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Epilepsy a�ects ∼2–3 million individuals in the United States, a third of whom

have uncontrolled seizures. Sudden unexpected death in epilepsy (SUDEP)

is a catastrophic and fatal complication of poorly controlled epilepsy and

is the primary cause of mortality in such patients. Despite its huge public

health impact, with a ∼1/1,000 incidence rate in persons with epilepsy, it

is an uncommon enough phenomenon to require multi-center e�orts for

well-powered studies. We developed the Multimodal SUDEP Data Resource

(MSDR), a comprehensive system for sharing multimodal epilepsy data in

the NIH funded Center for SUDEP Research. The MSDR aims at accelerating

research to address critical questions about personalized risk assessment of

SUDEP.We used ametadata-guided approach, with a set of common epilepsy-

specific terms enforcing uniform semantic interpretation of data elements

across three main components: (1) multi-site annotated datasets; (2) user

interfaces for capturing, managing, and accessing data; and (3) computational

approaches for the analysis of multimodal clinical data. We incorporated

the process for managing dataset-specific data use agreements, evidence of

Institutional Review Board review, and the corresponding access control in

the MSDRweb portal. Themetadata-guided approach facilitates structural and

semantic interoperability, ultimately leading to enhanced data reusability and

scientific rigor. MSDR prospectively integrated and curated epilepsy patient

data from seven institutions, and it currently contains data on 2,739 subjects

and 10,685 multimodal clinical data files with di�erent data formats. In total,

55 users registered in the current MSDR data repository, and 6 projects have

been funded to apply MSDR in epilepsy research, including three R01 projects

and three R21 projects.
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1. Introduction

Epilepsy is characterized by unpredictable seizures that

occur recurrently and spontaneously (Fisher et al., 2014).

Seizures affects approximately one in every twenty-six adults in

the United States in their lifetime (Hesdorffer et al., 2011). In an

epileptic seizure, large numbers of brain neurons are involved

in an excessive, synchronized, and inappropriate electrical

discharge that triggers signs and symptoms (Goldenberg,

2010). These result in a large variety of signs and symptoms

depending on the brain regions involved (Clark and Kruse,

1990). Approximately one-third of epilepsy patients are unable

to become seizure-free with currently available treatments,

increasing their risk of sudden unexpected death in epilepsy

(SUDEP; Petrucci et al., 2021).

SUDEP is a catastrophic and fatal complication of epilepsy

and is the primary cause of mortality in those who have

uncontrolled seizures (Devinsky et al., 2016a). It ranks second

only to stroke in terms of years of potential life lost due to

neurological disease (Thurman et al., 2014). Epilepsy patients

who die from SUDEP have no obvious cause or mechanism

of death that can be identified at autopsy (Okanari et al.,

2020). In epilepsy clinic populations, the incidence of SUDEP

ranges between 1.1 and 2.9 per 1,000 patient-years, whereas it

is 6.3–9.3 per 1,000 patients with intractable epilepsy, posing

a significant public health concern (Zhao et al., 2021). While

several multifactorial processes have been involved including

cardiac (Devinsky et al., 2016a), respiratory (Lacuey et al., 2018,

2019; Vilella et al., 2019b, 2021), autonomic dysfunction leading

to arrhythmia, hypoxia, and cessation of cerebral and brainstem

function, themechanisms underlying SUDEP are not completely

understood (Okanari et al., 2020; Petrucci et al., 2021).

A 2010 report by the Institute of Medicine (IOM), “Elements

of a National Strategy for Accelerating Research and Product

Development for Rare Diseases,” suggests a national strategy that

uses scarce funding, expertise, data, and biological specimens

efficiently and effectively by sharing research resources and

infrastructure (Zhang et al., 2014). This recommendation is

especially relevant to SUDEP research due to its relatively

low rate of reported incidences (Devinsky, 2011; Devinsky

et al., 2016b, 2018). Therefore, multiple epilepsy monitoring

units (EMUs) could collaborate effectively, sharing data to

build a larger cohort of potential SUDEP patients by using

state-of-the-art informatics and data analytics infrastructure

(Zhang et al., 2014).

In this paper, we describe the design and development

of the Multimodal SUDEP Data Resource (MSDR) by the

Informatics and Data Analytics Core (IDAC) of the Center for

SUDEP Research (CSR). MSDR is a system for the structural

and semantic harmonization of and web-based access to

multimodal clinical data, which is captured and uploaded from

multiple individual institutions and processed at the central

data repository. Data processing tasks include data integration,

data curation, and data conversion (Sahoo et al., 2012; Zhang

et al., 2014; Tao et al., 2022). It provides a single point of

access to analysis-ready multimodal clinical data to facilitate

SUDEP research.

2. Background

The overview of CSR is shown in Figure 1. CSR is a multi-

site cross-disciplinary collaboration composed of researchers

from 15 institutions across the United States and Europe to

understand SUDEP. This investment by National Institute of

Neurological Disorders and Stroke (NINDS) over nearly 5

years promises to catalyze research on SUDEP and dramatically

enhance our understanding of this devastating phenomenon.

The participating institutions of CSR includes Baylor College of

Medicine, University Hospitals ClevelandMedical Center (UH),

Lurie Children’s Hospital of Chicago, Columbia University,

Harvard University, New York University (NYU), Northwestern

University (NW), Texas Children’s Hospital, Thomas Jefferson

University (TJU), University of California, Los Angeles (UCLA),

University of California, San Francisco (UCSF), University

College London (UCL), University of Iowa (UIowa), University

of Michigan, and The University of Texas Health Science Center

at Houston. CSR collects seven types of clinical data for analysis

including patient reports from EMUs, electroencephalography

(EEG) signal data, imaging data, bio-chemistry data, DNA data,

follow-up forms, and SUDEP forms. UH, NYU, NW, UCLA,

UCL, TJU, and UIowa are the seven CSR institutions that

contribute clinical data to the central data repository.

The goal of CSR is to support the SUDEP research

community to maximize the value of multimodal clinical data,

tools, best practices, and other resources from the CSR in pursuit

of the overall goal of understanding risk factors and brain

mechanisms of SUDEP (CSR, 2022). CSR governance is carried

out through partnership with National Institutes of Health

(NIH)/NINDS and is comprised of an Executive Committee and

a Steering Committee. The Steering Committee consists of the

corresponding Principal Investigator from each Core/Project,

the Directors, and the NINDS Scientific Program Officer.

The Steering Committee has primary responsibility for the

establishment of priorities, development of common protocols,

and review of progress for the center. The Executive Committee

consists of eight votingmembers: the CSR Co-Directors, NINDS

Scientific Program Officer, NINDS Administrative Program

Officer, two additional NIH staff, and two rotatingmembers (one

basic science, one clinical) from the U01 corresponding PIs.

CSR is comprised of the following components: (1) the

Administrative Core, which coordinate interactions between

core and scientific programs, assure compliance with regulatory

approvals and safety protocols, assess and review the quality

and efficiency of the cores and projects, and monitor overall

budget and annual reallocation; (2) the Informatics and Data
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FIGURE 1

Overview of the program components of the Center for SUDEP Research.

Analytics Core, which aims to build on the progress already

achieved through a specific infrastructure and to expand and

broaden the sharing and utilization of research resources among

CSR partners; (3) theMorphometrics Analysis Core, responsible

for developing a repository of clinical imaging studies of SUDEP

cases enrolled in the center; (4) the Molecular Diagnostic Core,

which provides DNA sequencing and analysis of samples from

individuals with epilepsy who have died prematurely or who

have a high clinical risk of SUDEP; and (5) the five scientific U01

projects, which focus on different aspects of SUDEP research.

3. Approach

MSDR is guided by the idea that universally applicable

computational methodology and principles (Wing, 2006, 2008)

should be incorporated systematically in managing multimodal

clinical data. Figure 2 shows the overall data strategy of

MSDR. We recognize that raw data, data dictionaries, common

data elements, controlled terminologies, and ontologies are a

cascading chain of digital resources of progressively higher

conceptual degrees (Figure 2) along the data-information-

knowledge-wisdom (DIKW) hierarchy (Frické, 2019). The

DIKW hierarchy (other than wisdom) can be considered as

data; there is value added in the direction of findable, accessible,

interoperable, and reusable (FAIR; Wilkinson et al., 2016) when

we link consecutive data entities in this cascading chain through

analytics, annotation, and mapping. This strategy is expected

to offer opportunities for new interfaces (for human or for

machine) for data interpretability and integrability, leading to

enhanced rigor and reproducibility.

3.1. Data modeling

MSDR includes three core data models: Patient, Data Type,

and Data Status. As depicted in Figure 3, one patient can have

many data types while each data type has one data status (i.e.,

available or not). In the currentMSDR, seven types of data: EMU

reports, EEG signal data, MRI imaging data, biochemistry data,

DNA data, follow-up forms, and SUDEP forms. EMU report

contains clinical information generated during patient’s stay in

the epilepsy monitoring units including medications, seizure

events, EEG findings, seizure classifications, etc. EEG signal data

are in European Data Format (EDF) and well-annotated with

epilepsy related events. MRI data consists of research grade MRI
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FIGURE 2

Overall data ecosystem strategy for MSDR.

or CT files. Biochemistry data captures patients’ blood sample-

related information. DNA data record what gene tests are done

for patients. Annual follow-ups with patients were performed

in the CSR study, and the generated information is captured

in follow-up forms. SUDEP forms capture essential information

for patients who are confirmed died of SUDEP events. Different

types of data are linked by the patient’s unique CSR study

ID (Zhang et al., 2015).

3.2. Epilepsy metadata: Common data
elements and provenance information

The MSDR uses a metadata-guided approach to achieve

uniform semantic interpretation of data elements across the

entire spectrum of data integration activities: for annotating

source data, for interfaces to query and search data, and for tools

that access and assist in analysis.

Existing terminological systems do not cover the epilepsy

domain in sufficient detail to meet the goals of the CSR.

For this reason, our metadata-guided approach involves the

Epilepsy and Seizure Ontology (EpSO; Sahoo et al., 2014),

which models the necessary domain concepts to describe

epilepsy phenotype data at significant level of detail by following

an established four-dimensional classification framework in

epilepsy. EpSO covers concepts of seizures, location of seizures,

etiology, and related medical conditions according to the four-

dimensional scheme. In addition, it models EEG patterns and

comprehensive drug information (anti-epileptic, neuroleptic,

and anti-depressants) by using the U.S. National Library of

Medicine RxNorm standard. EpSO consists of over 1,300

concepts and integrates the latest International League Against

Epilepsy (ILAE) recommendations, and the concepts in EpSO

are mapped to the NINDS Common Data Elements (CDE),

which represents nine categories of terms describing imaging,

neurological exam, neuropsychology, seizures, and syndromes.

EpSO has been successfully used to streamline data capture and

integration processes and user interfaces, and to enable mapping

across distributed databases to support federated queries, as

well as to support centralized data curation while new data is

continuously generated and integrated from multiple sites.

3.3. Functional components of data
ecosystem in MSDR

Our design involves a set of MSDR data ecosystem

functional components to flexibly accommodate the deposition

of a growing set of new tools and data. The MSDR data

ecosystem consists of two main parts: Resource Construction

and Resource Access (as shown in Figure 4). Resource

Construction allows seven different types of data from individual
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FIGURE 3

Three core data models in MSDR.

FIGURE 4

Functional components representing the connections and interactions in MSDR data ecosystem. Seven CSR institutions that contribute clinical

data to the central data repository: UH, NYU, NW, UCLA, UCL, TJU, and UIowa. EpSO plays a central role in coordinating and facilitating

incremental resource construction (top) and resource access (bottom).

institution to be curated, mapped, and integrated into MSDR on

a cohort-by-cohort basis over time.

Our strategy of curation includes two-stage process to

curate multimodal clinical data from different individual

institutions and make them publicly available. In stage one,

our team performs the curation of datasets deposited from

each individual CSR institution. All data files from each

institution are transformed into a standard common format

using an automated script. For example, the original raw

EEG signal data are in different formats depending on the

EEG monitoring devices used at each institution. The script

systematically converts the raw EEG signals into European Data

Format (EDF)—a standard file format designed for exchange

and storage of medical time series. In stage two, the curated files

are indexed by institution names, patient study IDs and data

types. The statuses of data completeness are also systematically

tracked. In general, there are four categories of incremental

available resources, including: (1) multimodal clinical data

repository; (2) metadata for epilepsy research; (3) tools for data

analytics, cross-cohort exploration, and visualization; and (4)

user guides, technical guides, and study documents originated

from individual institution.

A number of tools are utilized in Resource Construction and

Resource Access of MSDR, including:

• The Ontology-driven Patient Information Capture (OPIC)

system (Sahoo et al., 2012), leveraging EpSO, provides a

flexible web-based interface to capture data describing

demography, patient history, details of paroxysmal

events, medication, results of prior electrophysiological

evaluations, and patient diagnosis (as shown in the Data

Collection component in Figure 4).
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• Epilepsy Data Extraction and Annotation (EpiDEA), which

is an ontology-driven clinical free text processing system

that extends the clinical Text Analysis and Knowledge

Extraction System (cTAKES; Savova et al., 2010) for

analyzing epilepsy-specific clinical reports (applied to the

Data Curation/Processing component in Figure 4).

• Multi-Modality Epilepsy Data Capture and Integration

System (MEDCIS; Zhang et al., 2014), which is a

multi-modality data capture and Integration system for

epilepsy data integration across multiple EMUs with

both retrospective and prospective patient information (as

shown in the Cross-Cohort Search/Visualization Interface

component in Figure 4). MEDCIS is adopted as the

informatics and data infrastructure hosting MSDR, and the

MEDCIS cross cohort query interface is deployed as the

web portal for MSDR (MEDCIS, 2022).

• Data Tracker for Multi-faceted Management of Multi-site

Clinical Research Data (DaT3M; Tao et al., 2022), which

is piloted to support the data management for MSDR (as

shown in the Data Tracking/Management component in

Figure 4).

• Data Slice Downloader (Tao, 2021), which is a software

package supporting batch-downloading of CSR patient

cohort (applied to the Data Downloading component in

Figure 4). It simplifies the downloading of large source files

by users with appropriate credentials of data access and use

agreements and IRB reviews, which are also tracked and

managed through the MSDR web portal.

• Interactive visualization system for physiological signal

recording, named WaveSphere (Li, 2019), which queries

and interactively renders physiological signal recording of

interest and corresponding annotations (as shown in the

Cross-Cohort Search/Visualization Interface component in

Figure 4).

3.4. Risk marker extraction

MSDR provides a comprehensive, curated prospectively

constructed repository of epilepsy-related data consisting of

electrophysiological signals linked to risk factors and outcome

data for over 2,700 epilepsy patients (with a broad spectrum

of age, social, racial, and ethnic) with thousands of 24-

hour recordings. Such a rich and diverse dataset provides

a solid foundation for machine learning and deep learning

application development in personalized risk assessment

of epileptic seizure and SUDEP. With MSDR, we utilize

different techniques to extract the risk makers of SUDEP and

detect/predict epilepsy-related clinical events, including rule-

based Natural Language Processing (NLP) and physiological

signal analysis based on machine learning and deep learning,

including:

• Seizure information extraction using NLP

Early onset of seizure is a potential risk factor for

SUDEP. However, the first seizure onset information

is often documented as clinical narratives in EMU

discharge summaries. Manually extracting first seizure

onset time from discharge summaries is time consuming

and labor-intensive. Our approach adopts a rule-based

NLP pipeline to automatically extract the temporal

information of patients’ first seizure onset from EMU

discharge summaries.

• Seizure identification

By analyzing off-line EEG signals, trained neurologists

and neurophysiologists are able to identify characteristic

patterns of disease, such as inter-ictal spikes and seizures,

as well as disease information, such as seizure frequency,

seizure type, etc. The obtained disease information is

to provide support for therapeutic decisions. Manually

reviewing and analyzing recordings is labor-intensive and

error-prone, as it usually takes a well-trained expert

several hours to analyze 1 day of recordings from one

patient. These limitations have motivated researchers to

develop automated techniques to recognize seizures and

other electroclinical phenomena. A focus of our research

is to develop an automated method to identify seizure

signal segments and non-seizure segments in off-line

EEG signals to assist neurologists in making a diagnosis

(Yao et al., 2021).

Our seizure identification strategy leverages a web-

based signal data management and visualization system for

epileptic seizure research, named SeizureBank (Li et al.,

2019), which includes a dataset of analysis-ready digital

signal recordings of seizures and related data fromMSDR.

• Seizure forecasting and prediction

Studying periodicities in seizure patterns has revealed

that more than 90% of individuals experience circadian

rhythms in their seizures, and many also experience

multiday, weekly, or longer cycles (Foundation, 2016;

Stirling et al., 2021). Such results provide insight into new

approaches to improving seizure prediction algorithms and

serve as proofs-of-concept for implementing a circadian

forecasting framework (Lee, 2018). Over the past decades,

seizure forecasting has seen a lot of progress, including

improvements in algorithms using machine learning and

exploration of other seizure susceptibility measures besides

EEG, such as physiological biomarkers, behavioral changes,

environmental factors, and cyclic seizure patterns (Stirling

et al., 2021). Instead of projecting whether a seizure will

occur or not based on a circadian cycle, seizure prediction

is focused on identifying the brain state wherein there

is a high probability of a seizure occurrence (Dumanis

et al., 2017). Many seizure prediction approaches have been

developed using machine learning-based techniques (Natu

et al., 2022). However, current seizure prediction work has
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two limitations: (1)many public seizure datasets consist of a

small number of patients, which limits patient diversity and

results in unreliable performance and low generalizability

to large populations; (2) most of the evaluations use

segments of time with small periods, which do not show

the performance under real-world situation (Huang, 2019).

MSDR provides thousands of 24-hour richly annotated

seizure-related physiological signal recordings, and

those data can be retrieved, visualized, and exported

with customized conditions in SeizureBank. Our seizure

prediction model consists of a transfer learning framework

to extract and pre-process data, train from a base model

and evaluate the predictor based on MSDR.

• Post-ictal Generalized EEG Suppression (PGES) detection

PGES is a potential EEG biomarker of SUDEP

risk (Lhatoo et al., 2010; Wu et al., 2016; Vilella et al.,

2019a). PGES is a period of brain inactivity after a

seizure. It most often occurs after generalized tonic-clonic

seizures (GTCs), particularly in those arising from sleep

and is related to ictal decerebration, post-ictal immobility,

lack of early oxygen administration, duration of oxygen

desaturation and lower SpO2 nadir values (Alexandre et al.,

2015; Kuo et al., 2016; Esmaeili et al., 2018). GTCs are the

most significant risk factor for SUDEP (Wu et al., 2016).

PGES is defined as diffuse EEG background attenuation

(< 10µV) in the post-ictal period (Asadollahi et al., 2018).

Prolonged PGES (>50 s) has been reported in refractory

epilepsy patients who are at risk of SUDEP (Lhatoo et al.,

2010). For each 1 s increase in PGES duration, the odds

of SUDEP increased by a factor of 1.7% (p < 0.005;

Lhatoo et al., 2010).

Clinically, determination of PGES duration is manually

performed by human experts through visual inspection of

EEG signals. According to its definition, detection of PGES

appears to be straightforward by identifying a period of

low amplitude EEG signals after the seizure. However, in

practice, actual data recorded in the EMUs contain high

amplitude physiological artifact (e.g., breathing, muscle,

and movement artifacts). Automated PGES detection tools

are highly desirable to assist clinical personnel in review

and annotation of PGES in EEG signals. Our model is

the first time to use machine learning-based method for

automatic PGES detection.

3.5. Hosting environment and data access

The MSDR is deployed in the data center of the University

of Texas Health Science Center at Houston (UTHealth)

with full security and backup support by the IT team of

UTHealth (MEDCIS, 2022). The MSDR runs on a CentOS 7

Virtual Machine. The MSDR web portal, MEDCIS, is coded in

Ruby on Rails 4.1 and run on Phusion Passenger for Apache

web servers. The server connect to the Research File Area which

grants the 120 TB of storage that can be scaled as needed as data

storage requirements increase.

The MSDR offers two main levels of data access: online and

offline. The MEDCIS supports online data exploration, and the

DaT3M andWaveSphere tool supports online data visualization.

Such online tools are implemented as web applications in the

underlying architecture. For the offline access, users can useData

Slice Downloader to download the required data and perform

data visualization and analysis activities with offline tools, such

as EDFbrowser (Beelen, 2013) for physiological signals, on their

local computational resources.

4. Results

4.1. Annotated and integrated datasets in
MSDR

In May 2022, MSDR had 10,678 data components for

2,739 patients, and the total file size was over 30 terabytes (as

shown in Table 1). These patients were from seven participating

institutions, including 1,082 from UH, 297 from NYU, 237 from

UCLA, 450 from NW, 210 from TJU, 293 from UCL, and 170

fromUIowa. Different institutions had disparate patterns of data

availability. For example, only UH, UCLA, and UCL contributed

imaging data; and bio-chemistry data only came from UH and

TJU. No site captured all modalities of data. The number of

each data modality showing in Table 1 reflects the curated and

available data in the MSDR. The CSR team is actively working

on more data processing for sites UCLA, UCL, and NYU.

4.2. Tools for data collection, curation,
exploration, and visualization

4.2.1. The ontology-driven patient information
capture system

OPIC (Sahoo et al., 2012) leveraged EpSO to automatically

generate multi-level drop-down menus that were populated

with only relevant terms based on previous user selection

(skip patterns) and branching logic to model combinations

of user selections. The OPIC system supported multiple types

of data entry requirements, such as admission notes, progress

notes for a patient, and discharge summary reports along

with the functionality to support the input and storage of

multi-modal patient data in form of EEG, EKG, and MRI

reports. The OPIC forms were primarily composed of the

structured data entry widgets that reduced user-generated

errors, supported automated consistency checking, and ensured

data completeness, using EpSO as the reference terminology

system. The features of OPIC made it an ideal resource for
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TABLE 1 Summary statistics of each data modality in MSDR.

Center No. of EMU EEG MRI Bio-chemistry DNA data Follow-up SUDEP forms

patients reports recordings imaging data forms

UH 1,082 1,644 1,676 126 137 456 981 22

NW 450 504 505 0 0 7 296 1

NYU 297 288 308 0 0 124 283 1

UCLA 237 215 235 207 0 0 143 0

TJU 210 231 251 0 40 135 161 2

UCL 293 345 294 296 0 0 288 3

UIowa 170 171 171 0 0 0 137 2

Total 2,739 3,398 3,440 629 177 722 2,289 30

capturing patient information and supporting multi-center

epilepsy projects of similar magnitude nationwide.

4.2.2. Epilepsy data extraction and annotation

EpiDEA (Cui et al., 2012, 2014) processed two types of

textual content in clinical notes: the semi-structured sections

with attribute-values pairs and the unstructured sections

with sentence-based text. An EpSO-driven epilepsy named

entity recognition module and a negation detection module

processed the output of these modules. EpiDEA used EpSO

as the knowledge resource for processing specialized epilepsy

terms to support three functionalities: term disambiguation,

term normalization, and query expansion using subsumption

reasoning. The EpiDEA system also incorporated a visual

interface for cohort identification that could be directly used by

clinical researchers. EpiDEA was used to identify patients using

constraints deciding seizure semiology, EEG and MRI patterns,

and anti-epileptic drug medication, which were of particular

interest in the study of SUDEP.

4.2.3. Multi-modality epilepsy data capture and
integration system

MEDCIS (Zhang et al., 2014) offered the following collection

of main functionalities, each of which had been tested and

validated independently: (1) a standardized data entry platform

for patient information at different points of care; (2) an

epilepsy-focused natural language processing (NLP) tool to

extract patient information from clinical free text in existing

patient records; (3) an integrated signal processing application

for clinicians to seamlessly interface between signal data and

patient information; and (4) a query environment to identify

patient cohorts using data integrated from multiple sources

based on a shared ontology.

The MEDCIS interface (as shown in Figure 5) included a

multi-level interactive dashboard and a faceted query engine.

The multi-level interactive dashboard quickly summarized the

data collection. Details such as the total of complete patients,

available data types in each dataset, and the total datasets of

each data type were presented in the dashboard. A faceted

query engine dynamically built data subsets with specific

characteristics. It is critical for CSR investigators to be able to

find subgroups of study data for specific purposes, including

auditing for data quality and data completeness, and ensuring

data interpretability and integrability.

4.2.4. Data tracker for multi-faceted
management of multi-site clinical research
data

DaT3M (Tao et al., 2022) integrated 10,678 data components

of seven different modalities for 2,739 patients from CSR’s

seven data contributing institutions. DaT3M provided five

main features: (1) a data overview interface to provide a

quick summary of the entire data collection in the central

repository including information such as the total number of

complete datasets, the number of datasets from each individual

institution, available data types in each dataset, and the total

number of datasets of each data type; (2) individual center data

portal to provide a dedicated work-space for each participating

institution to manage their own contributed data; (3) a data

status panel for real-time status checking of multi-modal

data, which was provided in institutional portal using data

visualization techniques to track the statuses of all data types

for each subject; (4) a data query engine to build patient

cohort, which was necessary to identify the subset of patients

with specific characteristics; and (5) a data slice downloader to

deliver user-specified data subsets from the central repository for

secondary data analysis. The features of DaT3Mmade it an ideal

tool for supporting large-scale multi-site collaboratives.

To provide an intuitive and concise view of patient data and

their statuses, DaT3M used a colored squared box to represent

each data type as well as its status. The short name of the data

type was enclosed in the squared box. Green color indicated

the data status was available and red denoted that the data
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FIGURE 5

MEDCIS interface including a multi-level interactive dashboard (top) and a faceted query engine (bottom).

status was missing or not available. For instance, given a specific

patient, a squared box with letter “P” in green indicated that the

patient’s EMU reports were available. Figure 6 shows a panel of

seven colored square boxes, representing the overall status of

one patient dataset in CSR. The data types were evenly placed

horizontally. The color of each data type (as “Color Code”

referenced in Figure 3) indicated the availability status of the

corresponding patient data. Therefore, the available data for the

patient shown in Figure 6 included EMU reports, EEG signal

data, MRI imaging data, follow-up forms, and DNA data, while

biochemistry data and SUDEP form were not available.

4.2.5. Data slice downloader

DaT3M integrated with MEDCIS query engine which

employed concepts from EpSO to build patient cohorts. Once

a patient cohort was created, DaT3M allowed end users to

download the cohort data using a scalable download framework.

A patient cohort often contains thousands of data files with size

in terabyte level. It is not practical to use the typical browser-

based individual file downloading method to retrieve a patient

cohort. To support scalable and smooth data download, we

created a ruby gem called CSR Data Inventory, which was a

FIGURE 6

Patient data statuses of seven data types: P, EMU reports; E, EEG

signal data; M, MRI imaging data; B, biochemistry data; F,

follow-up forms; D, DNA data; S, SUDEP forms.

software package supporting batch-downloading of CSR patient

cohort. This gem supported and has been tested on multiple

operating systems (Windows, Linux, and OS X; Tao, 2021).

There were five steps involved in the downloading workflow.

First, the user got a data download token from the built patient

cohort. Then the user can run DaT3M data downloader in the

local machine and feed in the data download token. In step 3,

a file list was downloaded containing the catalog of all files to

be downloaded. Data downloader then traversed the file list and

sent request to retrieve data files using the same data download

token. In the last step, files were downloaded and stored in the

user’s local device. The whole workflow was highly automated.

The user only needed to start the program and feed in the data
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download token. It was called data slice downloader because the

user had a choice to select what data type to download during the

step of data download token generation. Typically, researchers

only needed specific types of data for their study, such as

EEG data for signal processing and analysis or MRI data for

imaging-related investigation. Slicing data can effectively reduce

the workload of data download and researchers’ local data

management. Besides, the data downloader was robust since it

supported resumable download. The first-downloaded file list

contained meta-data about every file to be downloaded such

as file name, path, and size. With this information, users could

check if a data file was already downloaded completely. Once

interrupted, the data downloader would skip those downloaded

files and continue with the remaining data files.

4.2.6. WaveSphere: An interactive visualization
system for physiological signal recording

WaveSphere (Li, 2019) was built using the Ruby on Rails

framework (ROR; Hartl, 2015; Ruby et al., 2020) and Data-

Driven Documents (D3; Bostock et al., 2011). In WaveSphere,

we developed the query engine based on the ROR framework

for processing user requests and used D3 for building interactive

interfaces for physiological signal and clinical-event annotation

visualization. WaveSphere offered the following collection of

main features: (1) standardized, metadata-based search and

query of signal data, which provided an easy-to-use and user-

friendly interface for signal data searching and retrieving

based on specific user requirements; (2) online interactive and

functional visualization interface for rendering waveforms, so

that the signal data could be intuitively reviewed and interpreted;

(3) clinical event annotation management and sharing, which

provided intuitive solutions for editing and sharing cross-

cohort annotation with standard and uniform annotation

file formats; (4) customized signal fragments exporting and

downloading function, which provided convenient ways for

data exporting with complex requirements; and (5) a cross-

platform, web-based applications could address the cross-

platform issue with easy access by using ubiquitous Web

browsers. With such an interactive system, the application

provided multiple functions according to user requirements,

such as query and visualizing signal fragments of interest,

rendering and editing corresponding annotations, and exporting

signals and annotations.

4.3. Risk assessment of SUDEP using
MSDR

4.3.1. Seizure information extraction using NLP

We used the EpSO as the core knowledge resource and

constructed 4 extraction rules based on 300 randomly selected

EMU discharge summaries. To evaluate the effectiveness of the

extraction pipeline, we applied the constructed rules on another

200 unseen discharge summaries and compared the results

against the manual evaluation of a domain expert. This pipeline

was specifically designed for seizure information extraction such

as the first seizure onset date, which was an important data

element for SUDEP related research. Overall, our extraction

pipeline achieved a precision of 0.75, recall of 0.651, and F1-

score of 0.697.

4.3.2. Seizure identification

To build SeizureBank, we extracted different types of signal

data according to annotation files, which were created by

domain experts, using our data preprocessing pipeline and then

imported the analysis-ready data into the database. With such

analysis-ready dataset, researchers could obtain processed data

directly and spend less time on data preparation and cleaning,

such as dealing with the data corruption issue, annotation

labeling issue, and data extraction and segmentation from a large

EDF file. Therefore, researchers could focus on seizure analysis-

related tasks, such as developing statistical analysis, clustering,

or other machine learning approaches.

We developed a feature-based seizure identification

approach and evaluated it on three datasets, including

University of Bonn seizure dataset (UBSD) including 10

subjects, the Children’s Hospital Boston (CHB)-MIT scalp EEG

database consisting of 23 patients, and the analysis-ready dataset

in SeizureBank including 115 subjects, to construct a cross-

dataset evaluation benchmark for epileptic seizure identification

studies. Over 130 features, including time-domain, frequency-

domain, nonlinear, and wavelet-based features, were extracted

and combined with a random forest classification model to

obtain the best performance on different datasets: UBSD with

99.66% F1-score and 0.9933 Kappa, CHB-MIT with 86.20%

F1-score and 0.7357 Kappa, and SeizureBank dataset with

87.35% F1-score and 0.7547 Kappa (Li et al., 2019).

Seizure identification can save lives by reducing risk of

SUDEP and guide treatment decisions by accurately counting

seizures (Duun-Henriksen et al., 2020). Most SUDEPs occur

during unsupervised times, andmost commonly, the decedent is

found by family or caregivers in the morning. It is also possible

to be more vulnerable to SUDEP if patients with a history

of seizures during unsupervised times. For example, nocturnal

seizures increase SUDEP risk. During the critical interval that

precedes SUDEP, an intervention may save lives (Ryvlin et al.,

2013). The use of seizure identification and alerting devices

in the home to notify caregivers of seizures has grown in

popularity in an effort to reduce the risk of SUDEP. With the

help of innovations in health technology, wearable EEG, mobile

sensors, smartphones, and smart-watches, many devices and

algorithms are in development. MSDR contains thousands of

hours of seizure-related data frommore than 2,700 patients, and

it incorporates different types of seizures, such as focal seizure,
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generalized tonic-clonic seizure (GTC), and nocturnal seizure

(seizure during sleep). Most published seizure identification

algorithms were only developed and validated on smaller

datasets (Li et al., 2019), andMSDRprovides a large-scale dataset

that can facilitate the development and validation of future

seizure identification or detection algorithms.

4.3.3. Seizure prediction

Our seizure prediction model was constructed using two

different datasets which break the data size limitation by using a

single dataset. Leveraging the large-scale labeled MSDR epilepsy

dataset, we performed a real-time evaluation on a dataset

consisting of over 15,840 continuing hours EEG recordings

from 330 patients. Our stacked LSTM models reached 50%

sensitivity, 25.43% time in warning, 13.11 min false warning

per hour in average and 24.57% improvement over a random

predictor, which indicated the transfer learning setup improving

the seizure prediction performance using small patient-specific

data (Huang, 2019).

Seizure prediction would improve quality of life and reduce

disability for people with epilepsy. With seizure prediction,

people could be alerted that they are likely to have a seizure

within a certain number of hours, allowing them to plan and

reduce their risks accordingly. It may even be possible to reduce

risk by taking medication that prevents or stops seizures, or by

ensuring they will be in a safe place with people who know what

to do in the event of a seizure. MSDR consists of EMU data from

patients with epilepsy over multiple consecutive days, meaning

that the MSDR has not only seizure data, but also over terabytes

of high-quality pre-ictal, inter-ictal and post-ictal data. Such

continuous data provides sufficient training and testing data for

the development of reliable seizure prediction algorithms.

4.3.4. Post-ictal generalized EEG suppression
detection

We developed a random forest-based classifier to perform

PGES detection by leveraging various EEG signal features,

including time-domain features, frequency-domain features,

wavelet-based features, and inter-channel correlations (Li et al.,

2020). Then we constructed and applied confidence-based

correction rules to remove suspicious sudden changes of EEG

activities. Signal features provided valuable information to

characterize PGES and intermittent slow-wave brain activity.

Confidence-based rules were leveraged to correct sudden

changes of PGES states. In addition, we introduced a new

evaluation method for assessing PGES detection results in actual

clinical settings. The evaluation results on a dataset including

84 patients indicated that our method achieved a 5s-tolerance-

based positive prediction rate of 95% for artifact-free EEG

signals and handled the signals with different artifact levels with

the rate varying from 68 to 81%.

Previous work has found an increased incidence of PGES in

patients with SUDEP. The duration of PGES was directly related

to the risk of SUDEP, and patients with SUDEP had longer

PGES (Ryvlin et al., 2019). However, it is difficult to identify

the end of PGES, even for trained clinicians. Accurate detection

of the end of PGES is important for PGES characterization

and SUDEP risk assessment. To date, there is no dedicated

dataset for study of automatic PGES detection. Based on MSDR,

we built the PGES database, which contained 116 PGES EEG

recordings from 84 patients (Li et al., 2020). The volume of

data in this database will continue to increase as MSDR data

curation and annotation are completed. By the time the article

is published, the number of patients in our PGES database

increased to 174 and the number of EEG recordings increased

to 268. This database will make a considerable contribution to

PGES-related research.

4.4. Registered users and evidence of
usage

Evidence of MSRD usage for scientific research included

registered users in MEDCIS, research proposals submitted, and

publications. There were in total 55 registered users in the

current MSDR. Six projects including three R01 projects and

three R21 projects had been funded by NINDS or Citizen’s

United for Research in Epilepsy (CURE) that adopted MSDR

data for SUDEP related research (CSR, 2022). More than 60

publications, identified in the acknowledgments or references

section, had appeared in scientific venues (CSR, 2022). Other

user usage was reflected in the 52 saved data queries in the

MEDCIS data search engine.

MSDR is not public data. But the resource is available to

academic institutions and not-for-profit entities. We welcome

interested research scholars to contact us for data access.

We have an established standard process for reviewing and

approving requests. Data use agreements and Institutional

Review Boards (IRBs) are required documents.

5. Discussion

5.1. Data credibility and knowledge
repositories

The quality of data and knowledge repositories is an essential

and fundamental component of personalized risk assessment.

High-quality data should be housed in the repository, and must

be timely, accurate, clean, and unbiased, as well as stored in an

appropriate format or schema (Zhang et al., 2018). The real-

world data is always dirtier than what is ideal for research. It may

be difficult, time-consuming, and costly to clean and reorganize

data, and studies’ conclusions may be affected by hidden biases.
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Only 20% of data scientists’ time is spent building models,

analyzing, visualizing, and analyzing the data, whilemost of their

time (80%) is spent cleaning and preparing data (Patel, 2019; Li

et al., 2021). However, having high-quality data is not sufficient

to say the system is data-driven. Accessibility is essential; it

should be joinable (able to be joined with other clinical data

when needed) and shareable (a data sharing culture within the

hospital eco-system so that the data can be joined). It is difficult

to analyze and improve personalized risk assessment and care if

clinicians/researchers do not have a coherent, accurate picture

of patient flow, diagnostic processes, and complete longitudinal

data acquisition processes of patients. As a final point, and very

importantly, the data should be queryable and tools should

be developed so that data can be sliced and diced. In order

to perform assessments, large amounts of raw data should be

filtered, grouped, and aggregated into smaller sets of higher-

level and analysis-ready data that can assist clinicians and

researchers in gaining insights into topics of interest (Li et al.,

2021). Ensuring the credibility of the data and improving the

knowledge base while maintaining accessibility are key issues for

an effective personalized risk assessment.

Over the past 15 years, several large-scale data repositories

have been established. The European Epilepsy Brain Bank was

established at the University Hospital in Erlangen, Germany in

2006. Thirty-six histopathological diagnoses were collected for

2,623 children and 6,900 adults across 36 centers in 12 European

countries during epilepsy surgery in this study (Blumcke et al.,

2017). CSR aims to better understand the cortical, subcortical,

and brainstem mechanisms responsible for SUDEP and to

use a data-driven, systems biology approaches to determine

whether cortical influences contribute to SUDEP. CSR consists

of a curated repository of prospectively collected multimodal

clinical data, the MSDR, which is linked to risk factor and

outcome information for over 2,700 epilepsy patients with

thousands of 24-hour recordings. MSDR data is still being

continuously updated, and the increase in recruitment of

patients ranges from 50 to 100 per year more recently. However,

the MSDR has already been used for several ongoing studies.

Our working principle is that we cannot wait to reach the

ideal state of data to study SUDEP and that we will best

exploit available existing data to make meaningful progress

on SUDEP research.

5.2. Personalized risk assessment

The goal of the personalized risk assessment is to provide

a heightened awareness of risk areas in clinical practice and to

improve patient safety. With the rapid development of big data

in medicine, the development of models for personalized risk

assessment based on machine learning and artificial intelligence

is now one of the hottest topics in the research field. However,

most existing models and methods were built and evaluated on

a small and single dataset, which makes it difficult to obtain a

generally applicable and robust model (i.e., stable detection or

prediction performance for different patients; Bernardi et al.,

2016; Li et al., 2019, 2021).

The purpose of the evaluation is to find a better solution to

make the right clinical decision to reduce labor and time costs

and improve work efficiency and patient experience. However,

existing evaluation techniques may not be able to reflect

the performance of the model in real clinical scenarios. For

example, for seizure detection, machine learning/deep learning

approaches have reached performance levels that leave virtually

no room for improvements (Talathi, 2017; Hussein et al., 2019;

Siddiqui et al., 2020) using standard metrics include precision,

recall, receiver operating characteristic (ROC) metrics, and yet

few tools of practical utility have been translated to routine use

in healthcare. Record-based (4 or 8 h), instead of segment-based

(e.g., 10 or 60 s) evaluation approaches and time in warning

measures produce poorer performance numbers but may better

reflect the reality because they account for extreme imbalances

of positive vs negative (e.g., 1:3,000) cases. For example, for the

task of detecting post-ictal generalized electroencephalogram

suppression, an important SUDEP marker, the standard

evaluation method gave a spectacular F-1 measure of 0.97,

but a time in warning evaluation metric dropped the F-1

score to 0.68 in our experimental study (Li et al., 2020). The

challenge of class imbalance in machine learning, especially

in EEG signals, lies in detecting and evaluating the effect of

imbalance on the learning and testing process. EEG recordings

often last for hours or days, while epilepsy events are typically

brief (in minutes), resulting in extreme class imbalance.

Some studies used imbalanced testing sets to evaluate the

performance of their models and used traditional performance

metrics. However, in practical scenarios, a model with high

accuracy, sensitivity, specificity, and F-measure (over 90%) may

not necessarily achieve completely satisfactory results when

deployed in continuous EEG signal recording settings (the

real clinical scenarios). To provide reliable data analysis, the

evaluation criteria should be different according to different

research tasks, for example, when detecting daily seizure events,

false positives and sensitivity should be considered on an hourly

scale, while seizure onset detection should focus more on the

latency (in seconds). Seizure prediction, on the other hand, is

more concerned with the false alarm rate with different leading

time (i.e., seizure prediction horizon).

Therefore, to leverage the machine learning based

approaches, or even for other types of personalized risk

assessment approaches, it is important to create a new set

of evaluation techniques in a more clinically relevant way

based on different learning/decision tasks, and the evaluation

method should have a set of evaluation metrics acceptable

to clinical experts. A dataset with high patient diversity is

essential to obtain a stable and reliable approach. MSDR

provides a large amount of historical data of more than
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2,700 patients (and growing over time) that can simulate real

clinical scenarios and enhance the validation and evaluation

of algorithms.

5.3. Future directions

Platforms such as cloud instances, which provide shared

resources for emerging resources, can serve as Data Commons

platforms. However, it may not be sufficient to simply

expand storage capacity or add computing power to keep

pace with the rapidly expanding volumes and increasingly

complex nature of biomedical data. Concurrent efforts must

be spent to address digital object organization challenges. We

need to continue advancing research in data representation

and user interfaces for human-data interaction to make our

approach future-proof.

The next phase of the MSDR is the creation of a

universal self-descriptive sequential (U2S) data format to

represent neurophysiological data. U2S will break large,

annotated, sequential data files into minimal, semantically

meaningful fragments. Such fragments will be indexed,

assembled, retrieved, rendered, or repackaged on-the-fly, for

accommodation of distinct applications. MSDR’s annotated

neurophysiological data (sleep, pre-ictal, ictal, post-ictal EEG,

autonomic, and respiratory measurements), containing over

6,000 seizures and 1,000 generalized convulsive seizures will

be converted to the U2S format and import the resulting

converted data into a new platform. This labeled time-

series collection, with individual-level record-linked clinical

epilepsy phenotypic data, syndromic and genetic information,

biochemical, and imaging data, will support new personalized

risk assessment algorithms for seizure detection, seizure

prediction or forecasting, as well as SUDEP biomarker

identification, with an order of magnitude increase in sample

size compared to traditional studies. A new set of performance

measures will be designed to reflect real-world application

scenarios more faithfully, accounting for extreme biases and

signal artifacts, and thus allow for more straightforward

translation into practice for algorithms that perform well using

such measures.

6. Conclusion

In this paper, we introduced MSDR, a multimodal

data resource for personalized risk assessment of

SUDEP, for integrating multimodal clinical data from

multiple sites including seven institutions in epilepsy

research. We believe that several aspects of the MSDR

can help inform progress toward the implementation

of future-proof multimodal clinical data integration

and sharing from a domain-specific, usability-informed,

bottom-up perspective.
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