniques [47,77].
As mentioned previously, in the presence of SGF radiolabelling, integrity is affected and
99mTc is released from the nanostructure, but not distributed in vivo (no radioactivity has
been detected in other organs or tissues). The radioactivity uptake in the stomach and
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consequently intestines can thus be attributed to the radiolabelled CMK-1, as well as the
pertechnetate and colloids formed at low pH.
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Table 2. Biodistribution data of [99mTc]Tc-CMK-1 in CFW mice at 1, 3, 6 and 24 h post-administration.

60 min 3 h 6 h 24 h

%ID/g STDV %ID/g STDV %ID/g STDV %ID/g STDV

Blood 0.05 0.04 0.00 0.00 0.00 0.00 0.00 0.00

Liver 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00

Heart 0.37 0.58 0.02 0.00 0.01 0.01 0.00 0.00

Kidney 0.01 0.00 0.02 0.01 0.02 0.01 0.00 0.00

Stomach 39.49 2.97 24.36 8.17 12.04 1.49 0.81 0.60

Intestines 0.42 0.24 5.09 0.74 8.34 3.01 0.55 0.42

Spleen 0.04 0.06 0.05 0.01 0.06 0.01 0.01 0.01

Muscle 0.03 0.02 0.02 0.00 0.01 0.00 0.00 0.00

Lung 0.36 0.20 0.03 0.04 0.02 0.02 0.00 0.00

Bone 0.02 0.02 0.00 0.00 0.01 0.02 0.00 0.00

Pancreas 0.29 0.47 0.00 0.00 0.01 0.00 0.00 0.00

Brain 0.27 0.29 0.00 0.00 0.00 0.00 0.00 0.00

4. Conclusions

Investigation of the biodistribution of MCNs is a necessary step for their use as
effective drug delivery carriers. The in vivo tracking of MCNs has been investigated by
radiolabelling with 99mTc, which proved to be a simple and straightforward procedure.
The radiolabelled [99mTc]Tc-CMK-1 was monitored by ex vivo biodistribution studies
up to 24 h post-oral administration, which determined its almost exclusive presence in
the gastrointestinal tract, with complete absence from all other organs investigated for
radiotracer uptake. At 24 h post-administration, [99mTc]Tc-CMK-1 was completely washed
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out of the organism, with <1% ID/g remaining in the GI tract. In the case of stomach
uptake, the radioactive label corresponds to the intact radiolabelled CMK-1, as well as
to free pertechnetate and [99mTc]TcO2, which are formed at the low pH of the stomach
environment (as shown by stability studies in SGF). On the other hand, almost all of
the radioactivity present in the intestines can be attributed to the intact [99mTc]Tc-CMK-
1. It should be noted that CMK-1 particles do not degrade in the stomach as the SGF
incubation experiments revealed. In this respect, although part of the surface-attached
99mTc was released in the stomach, burst drug release caused by nanoparticle dissolution
is highly improbable. This study has shed light on the biodistribution of MCNs, and
thus their suitability as an orally administered drug delivery vehicle, proving also the
important role of radiolabelling techniques in the elucidation of the in vivo behaviour of
such nanostructures.
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