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Non-small-cell lung cancer (NSCLC) is the second most common cancer

worldwide, and most deaths are associated with epithelial–mesenchymal

transition (EMT). Therefore, this study aimed to explore the role of EMT-

related transcriptomic profiles in NSCLC and the effect of EMT-based

signatures on clinical diagnosis, prognosis, and treatment responses for

patients with NSCLC. After integrating the transcriptomics and

clinicopathological data, we first constructed EMT clusters (C1 and C2) using

machine learning algorithms, found the significant relationship between EMT

clusters and survival outcomes, and then explored the impact of EMT clusters

on the tumor heterogeneity, drug efficiency, and immunemicroenvironment of

NSCLC. Prominently, differential-enriched tumor-infiltrated lymphocytes were

found between EMT clusters, especially the macrophages and monocyte. Next,

we identified the most significantly down-regulated gene SFTA2 in the EMT

clusters C2 with poor prognosis. Using RT-qPCR and RNA-seq data from the

public database, we found prominently elevated SFTA2 expression in NSCLC

tissues compared with normal lung tissues, and the tumor suppressor role of

SFTA2 in 82 Chinese patients with NSCLC. After Cox regression and survival

analysis, we demonstrated that higher SFTA2 expression in tumor samples

significantly predicts favorable prognosis of NSCLC based on multiple

independent cohorts. In addition, the prognostic value of SFTA2 expression

differs for patients with lung adenocarcinoma and squamous cell carcinoma. In

conclusion, this study demonstrated that the EMT process is involved in the

malignant progression and the constructed EMT clusters exerted significant

predictive drug resistance and prognostic value for NSCLC patients. In addition,

we first identified the high tumoral expression of SFTA2 correlated with better

prognosis and could serve as a predictive biomarker for outcomes and

treatment response of NSCLC patients.
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Introduction

Lung cancer is the second most common cancer worldwide

(Akram et al., 2018). Non-small-cell lung cancer (NSCLC)

accounts for 85% of all lung cancer cases, and the global

incidence of NSCLC is estimated to be approximately 2 million

new cases per year (Zhou et al., 2021). Most patients are diagnosed

at an advanced stage of the cancer (Kwan and Chowdhury, 2021),

suffering from a poor prognosis and high risk of death. With poor

efficacy ofmonotherapy, targeted therapy with specific inhibitors is

now the most promising first-line cancer therapy on the market

(Osmani et al., 2018). Numerous studies related to the discovery of

candidate biomarkers for lung cancer have been published (Gong

et al., 2020). However, none of these biomarkers are widely used in

clinical practices, and the function of these candidate signatures

still lacks validation in well-designed large-scale studies

(Rybarczyk-Kasiuchnicz et al., 2021).

The vast majority of cancer-related deaths, such as

hepatocellular carcinoma and breast cancer (Saxena et al., 2021;

Gao et al., 2022), are due to metastatic spread of cancer cells, a

process aided by epithelial–mesenchymal transition (EMT) (Atay,

2020; Kitz et al., 2021). EMT refers to the biological process in which

epithelial cells are transformed into cells with a mesenchymal

phenotype through specific programs (Zhang et al., 2022). In the

process of EMT, the polarity of epithelial cells is lost, contact with

surrounding cells and stromal cells is reduced, interaction between

cells is reduced, and ability of cellmigration andmotility is enhanced

(Ramesh et al., 2020). At the same time, the cell phenotype changes

and the expression level of E-cadherin decreased, resulting in

reduced cell adhesion, allowing cells to acquire the characteristics

of easy invasion and metastasis (Wu et al., 2020).

EMT also plays a very important role in themalignant evolution

and migration capacities of tumors (Pastushenko and Blanpain,

2019; Xu et al., 2020a; Liu et al., 2021). EMT enables tumor cells in

the primary site to acquire the ability to move and invade and also

enables tumor cells to escape from apoptosis induced by certain

factors, increasing their antiapoptotic ability (Singh et al., 2018; Bakir

et al., 2020). Tumor cells exuding from blood vessels or lymphatics

could revert to an epithelial state through mesenchymal–epithelial

transition and then proliferate to form large and even macroscopic

secondary tumors. For example, transient inhibition or

overexpression of fatty acid synthase significantly regulated

kidney cancer cells proliferation and migration by regulating the

EMT process (Xu et al., 2020b). Many EMT-related signaling

pathways and transcription factors have been confirmed to be

involved in the drug resistance of NSCLC (Mahmood et al.,

2017). Inhibition of tumor EMT signaling can delay tumor drug

resistance, thereby improving efficacy and reducing toxicity (Chae

et al., 2018; Wu et al., 2021). Therefore, this study aimed to

investigate the effect of EMT on NSCLC and the EMT-related

hub gene. We speculate that the expression of the EMT pathway is

related to the prognosis and clinical treatments in NSCLC patients.

Methods

Patients and tissue samples from online
databases

Raw counts of RNA-sequencing data and corresponding

clinical information from 1,000 NSCLC patients were obtained

from The Cancer Genome Atlas (TCGA) database (https://portal.

gdc.cancer.gov/) as a training cohort. After we excluded patients

with unclear clinicopathological information and missing overall

survival information, we finally included 1,000 NSCLC patients

with present survival, clinicopathological information, and

transcriptomic data. In addition, 1,144 NSCLC patients with

clinical follow-up information were enrolled in GSE19188,

GSE30219, GSE29013, GSE50081, and GSE37745 cohorts from

the Gene Expression Omnibus (GEO) data sets (https://www.ncbi.

nlm.nih.gov/geo/) as testing cohorts. In addition, we enrolled

82 NSCLC patients with available survival and

clinicopathological data from tissue bank of the Affiliated

Hospital of Youjiang Medical University for Nationalities

(Youjiang cohort, Youjiang, China) as a validation cohort.

Establishment of EMT clusters for patients
with NSCLC from the TCGA database

Among 1,000 patients with NSCLC from the TCGA database,

we integrated the level 3 RNA-seq data, extracted expression

profiles of EMT process, and collected corresponding clinical

and pathological data. Performing a consistency analysis using

“ConsensusClusterPlus” and “pheatmap” R package, we observed

the best unsupervised groups (less than 6) and performed

clustering heat maps according to the progression-free survival.

The gene expression heatmap retains genes with SD > 0.1. If the

number of input genes is more than 1,000, it will extract the top

25% genes after sorting the SD.

Analysis of tumor immune
microenvironment and drug sensitivity of
EMT clusters

We obtained a variety of immune infiltrating lymphocytes

with different degrees of infiltration using the CIBERSORT
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algorithm (https://cibersort.stanford.edu) (Rusk, 2019). The

differentially infiltrated lymphocytes were evaluated using the

Wilcoxon rank sum test. The Tumor Immune Dysfunction and

Exclusion (TIDE) and the semi-inhibitory concentration (IC50)

tests were used to detect tumor heterogeneity between the two

groups (Yang et al., 2013; Jiang et al., 2018).

Expression validation of tumor and normal
tissues by real-time quantitative PCR
(RT-PCR)

A TissueScan® qPCR cDNA array analysis (Origene,

Rockville, MD, United States) was performed on 48 human

tissues using SFTA2-specific primers, according to the

manufacturer’s protocol. RNA was extracted from lung cancer

and adjacent normal lung tissues, and a SFTA2 q-PCR analysis

was performed with normalization for GAPDH. Primers used

were SFTA2 forward: GGAGTCTTTTCTGACAAATTCCTC

and reverse: GGTGTTGAGATCTTGCATGGTGG.

Survival analysis

The Kaplan–Meier method was used to assess the

significance of progression-free survival (PFS) and overall

survival (OS) by using the Kaplan–Meier plotter (http://

kmplot.com/analysis/index). Univariate and multivariate Cox

regression analyses were performed to analyze the impact of

SFTA2 expression, age, gender, and pathological TNM stages on

overall survival. The forest was used to show the p-value, HR, and

95% CI of each variable through the “forestplot” R package.

Differential expression analysis and
functional enrichment analysis

To illustrate the statistically significance of differential

expressed genes (DEGs) between EMT clusters, the “Limma”

R package was used to compare the differences among NSCLC

samples with threshold as follows: |Log2 (fold change)| > 1 and

p-value < 0.05. Functional enrichment of all DEGs was

performed using the KEGG database in a bubble chart.

Statistics analysis

All statistical analyses were performed on R software and

GraphPad Prism (Version 8.0). Group comparisons were

determined by two-tailed t test and one-way ANOVA.

Spearman’s correlation analysis was applied to determine

significant correlation between linear variables. A survival

analysis was visualized using the Kaplan–Meier curves. A

univariate Cox regression analysis was performed using the R

package “survival”. All tests with p-values < 0.05 were considered

statistically significance.

Results

Construction of EMT clusters using
machine learning algorithms

Based on 1,000 patients with NSCLC from the TCGA cohort,

with unsupervised clustering, we prominently divided the

samples into EMT Cluster1 and EMT Cluster 2, according to

the EMT activity of NSCLC samples (Figures 1A,B). In order to

further compare the differences between C1 group and C2, we

selected some clinical and pathological factors, such as gender,

race, TNM stage, and smoking status (Figure 1C). As shown in

Table 1, there were significantly increased samples of

progression, female, advanced pathological TNM stages, and

non-smoking in EMT C2. Interestingly, we found more

patients with smoking history in C2 than those in C1,

suggesting that smoking is not significantly related to the

EMT pathway in NSCLC patients.

Moreover, a progression-free survival analysis showed that

the prognosis of the group with EMT C1 was markedly better

(log-rank p = 3.31e-05, HR = 0.629), with median time of

6.1 month in C1 and 3.0 month in C2 (Figure 1D). In addition,

we then evaluated the differential expression of traditional

EMT markers, including CDH1, CDH2, CLDN1, SNAI1,

SNAI2, TGFB1, TWIST1, VIM, ZEB1, and ZEB2, between

the EMT clusters. The findings suggested significant elevated

expression of CDH1, CLND1, SNAI2, TGFB1, and TWIST1 in

the EMT Cluster 1 and significant increased expression of

CDH2, SNAI1, VIM, ZEB1, and ZEB2 in EMT Cluster 2

(Supplementary Figure S1). Overall, EMT clusters

significantly correlated with clinicopathological indicators

and predicts PFS in 1000 NSCLC patients from the TCGA

database.

EMT clusters divide differential tumor-
infiltrated lymphocytes and immune
microenvironment

After understanding the differential activity of the EMT

process in EMT clusters, we focused on the impact of EMT

clusters on tumor immune microenvironment and clinical

treatment. We screened the aggregation of important immune

cells in both groups and found that activity of macrophage

M1 cells and resting mast cells were significantly higher in

C2. However, in the C1 group, there were significantly

enriched macrophage M2, monocytes, and activated mast cell

(Figure 2A). Since M1 mainly secretes proinflammatory factors
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and M2 expression inhibits inflammatory factors, which plays a

role in inhibiting inflammatory response and tissue repair, the

better prognosis of the EMT C1 group may be related to the

immune-excluded microenvironment. Though the C1 has a

better prognosis and a more positive immune response, we

compared and analyzed immune checkpoints and found that

the C2 had higher expression of immune checkpoints, such as

CTLA2, HAVCR2, LAG3, PDCD1, TIGIT, and SIGLEC15

(Figure 2B). These finding suggested that immunotherapy

could be a potential treatment selection for NSCLC patients

in the EMT C2 group.

Intratumoral heterogeneity and drug
sensitivity of EMT clusters in NSCLC

The TIDE score showed that the score of C2 was

significantly lower than that in the C1 group, indicating that

FIGURE 1
Construction of EMT clusters (C1 and C2) usingmachine learning algorithms. (A) The principal component analysis (PCA) was applied to explore
differences in the expressed genes between the two groups (C1 andC2). Unsupervised clusteringwas used to classify NSCLC patients into groups (C1
and C2). (B) The heatmap of consistent clustering results shows the expression of EMT in each sample in C1 and C2 groups. Red represents high
expression and blue represents low expression. (C) We investigated the distribution of some clinical characteristics in the two groups and
analyzed significant p-values by using the chi-square test. (D) Kaplan–Meier survival curve analysis using median patient samples.
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TABLE 1 Clinical and pathological features according to the EMT clusters.

Clinical and pathological factors EMT C1 EMT C2 p-value

Progression status Progression 127 229 <0.001*

Progression free 318 340

Mean (SD) 67.6 (8.5) 65.2 (9.9)

Sex Female 115 291 <0.001

Male 330 278

Race Asian 6 10 0.784

Black 31 51

White 305 431

American Indian — 1

pT stage T1 41 75 0.005

T1a 20 51

T1b 34 61

T2 155 184

T2a 82 87

T2b 33 28

T3 61 57

T4 19 23

TX — 3

pN stage N0 292 357 0.001

N1 113 113

N2 31 83

N3 4 3

NX 5 12

pM stage M0 356 399 0.003

M1 5 18

M1a 1 2

M1b 1 5

MX 78 141

pTNM stage I 3 5 <0.001

IA 75 145

IB 147 143

II 3 1

IIA 58 57

IIB 82 82

III 2 1

IIIA 51 85

IIIB 15 14

IV 7 26

Metastasis status Metastasis 34 62 0.546

Metastasis: primary 2 1

Metastasis: recurrence 2 9

Primary 9 14

Recurrence 25 52

Smoking history Non-smoking 14 78 <0.001

Smoking 421 475

Radioation history Non-radiation 132 148 0.928

Radiation 14 14

*p value <0.05 are marked in bold.
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FIGURE 2
EMT clusters divide differential tumor-infiltrated lymphocytes and immunemicroenvironment. (A)We found the connection between different
immune cells and EMT. Red represents positive correlation while blue represents negative correlation. (B) Expression distribution of immune
checkpoint molecules in C1 and C2 groups.
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the EMT cluster 2 samples had lower heterogeneity and all

tumor cells could have strong sensitivity to the given treatment

(Figure 3). In addition, patients in EMT cluster 2 could receive

favorable responses to immune checkpoint inhibitors and easier

to obtain precise treatment strategies. Then we evaluated the

effect of targeted therapy (first-generation EGFR tyrosine

kinase inhibitors) and chemotherapy using the semi-

inhibitory concentration (IC50) method, an important

indicator for evaluating drug efficacy or sample treatment

response (version cgp 2016). As shown in Supplementary

Figure 2, the results indicated that the IC50 values of EGFR

tyrosine kinase inhibitors gefitinib, erlotinib, and cisplatin in

EMT Cluster 1 were significantly higher lower than EMT

Cluster 2 (p < 0.0001), revealing that NSCLC patients in

EMT Cluster one received better clinical responses to

tyrosine kinase inhibitors or chemotherapy.

Function enrichment analysis of EMT
clusters and the identification of tumor-
suppressor SFTA2

Comparing the differential transcriptional profiles of EMT

clusters, we listed down-regulated and up-regulated DEGs in

EMT C2 (Supplementary Table S1). The most significantly

down-regulated gene is SFTA2, a tumor suppressor gene, and the

significantly up-regulated genes included KRT5, CLCA2, TP63, and

so on in the volcano and clustering plot (Figure 4A). A functional

enrichment analysis with samples from the KEGG database showed

that the up-regulated genes were mainly involved in signaling

pathways regulating pluripotency of stem cells and the cell cycle,

while the down-regulated genes were mainly involved in

Staphylococcus aureus infection, complement and coagulation

cascades, and cell adhesion molecules pathway (Figure 4B).

FIGURE 3
Intratumoral heterogeneity of NSCLC. The TIDE test was used to predict response to immune checkpoint inhibition therapy.
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Potential implications of SFTA2 expression
in outcomes of NSCLC

Furthermore, we compared the expression level of SFTA2 in

tumor and normal tissues. To further illustrate the accuracy and

reliability of the biomarker, we analyzed the expression level of

the SFTA2 in human organs, and the results showed that the

SFTA2 expression was most significantly expressed in lungs,

followed by the esophagus (Supplementary Figures S3A,B).

We then found that the expression of SFAT2 was

significantly lower in tumor than that in normal tissues in

NSCLC and squamous cell carcinoma (LUSC) cohorts,

whereas the expression in adenocarcinoma (LUAD) was lower

in normal tissue (Figure 5A). Table 2 shows the association of

SFTA2 with clinicopathological factors, with increased samples

of progression, female, non-white, advanced pTNM stage, and

smoking in the SFTA2 high expression group. Next, we

performed univariate and multivariate Cox regression analyses

enrolling clinical and pathological indicators. The results

suggested that the T stage, N stage, and SFTA2 were

significantly associated with patient prognosis, indicating that

SFTA2 could be a valuable independent biomarker of NSCLC

FIGURE 4
Function enrichment analysis of EMT clusters and the identification of tumor-suppressor SFTA2. (A) The graphs show the differentially
expressed genes in the C1 and C2 groups, with up-regulated genes in red and down-regulated genes in blue. (B) We performed functional
enrichment analysis to show the pathways involved in differentially up-regulated and down-regulated genes in the KEGG database.
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(Figure 5B). Finally, with multiple independent cohorts and

integrated cohort from the GEO database, we found that

patients in the high SFTA2 expression group experienced

better outcomes than that of SFTA2 low expression in cohorts

like GSE30219 (n = 293, p = 0.0022, HR = 0.57), GSE33745 (n =

196, p = 0.01, HR = 0.64), GSE50081 (n = 181, p = 0.023, HR =

0.5), and GSE19188 (n = 82, p = 0.059, HR = 0.56) (Figure 5C).

Expression and prognostic validation of
SFTA2 expression in outcomes of NSCLC
patients from the Chinese real-world
cohort

Next, we assessed mRNA expression of STFA2 in NSCLC

tissues and normal tissues. The results validated our previous

findings and showed significantly elevated expression level of

SFTA2 in 47 paired tumor compared with normal tissues (p <
0.001) (Figure 6A). Then a total of 82 patients from the Youjiang

cohort were enrolled in this study to validate our hypothesis. The

clinical and pathological baseline data for patients with NSCLC

in line with SFTA2 expression is shown in Supplementary Table

S2. We found that SFTA2 serves as a significant tumor

suppressor gene and could significantly predict prognosis for

patients with lung adenocarcinoma (Figure 6B). The

Kaplan–Meier survival analysis and the log-rank test indicated

that low expression of SFTA2 significantly predicted poor OS for

82 Chinese patients with NSCLC from the real-world Jiaxing

cohort (p = 0.0212, HR = 0.431). In addition, for patients with

lung adenocarcinoma from the TCGA database, we found that

decreased SFTA2 expression was not markedly associated with

PFS (p = 0.059) while significantly predicted poorer OS (p =

FIGURE 5
Potential implications of SFTA2 expression in outcomes of NSCLC. (A) We compared the expression of SFTA2 in normal and tumor tissues in
NSCLC and subgroups of LUAD and LUSC. (B)We performed univariate andmultivariate regression analyses to find the factors related to the survival
of NSCLC patients. (C) We utilized independent cohort samples to study the relationship between SFTA2 expression and survival prognosis.
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TABLE 2 Clinical and pathological features according to the differential SFTA2 expression in 1,000 NSCLC patients from the TCGA database.

Low SFTA2 expression High SFTA2 expression p-value

Progression status Progression 195 161 0.030*

Progression free 312 346

Mean (SD) 65.6 (9.6) 66.9 (9.1)

Sex Female 271 135 <0.001

Male 236 372

Race American Indian 1 0.955

Asian 8 8

Black 44 38

White 385 351

pT stage T1 72 44 <0.001

T1a 50 21

T1b 51 44

T2 160 179

T2a 79 90

T2b 26 35

T3 47 71

T4 19 23

TX 3

pN stage N0 323 326 <0.001

N1 93 133

N2 72 42

N3 5 2

NX 13 4

pM stage M0 351 404 0.003

M1 16 7

M1a 2 1

M1b 3 3

MX 131 88

pTNM stage I 5 3 <0.001

IA 136 84

IB 127 163

II 1 3

IIA 53 62

IIB 68 96

IIIA 72 64

IIIB 15 14

IV 22 11

III 3

Metastasis status Metastasis 59 37 0.865

Metastasis: primary 1 2

Metastasis: recurrence 7 4

Smoking history Non-smoking 70 22 <0.001

Smoking 422 474

Radioation history Non-radiation 143 137 <0.001

Radiation 12 16

*p value <0.05 are marked in bold.

Frontiers in Genetics frontiersin.org10

Li et al. 10.3389/fgene.2022.911801

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.911801


0.0066). For patients with lung squamous cell carcinoma,

elevated SFTA2 expression was not markedly associated with

PFS (p = 0.310) while significantly predicted poorer OS (p = 0.01)

(Supplementary Figure S4)

Discussion

As one of the most common cancers in the world, lung cancer

is characterized by late diagnosis, poor prognosis, and high

mortality (Dundr et al., 2021; Zhao et al., 2022; Zheng et al.,

2022). NSCLC is more common compared to small-cell lung

cancer (SCLC), accounting for 85% of lung cancer patients

(Fintelmann et al., 2015). Since there is no cure for NSCLC, the

best supportive treatment is usually used for palliative treatment

(NSCLC Meta-Analyses Collaborative Group, 2008). In NSCLC,

driver mutations that activate the EGFR represent the most

common actionable therapeutic alteration. EGFR tyrosine

kinase inhibitors (TKIs) are the standard of care for first-line

treatment of advanced or metastatic EGFR-mutant NSCLC. Early-

stage treatment modalities include first-generation (1G; erlotinib,

gefitinib), second-generation (2G; afatinib, dacomitinib), or third-

generation (3G; osimertinib) EGFR TKIs, alone or in combination

with other therapies. However, despite a high response rate of 80%,

resistance inevitably develops after a median of 10–17 months

(1–4 months) (Zhong et al., 2013).

The most common mechanism of resistance to 1G and 2G

EGFR TKIs is the EGFR T790M “gatekeeper” mutation, which

occurs in 50%–60% of patients (Yang et al., 2022a). Osimertinib is

highly selective for T790M and was originally developed and

approved for the treatment of T790M-positive (T790M+)

resistance (Yang et al., 2022b). The mechanisms of resistance in

the remaining patients, as well as those treated with 3G EGFR

TKIs, are thought to be diverse and include activation of alternative

signaling pathways, such as MET or HER2 amplification, or

phenotypic changes of the EMT process, which is also a key

cellular phenomenon involved in tumor metastasis and

progression (Erin et al., 2020; Vokes et al., 2022). Overall,

T790M-negative (T790M−) EGFR TKIs resistance patients

remain a population with significant precision medical need.

It has been revealed that the EMT pathway and related

transcription factors have been confirmed to be involved in

cancer progression and resistance of EGFR TKIs NSCLC

patients (Li et al., 2018; Meyer-Schaller et al., 2019).

Therefore, we first divided the patients into two groups:

C1 and C2. The study found that the difference between the

EMT C1 and C2 groups was significant and was related to factors

such as gender and clinical T and N stages. More importantly, we

are the first to discover that prognosis of NSCLC patients with

significantly associated with EMT. Since studies have shown that

EMT cells can promote immune exclusion and deviation (Romeo

et al., 2019). We then studied the immune cells related to EMT

and the effects of EMT on the immune checkpoints. It was found

that there were more active immune cells in the EMT C1 group,

corresponding to the better prognosis of patients, while in the

EMT C2 group, the expression of immune checkpoints was high,

indicating that these patients might have better effect of receiving

specific target immunotherapy.

Previous studies have interrogated the transcriptional profiles of

TKI-resistant tumors and have suggested fundamental

transcriptional differences in T790M+ and T790M− resistance

mechanisms. Notably, the expression of lung adenocarcinoma

FIGURE 6
Expression and prognostic validation of SFTA2 expression in outcomes of NSCLC patients from the real-world cohort. (A) We compared the
expression of SFTA2 in normal tissues (n = 47) and NSCLC (n = 47) tissues using Student’s t test. (B) Kaplan–Meier survival analysis and log-rank test
reveal the prognostic value of SFTA2 expression in 82 patients from the Jiaxing cohort.
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marker genes such as SFTA2 and SFTA3 was widespread and

almost completely lost in cancer cells of T790M− tumors (Kim

et al., 2020; Chua et al., 2021). In order to explore the deeper

association mechanism between the EMT and the prognosis of

NSCLC, we compared the DEGs in the two groups and found

that SFTA2 was significantly down-regulated in the

C2 group. The overall expression of SFTA2 in lung cancer

samples was lower in tumor tissues than that in normal lung

tissues, and the low expression of SFTA2 was significantly

related to the poor progression-free survival of NSCLC

patients. Interestingly, Mittal et al. (2012) characterized

SFTA2 as a novel secretory peptide highly expressed in the

lung and is modulated by lipopolysaccharide. SFTA2 was also

identified as prognostic genes with significantly correlation

with the pathological stages of pancreatic ductal

adenocarcinoma in an integrated transcriptome meta-

analysis (Atay, 2020). So far, we have verified that

SFTA2 gene could be used as an independent signature to

predict the prognosis and TKIs resistance of lung cancer.

However, there still exist some limitations of this study. We

did not include real-world cohort samples to study the

comparison of EMT in tumor tissues and normal tissues, but

we analyzed the differences between the EMT C1 and C2 groups

and the corresponding prognosis through a large number of

independent cohorts, revealing the significance of EMT in the

prognosis of the patient.

Conclusion

In conclusion, this study revealed the EMT process

involved in the malignant progression of NSCLC. The

construction of EMT clusters showed significant predictive

value for NSCLC patients. In addition, we first identified the

high expression of SFTA2 associated with better prognosis

could serve as predictive biomarker for outcomes,

dysregulation of TME, and immunotherapy response for

NSCLC patients.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material; further

inquiries can be directed to the corresponding authors.

Ethics statement

A written informed consent was obtained from the

individual(s) for the publication of any potentially identifiable

images or data included in this article.

Author contributions

Conceptualization, data curation, and formal analysis: NL,

ZZ, and XL. Investigation, methodology, resources, and software:

NL, ZZ, and XL. Supervision, validation, and visualization: NL

and ZZ. Original draft and Editing: NL, ZZ, and XL.

Acknowledgments

We are grateful to all patients for their dedicated

participation in the current study. We are grateful to the

grants from the Key Discipline of Jiaxing Respiratory

Medicine Construction Project (No.2019-zc-04).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.911801/full#supplementary-material

References

Akram, A., Khalil, S., Halim, S. A., Younas, H., Iqbal, S., and Mehar, S. (2018).
Therapeutic uses of HSP90 inhibitors in non-small cell lung carcinoma (NSCLC). Curr.
Drug Metab. 19 (4), 335–341. doi:10.2174/1389200219666180307122441

Atay, S. (2020). Integrated transcriptome meta-analysis of pancreatic ductal
adenocarcinoma and matched adjacent pancreatic tissues. PeerJ 8, e10141.
doi:10.7717/peerj.10141

Frontiers in Genetics frontiersin.org12

Li et al. 10.3389/fgene.2022.911801

https://www.frontiersin.org/articles/10.3389/fgene.2022.911801/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.911801/full#supplementary-material
https://doi.org/10.2174/1389200219666180307122441
https://doi.org/10.7717/peerj.10141
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.911801


Bakir, B., Chiarella, A. M., Pitarresi, J. R., and Rustgi, A. K. (2020). EMT, MET,
plasticity, and tumor metastasis. Trends Cell Biol. 30 (10), 764–776. doi:10.1016/j.
tcb.2020.07.003

Chae, Y., Chang, S., Ko, T., Anker, J., Agte, S., Iams, W., et al. (2018). Epithelial-
mesenchymal transition (EMT) signature is inversely associated with T-cell
infiltration in non-small cell lung cancer (NSCLC). Sci. Rep. 8 (1), 2918. doi:10.
1038/s41598-018-21061-1

Chua, K. P., Teng, Y. H. F., Tan, A. C., Takano, A., Alvarez, J. J. S., Nahar, R., et al.
(2021). Integrative profiling of T790M-negative EGFR-mutated NSCLC reveals
pervasive lineage transition and therapeutic opportunities. Clin. Cancer Res. 27 (21),
5939–5950. doi:10.1158/1078-0432.CCR-20-4607

Dundr, P., Matej, R., Nemejcova, K., Bartu, M., and Struzinska, I. (2021).
Predictive testing in non-small cell lung carcinoma. Klin. Onkol. 34, 29–34.
doi:10.48095/ccko2021S29

Erin, N., Grahovac, J., Brozovic, A., and Efferth, T. (2020). Tumor
microenvironment and epithelial mesenchymal transition as targets to overcome
tumor multidrug resistance. Drug Resist. Updat. 53, 100715. doi:10.1016/j.drup.
2020.100715

Fintelmann, F., Bernheim, A., Digumarthy, S. R., Lennes, I. T., Kalra, M. K.,
Gilman, M. D., et al. (2015). The 10 pillars of lung cancer screening: rationale and
logistics of a lung cancer screening program. Radiographics 35 (7), 1893–1908.
doi:10.1148/rg.2015150079

Gao, Z., Zhong, M., Ye, Z., Wu, Z., Xiong, Y., Ma, J., et al. (2022). PAK3 promotes
the metastasis of hepatocellular carcinoma by regulating EMT process. J. Cancer 13
(1), 153–161. doi:10.7150/jca.61918

Gong, B., Kao, Y., Zhang, C., Sun, F., Gong, Z., and Chen, J. (2020). Identification
of hub genes related to carcinogenesis and prognosis in colorectal cancer based on
integrated bioinformatics. Mediat. Inflamm. 2020, 5934821. doi:10.1155/2020/
5934821

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24
(10), 1550–1558. doi:10.1038/s41591-018-0136-1

Kim, N., Kim, H. K., Lee, K., Hong, Y., Cho, J. H., Choi, J. W., et al. (2020). Single-
cell RNA sequencing demonstrates the molecular and cellular reprogramming of
metastatic lung adenocarcinoma. Nat. Commun. 11 (1), 2285. doi:10.1038/s41467-
020-16164-1

Kitz, J., Lefebvre, C., Carlos, J., Lowes, L. E., and Allan, A. L. (2021). Reduced Zeb1
expression in prostate cancer cells leads to an aggressive partial-EMT phenotype
Associated with altered global methylation patterns. Int. J. Mol. Sci. 22 (23), 12840.
doi:10.3390/ijms222312840

Kwan, T., and Chowdhury, E. (2021). Clinical outcomes of chemotherapeutic
molecules as single and multiple agents in advanced non-small-cell lung carcinoma
(NSCLC) patients. Med. Kaunas. Lith. 57 (11), 1252. doi:10.3390/
medicina57111252

Li, C., Shen, Z., Zhou, Y., and Yu, W. (2018). Independent prognostic genes and
mechanism investigation for colon cancer. Biol. Res. 51 (1), 10. doi:10.1186/s40659-
018-0158-7

Liu, J., Cui, G., Shen, S., Gao, F., Zhu, H., and Xu, Y. (2021). Establishing a
prognostic signature based on epithelial-mesenchymal transition-related genes for
endometrial cancer patients. Front. Immunol. 12, 805883. doi:10.3389/fimmu.2021.
805883

Mahmood, M., Ward, C., Muller, H. K., Sohal, S. S., and Walters, E. H. (2017).
Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC):
a mutual association with airway disease. Med. Oncol. 34 (3), 45. doi:10.1007/
s12032-017-0900-y

Meyer-Schaller, N., Cardner, M., Diepenbruck, M., Saxena, M., Tiede, S., Luond,
F., et al. (2019). A hierarchical regulatory landscape during the multiple stages of
EMT. Dev. Cell 48 (4), 539–553. doi:10.1016/j.devcel.2018.12.023

Mittal, R. A., Hammel, M., Schwarz, J., Heschl, K.M., Bretschneider, N., Flemmer,
A. W., et al. (2012). SFTA2--a novel secretory peptide highly expressed in the lung--
is modulated by lipopolysaccharide but not hyperoxia. PLoS One 7 (6), e40011.
doi:10.1371/journal.pone.0040011

NSCLC Meta-Analyses Collaborative Group (2008). Chemotherapy in addition
to supportive care improves survival in advanced non-small-cell lung cancer: a
systematic review and meta-analysis of individual patient data from 16 randomized
controlled trials. J. Clin. Oncol. 26 (28), 4617–4625. doi:10.1200/JCO.2008.17.7162

Osmani, L., Askin, F., Gabrielson, E., and Li, Q. K. (2018). Current WHO
guidelines and the critical role of immunohistochemical markers in the
subclassification of non-small cell lung carcinoma (NSCLC): moving from
targeted therapy to immunotherapy. Semin. Cancer Biol. 52, 103–109. doi:10.
1016/j.semcancer.2017.11.019

Pastushenko, I., and Blanpain, C. (2019). EMT transition states during tumor
progression and metastasis. Trends Cell Biol. 29 (3), 212–226. doi:10.1016/j.tcb.
2018.12.001

Ramesh, V., Brabletz, T., and Ceppi, P. (2020). Targeting EMT in cancer with
repurposed metabolic inhibitors. Trends Cancer 6 (11), 942–950. doi:10.1016/j.
trecan.2020.06.005

Romeo, E., Caserta, C. A., Rumio, C., and Marcucci, F. (2019). The vicious cross-
talk between tumor cells with an EMT phenotype and cells of the immune system.
Cells 8 (5), E460. doi:10.3390/cells8050460

Rusk, N. (2019). Expanded CIBERSORTx. Nat. Methods 16 (7), 577. doi:10.1038/
s41592-019-0486-8

Rybarczyk-Kasiuchnicz, A., Ramlau, R., and Stencel, K. (2021). Treatment of
brain metastases of non-small cell lung carcinoma. Int. J. Mol. Sci. 22 (2), E593.
doi:10.3390/ijms22020593

Saxena, M., Hisano, M., Neutzner, M., Diepenbruck, M., Ivanek, R., Sharma, K.,
et al. (2021). The long non-coding RNA ET-20 mediates EMT by impairing
desmosomes in breast cancer cells. J. Cell Sci. 134, jcs258418. doi:10.1242/jcs.258418

Singh, M., Yelle, N., Venugopal, C., and Singh, S. K. (2018). EMT: mechanisms
and therapeutic implications. Pharmacol. Ther. 182, 80–94. doi:10.1016/j.
pharmthera.2017.08.009

Vokes, N. I., Chambers, E., Nguyen, T., Coolidge, A., Lydon, C. A., Le, X., et al.
(2022). Concurrent TP53 mutations facilitate resistance evolution in EGFR-mutant
lung adenocarcinoma. J. Thorac. Oncol. 17 (6), 779–792. doi:10.1016/j.jtho.2022.
02.011

Wu, T., Tang, C., Tao, R., Yong, X., Jiang, Q., and Feng, C. (2021). PD-L1-
Mediated immunosuppression in oral squamous cell carcinoma: Relationship with
macrophage infiltration and epithelial to mesenchymal transition markers. Front.
Immunol. 12, 693881. doi:10.3389/fimmu.2021.693881

Wu, X., Xin, Z., Zou, Z., Lu, C., Yu, Z., Feng, S., et al. (2020). SRY-related high-
mobility-group box 4: Crucial regulators of the EMT in cancer. Semin. Cancer Biol.
67, 114–121. doi:10.1016/j.semcancer.2019.06.008

Xu, H., Xu, W. H., Ren, F., Wang, J., Wang, H. K., Cao, D. L., et al. (2020).
Prognostic value of epithelial-mesenchymal transition markers in clear cell renal
cell carcinoma. Aging (Albany NY) 12 (1), 866–883. doi:10.18632/aging.102660

Xu, W., Hu, X., Anwaier, A., Wang, J., Liu, W., Tian, X., et al. (2020). Fatty acid
synthase correlates with prognosis-related abdominal adipose distribution and
metabolic disorders of clear cell renal cell carcinoma. Front. Mol. Biosci. 7,
610229. doi:10.3389/fmolb.2020.610229

Yang, J. C., Ohe, Y., Chiu, C-H., Ou, X., Cantarini, M., Jänne, P. A., et al.
(2022). Osimertinib plus selumetinib in EGFR-mutated non-small cell lung
cancer after progression on EGFR-TKIs: a phase ib, open-label, multicenter
trial (TATTON Part B). Clin. Cancer Res., OF1–OF10. doi:10.1158/1078-0432.
CCR-21-4329

Yang, J. C., Ohe, Y., Chiu, C-H., Ou, X., Cantarini, M., Jänne, P. A., et al.
(2022). Osimertinib plus selumetinib in EGFR-mutated, non-small cell lung
cancer after progression on EGFR-TKIs: a phase 1b, open-label, multicenter
trial (TATTON Part B). Clin. Cancer Res., OF1–OF10. doi:10.1158/1078-0432.
CCR-21-4329

Yang, W., Soares, J., Greninger, P., Edelman, E. J., Lightfoot, H., Forbes, S., et al.
(2013). Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic
biomarker discovery in cancer cells.Nucleic Acids Res. 41, D955–D961. doi:10.1093/
nar/gks1111

Zhang, G., Li, Z., Dong, J., Zhou, W., Zhang, Z., Que, Z., et al. (2022). Acacetin
inhibits invasion, migration and TGF-β1-induced EMT of gastric cancer cells
through the PI3K/Akt/Snail pathway. BMC Complement. Med. Ther. 22 (1), 10.
doi:10.1186/s12906-021-03494-w

Zhao, Y., Sun, P., Xiao, J., Jin, L., Ma, N., Li, Z., et al. (2022). International patterns
and trends of childhood and adolescent cancer, 1978-2012. J. Natl. Cancer Cent. 2
(2), 78–89. doi:10.1016/j.jncc.2022.02.001

Zheng, R., Zhang, S., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2022). Cancer
incidence and mortality in China, 2016. J. Natl. Cancer Cent. 2, 1–9. doi:10.1016/j.
jncc.2022.02.002

Zhong, C., Liu, H., Jiang, L., Zhang, W., and Yao, F. (2013). Chemotherapy plus
best supportive care versus best supportive care in patients with non-small cell lung
cancer: a meta-analysis of randomized controlled trials. PLoS One 8 (3), e58466.
doi:10.1371/journal.pone.0058466

Zhou, Y., Zheng,W., Zeng, Q. h., Ye, Y., Wang, C., Fang, C., et al. (2021). Targeted
exome sequencing identifies mutational landscape in a cohort of 1500 Chinese
patients with non-small cell lung carcinoma (NSCLC). Hum. Genomics 15 (1), 21.
doi:10.1186/s40246-021-00320-9

Frontiers in Genetics frontiersin.org13

Li et al. 10.3389/fgene.2022.911801

https://doi.org/10.1016/j.tcb.2020.07.003
https://doi.org/10.1016/j.tcb.2020.07.003
https://doi.org/10.1038/s41598-018-21061-1
https://doi.org/10.1038/s41598-018-21061-1
https://doi.org/10.1158/1078-0432.CCR-20-4607
https://doi.org/10.48095/ccko2021S29
https://doi.org/10.1016/j.drup.2020.100715
https://doi.org/10.1016/j.drup.2020.100715
https://doi.org/10.1148/rg.2015150079
https://doi.org/10.7150/jca.61918
https://doi.org/10.1155/2020/5934821
https://doi.org/10.1155/2020/5934821
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1038/s41467-020-16164-1
https://doi.org/10.1038/s41467-020-16164-1
https://doi.org/10.3390/ijms222312840
https://doi.org/10.3390/medicina57111252
https://doi.org/10.3390/medicina57111252
https://doi.org/10.1186/s40659-018-0158-7
https://doi.org/10.1186/s40659-018-0158-7
https://doi.org/10.3389/fimmu.2021.805883
https://doi.org/10.3389/fimmu.2021.805883
https://doi.org/10.1007/s12032-017-0900-y
https://doi.org/10.1007/s12032-017-0900-y
https://doi.org/10.1016/j.devcel.2018.12.023
https://doi.org/10.1371/journal.pone.0040011
https://doi.org/10.1200/JCO.2008.17.7162
https://doi.org/10.1016/j.semcancer.2017.11.019
https://doi.org/10.1016/j.semcancer.2017.11.019
https://doi.org/10.1016/j.tcb.2018.12.001
https://doi.org/10.1016/j.tcb.2018.12.001
https://doi.org/10.1016/j.trecan.2020.06.005
https://doi.org/10.1016/j.trecan.2020.06.005
https://doi.org/10.3390/cells8050460
https://doi.org/10.1038/s41592-019-0486-8
https://doi.org/10.1038/s41592-019-0486-8
https://doi.org/10.3390/ijms22020593
https://doi.org/10.1242/jcs.258418
https://doi.org/10.1016/j.pharmthera.2017.08.009
https://doi.org/10.1016/j.pharmthera.2017.08.009
https://doi.org/10.1016/j.jtho.2022.02.011
https://doi.org/10.1016/j.jtho.2022.02.011
https://doi.org/10.3389/fimmu.2021.693881
https://doi.org/10.1016/j.semcancer.2019.06.008
https://doi.org/10.18632/aging.102660
https://doi.org/10.3389/fmolb.2020.610229
https://doi.org/10.1158/1078-0432.CCR-21-4329
https://doi.org/10.1158/1078-0432.CCR-21-4329
https://doi.org/10.1158/1078-0432.CCR-21-4329
https://doi.org/10.1158/1078-0432.CCR-21-4329
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1186/s12906-021-03494-w
https://doi.org/10.1016/j.jncc.2022.02.001
https://doi.org/10.1016/j.jncc.2022.02.002
https://doi.org/10.1016/j.jncc.2022.02.002
https://doi.org/10.1371/journal.pone.0058466
https://doi.org/10.1186/s40246-021-00320-9
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.911801

	Transcriptomic and immunologic implications of the epithelial–mesenchymal transition model reveal a novel role of SFTA2 in  ...
	Introduction
	Methods
	Patients and tissue samples from online databases
	Establishment of EMT clusters for patients with NSCLC from the TCGA database
	Analysis of tumor immune microenvironment and drug sensitivity of EMT clusters
	Expression validation of tumor and normal tissues by real-time quantitative PCR (RT-PCR)
	Survival analysis
	Differential expression analysis and functional enrichment analysis
	Statistics analysis

	Results
	Construction of EMT clusters using machine learning algorithms
	EMT clusters divide differential tumor-infiltrated lymphocytes and immune microenvironment
	Intratumoral heterogeneity and drug sensitivity of EMT clusters in NSCLC
	Function enrichment analysis of EMT clusters and the identification of tumor-suppressor SFTA2
	Potential implications of SFTA2 expression in outcomes of NSCLC
	Expression and prognostic validation of SFTA2 expression in outcomes of NSCLC patients from the Chinese real-world cohort

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


