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1  | INTRODUC TION

Observational studies of wildlife occupancy and abundance are 
more important than ever as human disturbance has decreased 
wildlife population sizes by up to 60% globally in the last four de-
cades (WWF, 2018). These staggering declines have prompted the 
establishment of ecological monitoring through a variety of means 
including camera traps, mark–recapture methods, point counts, 
and line transects. Camera traps have become an especially useful 

survey methodology for the rapid assessment of wildlife because 
they require fewer field hours than other common field methods, 
may be reviewed by other researchers, and minimize disturbance to 
the environment (McCallum, 2013; Silveira et  al.,  2003; Steenweg 
et  al.,  2017). While camera traps are a useful tool for some eco-
logical studies, processing massive quantities of images created by 
camera trap networks is a major limiting factor for humans. Until 
methods are developed for the common camera trap study that does 
not have a sufficient number of images to train a new model, human 
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Abstract
1.	 Camera traps have become an extensively utilized tool in ecological research, but 

the manual processing of images created by a network of camera traps rapidly 
becomes an overwhelming task, even for small camera trap studies.

2.	 We used transfer learning to create convolutional neural network (CNN) models 
for identification and classification. By utilizing a small dataset with an average of 
275 labeled images per species class, the model was able to distinguish between 
species and remove false triggers.

3.	 We trained the model to detect 17 object classes with individual species identifi-
cation, reaching an accuracy up to 92% and an average F1 score of 85%. Previous 
studies have suggested the need for thousands of images of each object class to 
reach results comparable to those achieved by human observers; however, we 
show that such accuracy can be achieved with fewer images.

4.	 With transfer learning and an ongoing camera trap study, a deep learning model 
can be successfully created by a small camera trap study. A generalizable model 
produced from an unbalanced class set can be utilized to extract trap events that 
can later be confirmed by human processors.
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processing limitations will persist in future studies and only worsen 
as camera trap projects become more complex.

Previous camera trap studies have noted factors which increase 
the number of false camera triggers, resulting in large accumulations 
of images. Wind, loose shrubbery, camera settings, and animal be-
havior specific to each camera site add noise to the dataset (Newey 
et al., 2015). The time involved in manually processing these false 
triggers, which often represent a majority of captured images, can 
delay analysis to the point where conclusions are no longer relevant. 
Often, important metrics are left underexplored or unaccounted for 
all together because a large expenditure of resources is often re-
quired to process images manually (Willi et al., 2019).

Increase in the use of camera traps for ecological studies has 
led to a push for standardized methods to improve the workflow of 
image analysis (Glover-Kapfer et  al.,  2019). One promising avenue 
for processing camera trap images is the utilization of artificial in-
telligence (AI) technology. Artificial neural networks (ANNs) are AI 
algorithms which are composed of nodes or “neurons” stratified into 
layers. In the case of image classification, “training” occurs when a 
set of images is fed into the algorithm along with their known classi-
fications, and the model assigns weights to features at multiple levels 
of abstraction which it identifies to be important in recognizing the 
object(s) specified in the image. In the case of image recognition and 
classification, the base-level features extracted from the image are 
red, green, and blue (RGB) values for each pixel. The RGB values are 
passed to deeper layers of the neural net which use the distribution 
of these values to identify more complex components of the image, 
such as contours and shapes. Once a model is sufficiently trained, 
it can utilize the weights extracted from the training data to make 
predictions about the contents of novel “test” images.

Convolutional neural networks (CNNs) build upon the tradi-
tional ANN structure by “convoluting” images prior to analysis. 
Convolution consists of a matrix operation which effectively reduces 
the precise resolution of the images, leading to less overall connec-
tions between nodes and thus a more generalizable set of image 
features, without significantly sacrificing performance (Krizhevsky 
et al., 2017). The structure of CNNs makes them an ideal candidate 
to enhance the generalizability and inhibit overfitting to a specific 
image set. Overfitting is a phenomenon that occurs when a model 
cannot be generalized to the test set during training; therefore, it 
is not generalizable to the remainder of the images in the study and 
certainly not images of the same environment in different studies.

AI trained with convolutional neural networks (CNNs) has been 
employed and tested on several large datasets previously processed 
by citizen scientists. Swanson et  al.  (2015) trained and created a 
CNN for the Snapshot Serengeti dataset which consists of 3.2 mil-
lion images collected over 99,241 camera trap days. The output of 
the neural network reached an accuracy of greater than 93.8% when 
compared to the records of citizen scientists. While several large-
scale studies (e.g., Norouzzadeh et al., 2018) have achieved similar 
accuracy on such large datasets, the training of these neural net-
works requires large numbers of images and substantial computer 
time to train the model. Such investments are often not feasible for 

smaller camera trap studies under the current assumption that many 
thousands of images are needed to successfully train a model.

Only the largest camera trap studies have attempted to create 
their own neural networks, as it has been suggested that small clus-
ters of images (~1,000–5,000 images per species class) are not suf-
ficient for deep learning (e.g., Norouzzadeh et al., 2018). In order for 
a small camera trap study to utilize these models, they would need 
to augment their own large image set of a particular species or dis-
tractive environmental backgrounds that lead to false identifications 
(e.g., vehicles, flora, and livestock). The additional input to use these 
methods, although worth the effort to have a diverse and general-
izable model already trained, limits the feasibility of this approach 
for small studies. Here, we provide an alternative approach that re-
quires significantly fewer images by utilizing transfer learning and 
bounded-box labeling. CNNs learn the features belonging to each 
species class, allowing it to differentiate between objects and the 
background of images while also classifying objects. This alternative 
method would address the concern of image sets not being similar 
enough to another study's range of objects and backgrounds to be 
useful, even in the same geographical location.

Transfer learning, or transfer training, is a machine-learning 
technique that uses feature maps already trained on previous, sim-
ilar datasets. This tactic requires less training with new image sets 
because it is already capable of identifying lower-level patterns com-
mon between the sets of images. In other words, the important fea-
tures extracted from the labeled domains of the past training data 
give a head-start in training on the new images, therefore requir-
ing fewer images to train effectively (Shao et al., 2015). This type of 
training is used in other camera trap studies, but to our knowledge 
has not been previously applied to small studies such as our own. 
However, similar studies completed in the medical field have shown 
that given scarce data, transfer learning is more accurate than other 
state-of-the-art methods (Deepak & Ameer, 2019; Swati et al., 2019) 
and has been effective in false-positive reduction (Shi et al., 2019).

We suggest that the use of transfer learning on neural networks 
is often overlooked for small-scale camera trap studies (Schneider 
et  al.,  2020). Adapting a neural network to a dataset by adjusting 
the output of the final layers of the network through transfer learn-
ing and then reinforcement learning on a desired image set can be 
extremely useful, especially when data are scarce. We predict that 
a premade neural network, utilizing the process of transfer learn-
ing, could achieve similar identification accuracy as neural networks 
trained with thousands of images while not requiring such a large 
memory footprint. Using a transfer-trained neural network that may 
only need a few thousand images (depending on the complexity of 
the object) allows camera trap surveys to be affordable, data effi-
cient, and accessible to a broad range of projects.

Neural networks are used for various types of image processing and 
many are freely available through open-source software (e.g., Google, 
PyTorch, Keras). A premade neural network can be selected from an 
archive based on the types of images the network was built on; for 
instance, a neural network trained on animals/pets would be ideal for 
a camera trap project interested in identifying medium- to large-sized 
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mammals. To mimic a small-scale camera trap study, we trained a pre-
made, freely available neural network on the Faster-RCNN architec-
ture using less than 6,000 images from our larger dataset and achieved 
similar confidence in object identification as the previously mentioned 
large-scale studies. Here, we show that a small number of diversified 
images can be just as successful at eliminating false positives and iden-
tifying species as a model developed using many thousands of images.

2  | METHODS

2.1 | Camera trap study

The subset of images used to train the model was pulled from a cam-
era trap study consisting of 170 cameras, which were deployed for up 
to three years across two regions of South Carolina (see Appendix S1 
for camera trap study details). Some examples of images obtained are 
shown in Figure  1. We acquired images for the train and test data-
sets from 50 camera locations from each region within two separate 
one-month time frames. The complete test and train datasets con-
sisted of 5,277 images of 17 classes, including images from both win-
ter and summer months to account for seasonal background variation 
(Table 1). True-negative images were not included because they would 

not assist in teaching the model about any of the species classes. A 
commonly used 90/10 split (e.g., Fink et al., 2019) was utilized to cre-
ate the training and testing datasets from the selected images; 90% of 
images were used for training and 10% were used for testing.

2.2 | Image selection

The basic process of designing an identification and classification 
model (Figure  2) included selecting and labeling a subset of images 
from our camera trap image repository (see Appendix S1 for details) 
for transfer learning, in order to adapt a premade neural network to 
our image set. The subset of images used to train the model was pulled 
from a camera trap study consisting of 170 camera stations which had 
been deployed for up to three years in two regions of South Carolina 
(see Appendix  S1 for camera trap study details). To begin, a subset 
of images was created by selecting up to 500 images of each spe-
cies from the South Carolina Army National Guard (SCARNG) train-
ing centers in a variety of positions within the field of view (Figure 2, 
Step 1). In cases where classes (species being classified) reached 500 
images, only images that contributed a unique perspective of the ani-
mal were added to the training dataset, in order to supply the model 
with a better generalization of the animal and prevent class imbalance. 

F I G U R E  1   Sample photographs from 
camera traps. Starting from top left and 
going clockwise, species are as follows: 
Carolina gray squirrel (Sciurus carolinensis), 
white-tailed deer (Odocoileus virginianus), 
great blue heron (Ardea herodias), coyote 
(Canis latrans), fox squirrel (Sciurus niger), 
wild turkey (Meleagris gallopavo), and 
coyote (Canis latrans)
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Despite adding more than 500 images to some classes, the model did 
not seem to favor one class over the other.

2.3 | Feature extraction

To get the most out of the small image set, every object within each 
image was labeled for supervised training (Figure  2, Step 2) (Dai 
et al., 2015). The use of supervised training increased the accuracy of 
detection and classification by providing a well-defined region of in-
terest for each object in the image through human-generated bound-
ing boxes (Appendix S2). LabelImg (Tzutalin, 2015), a graphical image 
annotation tool, was used to establish ground truths (locations of all 
objects in an image) and create the records needed for our supervised 
training process. This software allows a user to define a box containing 
the object and automatically generates a CSV file with the coordinates 
of the bounding box as well as the class defined by the user.

2.4 | Classification training

A transfer learning process to adapt a premade neural network 
(Figure  2, Step 3) was utilized to create an identification and 

classification model. We transformed the CSV file generated by the 
feature extraction process into a compatible tensor dataset for the 
training process through the appropriate methodologies laid out in the 
Tensorflow (Abadi et al., 2015) package description. Tensorflow is an 
open-source, experimental Python library from Google for identifica-
tion and classification models. The Tensorflow transfer learning pro-
cess required a clone of the Tensorflow repository, in combination with 
a customized model configuration file defining parameters (Table 2).

2.5 | Training evaluation

The degree of learning that was completed after each step was ana-
lyzed using intersection over union (IOU) as training occurred (Krasin 
et al., 2017). A greater IOU equates to a higher overlap of generated 
predictions versus human-labeled regions, thus indicating a better 
model (see Appendix S3). Observing an asymptote in IOU allowed 
for the determination of a minimum number of steps needed to train 
the model for each class and to assess which factors influenced the 
training process (e.g., feature qualities, amount of training images). 
Because the minimum step number was not associated with image 
quantity in determining step requirements, we relied on quality as-
sessments, such as animal size and animal behavior.

Following training, final discrepancies between the model output 
and the labeled ground truths were summarized into confusion matrices 
(generated by scikit-learn, Table 3) including false positives (FP), false 
negatives (FN), true positives (TP), true negatives (TN), and misidenti-
fications (MI) (Table 4). Several metrics were calculated to evaluate as-
pects of model performance (Figure 3). Relying on accuracy alone may 
result in an exaggerated confidence in the model's performance, so to 
avoid this bias, the model's precision, recall, and F-1 score were also cal-
culated. Precision is a measure of FPs while recall is a measure of FNs, 
with F-1 being a summary of the two metrics (Figure 3). Due to the large 
proportion of TNs associated with camera trap studies, F-1 score does 
not include TNs in order to focus on measuring the detection of TPs.

In addition, the metrics were further separated into evaluations for 
identification and classification purposes. Identification (ID) models 
would focus only on finding objects and therefore deem misidentifica-
tions as correct because the object was found. Classification (CL) mod-
els would not deem misidentifications as correct. Finally, accuracy, 
precision, recall, and F-1 were calculated at a variety of confidence 
thresholds (CT), a parameter constraining the lower limit of confidence 
necessary for a classification proposal, to determine the threshold that 
resulted in the highest value of the metric we wished to optimize.

2.6 | Validation

To confirm results acquired from testing the model, it was essen-
tial to evaluate a validation set of images. This validation set was 

TA B L E  1   Distribution of image subset for train and test datasets 
by class

Class

Train Test

Images Objects Images Objects

Armadillo 186 186 21 21

Bobcat 18 18 4 4

Coyote 162 171 18 18

Crow 39 59 11 13

Deer 1,109 1,379 136 159

Dog 86 114 18 21

Fox Squirrel 79 79 17 18

Gray Fox 88 88 11 11

Gray 
Squirrel

318 327 32 34

Heron 52 52 3 3

Human 822 1,948 89 194

Opossum 18 18 3 3

Rabbit 269 278 17 17

Raccoon 200 208 26 26

Skunk 17 17 2 2

Turkey 430 879 43 80

Vehicle 780 2,962 84 271

Total 4,673 8,783 535 895

F I G U R E  2   Diagram of image collection and training process. The visual representation demonstrates the main ideas of selecting and 
organizing up to 500 images for each class, employing transfer learning, and producing the final identification model that is set to classify 
animals within the camera trap study
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formed by randomly selecting five cameras from a 12-week period 
separate from the training dataset, but within the same larger data-
set. The validation subset consisted of 10,983 images, including true 
negatives. The set ran using the optimal CT for F-1 score determined 
by the test data. These images were also labeled using LabelImg to 
automate the calculation of evaluation metrics. The validation set 
scores and test scores should be compared to determine whether 
the model is overfitted, meaning the test set is not representative of 
the validation set. Possible reasons for such a mismatch may be that 
the background environment has changed dramatically or species 
not included in the test set have appeared.

3  | RESULTS

3.1 | Evaluation of training

The performance of our model did not depend on the number of 
images used to train each species class (Figure 5). In fact, precision 
during the training process varied greatly among species classes and 
was not a function of the number of images input into the model 
(Figure 4). The class with the highest precision during training was 
armadillo (98%) with 186 images while gray squirrel had the lowest 
precision during training (30%), despite being trained on 318 images. 
The raccoon, turkey, and deer classes all resulted in comparably high 
precision values while being trained using 88, 430, and 1,109 images, 
respectively (Figure 4). Five classes were trained using less than 60 
images between the test and train dataset (Table 2, see Appendix S3 
for all IOU graphs). Result metrics for these classes also varied as a 
function of species traits rather than number of images used to train 
the class (R2 = 0.0251, Figure 5).

3.2 | Model performance

To judge the performance of the model, we evaluated accuracy, pre-
cision, recall, and F-1 at several CTs using the corresponding TP, FP, 
TN, and FN values (Table 4); these values were calculated from the 
respective confusion matrices (e.g., Table  3). Metrics followed the 

same trends for both ID and CL purposes with CL values running 
slightly below ID values (Table 5). The test set produced recall values 
that were inversely related to the CTs, while the precision values 
were directly related; precision was highest at 0.95 CT (ID: 90%, CL: 
88%) and recall was highest at 0.50 CT (ID: 96%, CL: 89%). Accuracy 
for identification was highest at the 0.50 CT, and accuracy for classi-
fication was highest at the 0.90 CT (ID: 75%, CL: 71%). F-1 score was 
highest at the 0.70 CT for ID (86%) and 0.90 CT for CL (83%). The 
difference between accuracy and F-1 values demonstrates the ef-
fect of TNs (Figure 6). Accuracy and F-1 were highest at 0.90 CT for 
the test data; therefore, we decided to use 0.90 CT for the validation 
set. The validation test resulted in a 93% accuracy, 68% precision, 
86% recall, and 76% F-1 score (Table 5).

4  | DISCUSSION

4.1 | CNN accessibility

This study demonstrates that CNN-based identification and clas-
sification models are more accessible than previously thought. 
Processing of camera trap images has been limited by human observ-
ers, expense, processing time, and ignorance of computer science 
techniques for applications in ecological studies. Employing labeling 
services (e.g., Google Cloud) can be unreliable for processing large 
datasets and to have images labeled and processed currently costs 
approximately $0.05 per image (Google Cloud), which may not be 
practical when tens of thousands of images are involved.

An increasingly accurate and efficient method of image pro-
cessing is transfer learning (e.g., Deepak & Ameer,  2019; Shi 
et al., 2019; Swati et al., 2019), which is an especially desirable tech-
nique for studies with limited data (Shin et al., 2016). Despite im-
provements in this training architecture, the use of these methods 
in ecology has been limited. Transfer learning saves time and re-
duces data requirements, allowing for smaller studies to spend less 
time processing while still calibrating the architecture with specific 
images and training the model on a percentage of their complete 
dataset. Additionally, transfer learning helps prevent overfitting 
of the model, which can be an issue when using a smaller num-
ber of images (Deepak & Ameer, 2019; Han et al., 2018; Schneider 
et al., 2020).

A smaller image set allows the model to be more flexible, mak-
ing it more applicable for ecologists than other advanced machine 
learning techniques (Xie et al., 2015). Feature extraction with trans-
fer learning provides camera trap projects an alternative option to 
starting a CNN architecture from scratch, instead opting to use a 
pre-trained CNN product (e.g., Microsoft MegaDetector) or unsu-
pervised learning techniques (e.g., cluster analysis).

By using open-source programs and calibrating premade neural 
nets, models can be built to simply remove images without animals 
or to fully automate the classification of species. This study, along 
with similar studies (e.g., Tab ak et al., 2018), provides evidence that 
a reliable identification and classification model can be created with 

TA B L E  2   Details about model training and hardware used

CPU Windows 10 Intel i9-9

RAM 64 GB

GPU Nvidia 2070 super 8 GB

Batch size (images per training 
round)

4

Epoch steps (complete cycle through 
training data)

50,000

Train configuration Faster R-CNN Inception v2

Training evaluation Every 1,000 steps

Evaluation configuration Open Images V2 Detection 
Metric
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open-source tools (e.g., Tensorflow) by using transfer learning and 
premade neural networks (see Appendix S4). Further, we completed 
this process using a very limited set of images and achieved encour-
aging results. This technology could be especially desirable for re-
searchers wishing to eliminate false positives as well as to quickly 
sort and label species classes.

4.2 | Calibration analysis

Currently, accuracy is the standard metric to evaluate classifica-
tion models for camera trap studies (Gomez, Diez et  al.,  2016; 
Norouzzadeh et al., 2018; Swanson et al., 2015). We suggest the op-
timization of customized models be based more on F-1 score rather 
than relying on accuracy alone, because accuracy can be heavily bi-
ased by TNs (Wolf & Jolion, 2006). This can be seen in the greater 
than 20% difference between our test accuracy (TNs excluded) and 
validation accuracy (TNs included).

The metrics used to optimize a model will depend on the pur-
pose of the project and the resources available to the researcher. 
The F-1 score can be broken down into precision and recall, both of 
which can be optimized for different purposes. In a study focusing 
on rare species (e.g., Alexander et al., 2016; Karanth, 1995), pre-
cision should be optimized to ensure the detection of all possible 
occurrences of animals. Alternatively, recall should be optimized 
if processing time is limited and every image of an animal is not 
essential for the global analysis. Optimizing recall is ideal for a gen-
eral survey of common, easily identified animals (e.g., Chitwood 
et al., 2020).

4.3 | Optimizing model performance

Analyzing model performance during training is especially useful to 
determine which classes the model is not identifying properly and 
is easily visualized using IOU graphs. Precision during training did 
not seem to depend on the number of images used to train each 
class; rather, the type of object the class refers to was most impor-
tant in determining the performance of the model. Objects with 
unique shapes, color patterns, and textures (e.g., turkey and arma-
dillo) were detected by the model more easily (Figure 6). The model 
was not as successful with objects that were small and difficult to 
distinguish from the background (e.g., gray squirrel), were similar to 
another class (e.g., coyote and dog), or when trained examples were 
highly variable in the subjects within the same class (e.g., humans 
and vehicles).

Depending on the aim of the study, the choice of metric allows 
the researcher to facilitate either an ID or CL model. Certain camera 
trap studies benefit greatly from automating the removal of TNs, es-
pecially when focusing on topics such as camera trap effectiveness 
(e.g., Edwards et  al.,  2016; Ferreira-Rodríguez & Pombal,  2019) or 
instances where human-supervised processing will be required to 
extract details such as behavior. To focus a model on detection of 
objects rather than classification, researchers should focus on met-
rics associated with ID. The use of this type of identification model 
would allow researchers to decrease processing time and ensure 
detection of objects while not being overly concerned with the ac-
curacy of species classification by the model. Alternatively, studies 
focusing on general ecosystem monitoring (e.g., Jiménez et al., 2010; 
Steenweg et al., 2017) or density of common species (e.g., Parsons 

Species

Training Validation

TP FP FN TP FN FP

Armadillo 18 1 3 0 0 0

Bobcat 0 0 3 0 0 4

Coyote 18 0 5 7 11 15

Crow 6 0 6 0 0 0

Deer 136 8 18 1,016 127 235

Dog 11 1 8 0 0 7

Fox Squirrel 6 0 9 1 2 36

Gray Fox 10 1 1 0 0 8

Gray Squirrel 11 4 22 0 3 59

Heron 3 1 0 0 0 1

Human 158 47 36 27 2 88

Opossum 0 0 2 0 0 0

Rabbit 11 0 5 0 0 2

Raccoon 19 0 6 1 6 1

Skunk 2 0 0 0 0 0

Turkey 71 1 8 0 8 20

Vehicle 231 34 39 114 33 72

Total TN 0 9,499

TA B L E  4   True-positive (TP), false-
positive (FP), false-negative (FN), and 
true-negative (TN) values for completed 
training and validation at 0.9 confidence 
threshold (CT) for the 17 object classes
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et al., 2017) would benefit from a CL model and should use CL met-
rics to build a model fully capable of both identifying and classifying 
species.

Several methods may be employed to adjust the model's parame-
ters. CTs are a simple way to calibrate a model to reach the desired met-
ric's optimal value. If optimization cannot be reached by adjustments 

F I G U R E  3   Diagram illustrating calculation of each metric used in training (train and test) data: precision, recall, accuracy, and F1 
(range of 0–1). For identification purposes, misidentifications are counted as correct (green in confusion matrix) because the animal was 
detected, whereas, for classification purposes, misidentifications are counted as incorrect (red in confusion matrix) because the object was 
not classified correctly. True positives (TP), false positives (FP), and false negatives (FN) are represented in the confusion matrix with true 
negatives (TN) not present in training data. Adjusting confidence thresholds (range of 0.5–0.95) optimizes the model for specific applications
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F I G U R E  4   Average precision at 50% intersection over union found every 10,000 steps for select classes. Graphs for all species can be 
found in Appendix S3

F I G U R E  5   Evaluation of image size 
versus final intersection over union 
values for each of the 17 object classes 
ordered by number of images (blue) 
used for training. Linear regression 
model of number of images versus IOU 
(y = 0.0001x + 0.7330; R2 = 0.0254; 
p-value = .5409). Spearman correlation 
test supports no correlation between 
IOU and number of images (ρ = −0.017, 
p value = .948)
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of CTs, the model can be further improved by adding images to classes 
which the model consistently predicts incorrectly. Images should be 
added to the model's train and test directories based on performance 
during training (examining IOU graphs) and in the test and validation 
evaluation metrics. This will help the model to learn from the dataset 
and improve its performance on objects classification.

Establishing methods to quickly and accurately process camera 
trap data will allow researchers to monitor wildlife populations more 
autonomously. As biodiversity declines worldwide (Kolbert, 2014), 
employing commonly used computer science techniques in future 
camera trap studies will greatly enhance our ability to monitor wild-
life populations.

5  | CONCLUSIONS

1.	 Transfer learning with bounding boxes is successful and requires 
far fewer training images than traditional model building.

2.	 Identification and classification models built using transfer learn-
ing and small image sets can be very successful with species that 
are easily distinguished. However, there are cases in which spe-
cies that are considered more difficult to distinguish can also be 
identified by using these methods.

3.	 The traditional metric of accuracy can give a false sense of con-
fidence in a model because of inflation by true negatives. F-1 
should be used more commonly for general purposes because it is 
not biased by true negatives.

4.	 Studies focusing on simply removing true negatives do not require 
the large number of images and resources compared to studies 
attempting to classify species do.
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